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simple idea, composite materials become 
possible, the properties of which can go 
beyond (“meta”) those of the constituent 
materials—qualitatively and quantitatively. 
In some cases, the resulting properties are 
even unprecedented, not found in nature, 
or were previously deemed impossible. 
Again, to reduce complexity, it is highly 
desirable to assign effective parameters to 
metamaterials, such as an effective conduc-
tivity, an effective magnetic permeability, or 
an effective Young’s modulus.

The idea of metamaterials is not entirely 
new. For example, in 1920, Lindman 
realized arrangements of randomly 

oriented copper helices, leading to 3D chiral metamaterials 
exhibiting very large isotropic optical activity at microwave 
frequencies.[1] In 1987, Lakes discussed foams with negative 
Poisson’s ratio from positive constituents.[2] However, the idea 
of rationally designed artificial crystals got a tremendous boost 
when magnetic composites based on split-ring resonators were 
discussed theoretically in 1999 and realized experimentally in 
2000.[3,4] Magnetism at elevated and even optical frequencies 
then enabled negative refractive indices, which created consid-
erable excitement.[5] Thereafter, the field of metamaterials has 
strongly benefitted from advances in nanotechnology and 3D 
additive manufacturing of complex chiral architectures that 
would be hard or impossible to make by other means.[6,7]

Today, the field of metamaterials has become very broad, 
encompassing nearly all aspects of solids, including optical, 
electrical, magnetic, thermal, and mechanical properties—linear 
and nonlinear as well as static and dynamic.[8–10] Metamaterials, 

Rationally designed artificial materials, called metamaterials, allow for 
tailoring effective material properties beyond (“meta”) the properties 
of their bulk ingredient materials. This statement is especially true for 
chiral metamaterials, as unlocking certain degrees of freedom necessarily 
requires broken centrosymmetry. While the field of chiral electromagnetic/
optical metamaterials has become rather mature, the field of elastic/
mechanical metamaterials is just emerging and wide open. This research 
news reviews recent theoretical and experimental progress concerning 3D 
chiral mechanical and optical metamaterials, with special emphasis on work 
performed at KIT.

Metamaterials

1. Introduction

A macroscopic crystal such as, e.g., silicon is a highly complex 
quantum mechanical many-body system composed of about 
1024 protons and electrons. By describing silicon via effective 
material parameters referring to a simplified fictitious 
continuum, e.g., via its electric conductivity, its magnetic 
permeability, or its Young’s modulus, we can reduce this 
complexity. Thereby, we enable the design of advanced devices 
and systems such as transistors and computer chips. Likewise, 
it would generally be hopeless to design optical circuitry or 
complex mechanical systems while considering the material at 
the level of atomic unit cells.

Metamaterials can be seen as artificial crystals based on 
rationally designed unit cells. Each unit cell is composed 
of a large number of atoms. Unit cell sizes range from the 
sub-micrometer scale to the centimeter scale. Based on this 
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unlike metasurfaces, their 2D cousins, are inherently 3D. In 
this research news, to avoid repetition, we build on extensive 
previous review articles by us and others on chiral optical meta-
materials[7,11,12] as well as on reviews on mechanical metama-
terials in general.[13,14] In this research news, we rather focus 
on selected aspects of recent interest concerning 3D chiral 
metamaterials and on corresponding challenges researchers at 
KIT are working at. We start with an introduction pointing at 
analogies between the effective-medium descriptions of chiral 
materials in electromagnetism and mechanics. Next, we con-
tinue with mechanical metamaterials, for which the number 
of future challenges is by far larger than the number of past 
accomplishments. Finally, we discuss the idea of extreme chi-
rality that has recently emerged in electromagnetism but has 
not yet been addressed in mechanics.

2. Effective-Medium Descriptions

Equations (1) and (2) are descriptions of effective electro-
magnetic and mechanical (or elastic) material properties, 
respectively.[15,16] While no continuum description is unique 
or perfect, Equations (1) and (2) are at a fairly advanced level 
already. We assume linear response, passivity, reciprocity and 
include general anisotropies. For the sake of compactness, we 
use the Einstein summation convention. In Equation (1), the 
electric rank-two permittivity tensor with components εij with 
i, j = 1, 2, and 3 describes the excitation of electric dipoles in 
the material by the electric component of the light field and 
the thereby changed relation between the components of the 
dielectric displacement vector field Di and those of the electric 
field vector, Ei. Likewise, the magnetic permeability tensor with 
components μij describes the excitation of magnetic dipoles in 
the material by the magnetic part of the electromagnetic light 
field and the thereby changed relation between the magnetic 
induction vector components Bi and those of the magnetic field 
vector, Hi. Here, ε0 = 8.854 × 10−12 A s V−1 m−1and μ0 = 4π × 
10−7 V s A−1 m−1 are the vacuum permittivity and permeability, 
respectively; ε μ= 1/0 0 0c  is the vacuum speed of light and i is 
the imaginary unit. As pointed out above, a sizable magnetic 
response by metamaterials created considerable excitement 
some years ago
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with ζij = −ξji due to reciprocity (note the swapping of the 
indices i and j).[15] In the presence of centrosymmetry, all ele-
ments ξij of the chirality tensor are strictly zero. This is easy 
to see: performing a space inversion, r r

� �→ − , generally turns 
a right-handed structure into a left-handed structure and vice 
versa. Furthermore, the electric field is a polar vector and the 
magnetic field is an axial vector, i.e., the components transform 
according to Ei → −Ei, Di → −Di, Bi → +Bi, and Hi → +Hi. Any 
even-rank tensor (not pseudotensor) is invariant with respect 
to space inversion. If the material is centrosymmetric, its prop-
erties must not change when performing a space inversion. 
Looking at Equation (1), this can only be true if ξij0. In the 

presence of chirality, which requires the absence of centrosym-
metry, this means that electric dipoles can also be excited by 
the magnetic component of light. Vice versa, magnetic dipoles 
can be excited by the electric component of light. The assump-
tion of reciprocity directly connects these two “off-diagonal” ten-
sors.[15] This cross-coupling generally leads to bianisotropy, the 
best known special case of which is perhaps optical activity. In 
the case of isotropy, all material tensors turn into scalars.

Let us compare Equation (1) with its mechanical counterpart 
Equation (2). There, all material tensors are of rank four rather 
than rank two; they have four indices i, j, k, and l = 1, 2, and 3. 
Intuitively, this aspect is connected to the fact that elastic waves 
(or phonons) can generally have two orthogonal transverse 
polarizations and one longitudinal polarization. In electro-
magnetism, longitudinal waves for zero permittivity are a rare 
exception. The counterpart of the rank-two electric permittivity 
tensor is the rank-four elasticity tensor with components Cijkl. 
It connects the stress tensor and the generalized strain tensor, 
with components σij and εij, respectively. It is quite unfortu-
nate at this point that the symbol ε is used for both, the electric 
permittivity in electromagnetism and for the strain in elasticity. 
Nevertheless, we stick to this widespread nomenclature

σ ε ϕ
ε ϕ

= +
= +

C D
m B A

ij ijkl kl ijkl kl

ij ijkl kl ijkl kl
 (2)

with Dijkl = Blkij due to reciprocity (note that the first and second 
pair of indices are interchanged and that, in addition, l and k 
are swapped).[16] The tensor with components Aijkl connects a 
torque field with components mij and a rotational field with 
components ϕij, both of which form pseudotensors. By com-
paring Equation (2) with Equation (1), we already see that 
the electrical degrees of freedom in electromagnetism are 
analogous to translational degrees of freedom in mechanics. 
Likewise, the magnetic degrees of freedom are analogous to 
rotational degrees of freedom.

The tensor components Bijkl and Dijkl describe the coupling 
of translational to rotational degrees of freedom and vice versa. 
In the presence of centrosymmetry, in close analogy to our 
above reasoning in electromagnetism for ξij0, we find that  
BijklDijkl0. In other words, to obtain a coupling between 
translational and rotational degrees of freedom, the breaking of 
centrosymmetry is mandatory.

Equation (2) is well established as Eringen micropolar 
continuum mechanics. Textbook Cauchy elasticity is only a 
special case, namely the case of “point mechanics,” for which 
Aijkl = Bijkl = Dijkl = 0 holds true. It is sometimes believed that 
Cauchy elasticity, with 21 independent parameters in the 
triclinic case, is all there is in continuum mechanics. Like-
wise, it was long believed that everything in optics can be 
described by just the electric permittivity, perhaps with minute 
corrections. Fortunately, both beliefs are incorrect, opening 
a plethora of opportunities for metamaterials with unprec-
edented properties in both electromagnetism and mechanics.

We have emphasized the analogies of Equations (1) and (2). 
However, there are also conceptual differences. The permittivity, 
permeability, and the chirality parameter in Equation (1) are 
unavoidably dispersive, i.e., frequency dependent. We have 
therefore also formulated them in the frequency domain 
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(see imaginary unit). In the static case, all components ξij are 
always zero, even if the material is chiral. Equation (2) can 
be interpreted either in the time domain or in the frequency 
domain. The components Bijkl can be nonzero for a chiral 
medium, even in the static case. This aspect is an important 
difference between optics and mechanics. There are no static 
chiral effects in optics, whereas static chiral effects have been 
observed experimentally in mechanics for finite-size samples 
(see below). However, for samples much larger than the size 
of one unit cell, the effects of chirality also disappear in static 
mechanics. This includes the limit of elastic-wave propagation 
for elastic wavelengths λ → ∞.

Clearly, to arrive at a closed set of equations, the above con-
stitutive material equations need to be coupled to equations 
of motion: the Maxwell equations for the case of electromag-
netism and an adequate adaptation of Newton’s law for the 
case of continuum mechanics.[16,17] In electromagnetism, no 
further material parameters enter. In contrast, in continuum 
mechanics, the mass density or the mass density tensor addi-
tionally enters via the equation of motion. Together with its 
rank-four tensors discussed above, continuum mechanics is 
thus substantially more complex than electromagnetism with 
its rank-two tensors.[16]

3. Chiral Mechanical Metamaterials

Static Regime: While the theory of Eringen chiral micropolar 
continuum mechanics (and Cosserat mechanics) has been 
worked out many years ago,[16] detailed blueprints for 

experiments on corresponding chiral 3D metamaterials have 
only been published quite recently.[18–23] Figure 1 shows a 
selection of schemes of corresponding metamaterial unit cells.

For chiral effects to be significant, the sample size or the 
wavelength of an elastic wave or both need to become compa-
rable to the metamaterial lattice constant. In the static regime, 
3D metamaterial samples based on some hundreds of unit 
cells like the one shown in Figure 1b have shown a large twist 
effect of about 2°/% (degrees twist angle per axial strain) when 
pushing onto a metamaterial beam composed of the unit cells 
as shown in Figure 1b.[19] In addition, the Young’s modulus 
showed a characteristic dependence on the number of unit 
cells, whereas it is expected to be independent on the number 
of unit cells in Cauchy elasticity. Such loss of scale invariance 
has recently also been found for achiral micropolar metama-
terials in 2D and 3D.[24,25] This loss of scalability is intimately 
connected to the presence of a finite characteristic length 
scale.[25] For sample sizes L much larger than this scale, the 
surface-to-volume ratio of the sample decreases according to 
1/L and the twist effect decreases accordingly ∝1/L (see above). 
Therefore, Cauchy behavior with zero twist is asymptotically 
obtained in the limit L → ∞. Metamaterials with bistable or 
buckling unit cells also show such scale-dependent behavior. It 
allows for “programming” the effective properties of the meta-
material over a relatively wide range.[10,26]

Other recent work on artificial chiral architectures in 3D 
has pointed at the importance of chirality in shearing auxetics 
(see Figure 1d), in that mechanically rigid and compliant 
structures can be created by combining elements with different 
handedness.[20]

Adv. Mater. 2019, 1807742

Figure 1. Motifs of 3D periodic chiral mechanical metamaterials. a) Unit cell of a cubic-symmetry suggestion.[18] b) A metamaterial based on this 
chiral unit cell has been realized and characterized experimentally in ref. [19]. c) Motif as in (b), but noncubic crystal symmetry.[19] d) Chiral shearing 
auxetic.[20] e) Conceptual cubic-symmetry model allowing for an approximate analytical treatment based on Euler–Bernoulli beams.[21] This unit cell is 
related to the one shown in panel (a). f) Uniaxial chiral auxetic.[22] g) Uniaxial lattice composed of an alternation of chiral and achiral units allowing for 
achieving large characteristic length scales.[23]
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As emphasized in the introduction, the mapping of any of 
these metamaterial microstructures onto effective-medium 
parameters is a crucial aspect for the metamaterial concept. 
Some recent work has not performed this mapping at all.[25] 
Other work has successfully demonstrated this mapping,[19] 
but not in a unique manner. Ref. [21] is a notable exception. 
For the model structure composed of slender beams shown 
in Figure 1e, the authors have employed the approximation 
of Euler–Bernoulli beams and have uniquely determined the 
parameters of the Eringen elasticity tensors in Equation (2). 
The structure in Figure 1e is cubic, just like the ones in 
Figure 1a,b. While this structure is ideal concerning its math-
ematical analysis, it is not really favorable in regard to ease of 
manufacturing.

Ultimately, one would not only like to map a given meta-
material microstructure onto effective-medium parameters, 
but one would also like to be able to start from a desired set 
of effective-medium parameters and systematically construct 
a corresponding microstructure. This problem is sometimes 
referred to as the inverse problem. It has not been solved for 
chiral mechanical metamaterials. To be fair, however, it should 
be mentioned that the inverse problem has not been solved for 
chiral optical metamaterials either, despite the fact that this 
field is much more mature.

A more humble and reachable goal toward the inverse 
problem is the rational design of metamaterials with large char-
acteristic lengths. The characteristic lengths can be connected 
to combinations of effective-medium parameters. In 2018, 
this goal has been achieved for certain achiral micropolar 
mechanical metamaterials, in that, microstructures were sug-
gested leading to conceptually infinitely large characteristic 
lengths.[25] For chiral mechanical metamaterials, we are 
working toward a solution.

The idea underlying our respective work at KIT (see 
Figure 1g) is to not connect identical chiral unit cells directly, 
but rather connect them via intermediate achiral cells. If 
one connects them directly,[19] the displacement vectors at 
touching interfaces between unit cells point in opposite 
directions and cancel each other. Therefore, only the unit 
cell interfaces at the sample surface contribute to the twist, 
leading to a scaling of the twist effect with the sample’s sur-
face-to-volume ratio, i.e., according to ∝1/L, with the sample 
side length L, or according to ∝1/V1/3 for a cube with volume 
V = L3. In the opposite limit, if one does not connect the unit 
cells at all, the individual unit cells do twist around their fixed 
centers of mass, but these individual micro rotations do not 
translate into a macrorotation of the sample unless they are 
effectively coupled through the boundary conditions, e.g., by 
attaching them to a stamp. For an overall chiral response, 
one therefore has to connect the individual unit cells inside 
of the metamaterial in some way. A successful example is an 
alternation of chiral unit cells and achiral intermediate cells. 
This approach corresponds to building unit cells of multiple 
meta-atoms just like alloys or diatomic crystals. Such chiral–
achiral heterostructures can lead to very large characteristic 
length scales if the intermediate cells are easily deform-
able. Preliminary calculations based on the approximation 
of slender Timoshenko beams for the architecture shown in 
Figure 1g have shown twist effects as large as about 1°/% 

for 3D metamaterials containing more than 20 000 of such  
supercells.[23]

Chiral mechanical metamaterials explore the fundamental 
limits of accessible material degrees of freedom. In addition, 
chiral mechanical metamaterials open interesting new perspec-
tives for applications. For example, the mentioned push-to-twist 
conversion effects can be used together with linear piezoelectric 
actuators to generate twist motions on the micrometer scale in 
the quasistatic regime. Further potential applications arise in 
the dynamic regime.

Dynamic Regime: Experiments on 3D chiral mechanical 
metamaterials in the dynamic regime are elusive to date. 
Calculations of metamaterial phonon band structures for 
3D crystals based on the unit cell shown in Figure 1b have 
been published by us (see the Supporting Online Material 
of ref. [19]). Within micropolar continuum mechanics, the 
modes of a metamaterial beam can be separated into two 
orthogonal subspaces—the twist and (longitudinal) compres-
sion modes on the one hand and the two (transverse) shear 
modes on the other hand. In the presence of chirality, the 
twist and compressional modes are coupled. This coupling 
leads to mixed modes, forming the direct dynamic counter-
part of the static push-to-twist conversion effects discussed 
above. The twist modes can only occur for finite sample size. 
Furthermore, chirality couples the two otherwise independent 
and orthogonal transverse shear modes toward two effective 
chiral modes. For these modes, the displacement vector at a 
fixed sample position circles around its rest position in per-
fect analogy to the behavior of the electric field vector for cir-
cular polarization of light. Interestingly, chiral phonons have 
only very recently been observed in 2D natural materials.[27] 
In optics, such eigen states lead to the well-known phenom-
enon of optical activity, which allows converting an incident 
transverse linear polarization into the orthogonal transverse 
linear polarization after some propagation distance. The cor-
responding phenomenon of “mechanical activity” has not 
been observed so far, neither have chiral phonons in 3D 
(meta)materials been generated directly. We work toward both 
at KIT. Furthermore, mechanics offers opportunities beyond 
optics because longitudinal waves are generally allowed in 
elasticity too. Therefore, chiral modes composed of mixed 
transverse and longitudinal character, “trochoidal phonons”, 
seem possible.

For all of these wave propagation effects, it is highly 
desirable to work with constituent materials exhibiting small 
elastic losses at high frequencies. It is presently not quite clear, 
inasmuch this goal is accessible with polymer-based metamate-
rial samples, which can directly be manufactured by 3D laser 
printing. However, recent work on the pyrolysis of polymer 
structures has shown promising results.[14,28] Both, the associ-
ated shrinkage by about a factor of five along all three spatial 
directions, as well as the stiffening of the constituent material 
by about an order of magnitude toward Young’s moduli in the 
range of E = 20 − 30 GPa, are favorable for high-frequency 
operation. In addition, the higher material strength at smaller 
length scales reaching 2−3 GPa in the sub-micrometer regime 
compared to 200 MPa for macro scopic dimensions would also 
be beneficial to the structural engineering applications of chiral 
metamaterials.[29]

Adv. Mater. 2019, 1807742
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Chirality necessarily requires broken space-inversion symmetry. 
If, in addition, time-inversion symmetry is broken, additional 
degrees of freedom arise. Mathematically, the tensors B and D in 
mechanics (see Equation (2)), and the tensors  ξ  and ζ  in elec-
tromagnetism (see Equation (1)) are not fully determined by each 
other anymore. Breaking reciprocity can be achieved by time sym-
metry breaking elements like external magnetic fields. The Far-
aday effect in electromagnetism is one well known consequence. 
In mechanics, spinning elements can play the role of magnetic 
moments or static magnetic fields in electromagnetism.[30,31] 
While inspiring model experiments have been performed in two 
dimensions,[31] 3D chiral mechanical metamaterials of that sort 
are elusive to date.

4. Chiral Optical Metamaterials

In recent years, the activities at KIT in the field of chiral optical 
metamaterials have focused on the question of how to design 
motifs from which metamaterials can be made whose chiral 
response is as large as fundamentally possible.[6,32] In this 
endeavor, one is led to the question: “How chiral is a given chiral 
object?” It turns out that providing an answer is not trivial.

Geometrical chirality is well defined. If an object lacks cen-
trosymmetry, all mirror symmetries, and all rotation–reflection 
symmetries, it is chiral (see example in Figure 2a). Otherwise, 
it is achiral. However, this binary criterion does not allow a 
graded quantification of chirality, which is important to sorting 
and comparing objects according to it as well as to having a 
clear target toward which one can optimize metamaterials. 
Over the past decades, it has become clear that there is no con-
sistent measure of geometric chirality.[33] The first step toward 
a solution is to change the point of view from geometry to 
interaction. The electromagnetic chirality (em-chirality) of an 
object is a measure of how differently general fields of opposite 
polarization handedness do interact with it.[34] General fields of 
pure polarization handedness (helicity) are the sum of an arbi-
trary number of propagating and/or evanescent plane waves 
that are all either left- or right-handed circularly polarized.  

Their natural representation are the Riemann–Silberstein 
combinations[35]

= ±±2G E iZH  

where s

s

Z
μ
ε

=  is the impedance of the medium surrounding 
(index “S”) the system of interest, characterized by permittivity 
εs and permeability μs. For a field with pure helicity of +1(−1), 
G− (G+) is zero at all space-time points.

The quantification of em-chirality is accomplished using the 
interaction operator of the object, a.k.a. the T-matrix. Such oper-
ator contains all information about the interaction of the object 
with the electromagnetic field. First, the operator is decomposed 
into two parts that correspond to the two helicities of the inci-
dent fields. Next, singular-value decomposition is used to com-
pute a distance between the two suboperators. This distance  
is the em-chirality of the object.[34] A crucial property of 
em-chirality is that it is upper-bounded, contrary to the traditional 
geometrical definition of chirality. The maximum value that  
em-chirality can achieve is equal to the total interaction cross 
section of the object. One can therefore speak about maximally 
emchiral objects. For reciprocal objects, reaching the bound is 
equivalent to being transparent to all the fields of one helicity.

At KIT, the motivation to focus on extreme em-chirality partly 
comes from its potential applications. For bulk devices, helicity fil-
tering and angle independent glasses for use in stereoscopic projec-
tion systems would become possible.[34] At smaller scales, helicity 
dependent photon processing in optical chips, and the enhance-
ment of the chiral response from molecules would become pos-
sible. Hence, a key question is: How can we design actual systems 
that approach maximal em-chirality? The first step is to apply 
the transparency requirement to obtain restrictions in the typical 
models that describe light–matter interaction, which will then 
guide the design. For small particles in the dipolar approximation, 
whose interaction is described by a polarizability tensor
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where we have also assumed that the particle is reciprocal. Fur-
thermore, with the reciprocity assumption, transparency at the 
level of the constitutive relations imposes

/ /0 0 0Z Z cij ij ij∓ε ε μ μ ξ= =  

It is clear that a 3D metamaterial made of small maximally 
emchiral inclusions would feature effective constitutive rela-
tions meeting these restrictions.

A truly maximal emchiral inclusion is invisible to all fields 
of a given helicity at all frequencies. We can also consider the 
less challenging case of designing an object that achieves the 
transparency condition at a single frequency of light, or in a 
narrow frequency band. An example for such a structure is a 
circular helix with particular geometrical parameters made of 
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Figure 2. Motifs of 3D chiral electromagnetic/optical metamaterials. 
a) The Ω-particle made of a metal wire is a long-known paradigmatic geo-
metrically chiral object. However, it is not maximally electromagnetically 
chiral. b) Two pitches of the shown special circular helix made of a conductor 
approaching an ideal metal come very close to maximal electromagnetic 
chirality.[34] This means that this object does not interact with light of one 
circular polarization at all, regardless of the direction of incidence. The 
object is “invisible” for one handedness of light, but interacts strongly with 
light of the opposite handedness. c) Dielectric spherical core–shell particle 
containing randomly oriented chiral inclusions, e.g., the Ω-particles from 
panel (a), in the core. For special parameters, the core–shell particle (c) 
can also be maximally electromagnetically chiral.
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an ideal conductor. It is shown in Figure 2b.[34] Efforts are cur-
rently put in place at KIT to identify objects with comparable 
properties at much shorter wavelengths, which constitutes a 
bigger challenge.

There is one notable consequence of the addition of reci-
procity to the requirement of transparency. It forces the system 
to preserve the helicity of light, or, in other words, to not couple 
the G+ and G− fields upon interaction. This requirement defines 
a system with electromagnetic duality symmetry.[36] The duality 
condition in the dipolar approximation reads

and /s sdE mH mE dHα ε α α α μ= = −  

and, at the level of the constitutive equations

/ and0 0Z Zij ij ij jiε ε μ μ ξ ξ= =  

Along our path to work toward maximal emchiral 3D meta-
materials, we also investigate scatterers that approach duality 
and study metamaterials thereof. This is an important research 
endeavor. Not only is duality a prerequisite to reach maximal 
emchiral materials, but, additionally, dual systems are a key 
ingredient for technologically relevant effects like backscat-
tering suppression and artificial optical activity, and a requisite 
for transformation media. Duality is also one of the ingredients 
in some systems featuring topologically protected photonic 
states.[37]

Frequently, dielectric scatterers can only be made dual in 
dipolar approximation. This happens for spheres made from 
high-permittivity materials at a specific wavelength for a given 
radius.[38] However, if such dipolar dual spheres are closely 
packed together to form a metamaterial, higher-order multipole 
moments gain importance in the interaction. The nonvan-
ishing excitation of higher-order multipole moments causes 
a metamaterial consisting of such spheres to be no longer 
dual. By using optimized dielectric core–shell particles, the 
situation can be improved. Higher-order multipole moments 
can also be driven into the duality regime.[39] Similarly, initial 
results indicate that core–shell spheres made of materials with 
intrinsic chirality can be optimized to achieve large values of 
em-chirality (see Figure 2c). At KIT, we investigate the possi-
bility of providing the necessary intrinsic chirality by using 
chiral carbon nanotubes. These are promising steps toward 
designing 3D metamaterials of very high duality and very large 
electromagnetic chirality.

5. Conclusion

In conclusion, while the idea of 3D chiral metamaterials is 
at least one century old, it still poses a wealth of interesting 
scientific questions—both in optics and mechanics. Due to a 
close mathematical analogy on the level of effective-medium 
descriptions, both fields can benefit from each other. Broadly 
speaking, a long-standing dream of materials science is to 
rationally design materials, to avoid tedious trial-and-error 
experimentation. However, this goal has been realized in only 
few exceptions to date. Metamaterials are an entire class of 
such exceptions.
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