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Alexis Godart1, Hervé Manier1, Christelle Bloch2 and Marie-Ange Manier1

Abstract— Pickup and delivery problems have been declined
in many variants. In these optimization problems, a fleet
of vehicles must satisfy customers’ transport demand under
specific constraints. This paper studies the feasibility of using a
linear model including constraints that are not only related
to the goods transport, but also combined with passengers
transport in a more flexible way. We explore many charac-
teristics simultaneously like transfers capabilities (with and
without storage), time windows on sites, on transfer points
and on vehicle depots, heterogeneous capacities and multiple
visits. We use exact methods on some instances we created,
using commercial solver IBM CPLEXTM. Results obtained
show potential savings on two instances but also highlight the
complexity and limits in terms of scalability.

I. INTRODUCTION

Over last decades, transport demand has been quickly
growing around the world. These growths are especially
located in cities that keep spreading. They have many con-
sequences, already well-known, such as increased costs and
environmental impacts. In most countries, stakeholders and
governments have worked together to avoid such negative
externalities without preventing the economical growth and
social improvements. A fundamental factor is the optimiza-
tion of transport and its infrastructure in urban areas [10].
Among the existing socio-economic studies dealing with ur-
ban transport, those conducted by Dacko [6] and Spikermann
[16] highlight the expected benefits for all stakeholders in
changing the urban mobility model. This would be made by
promoting intermodal travel behavior, and require transport
providers working together to offer multimodal mobility
services. This collaboration implies pooling of transport in-
frastructures and resources. The proposed approach considers
both passengers mobility and goods mobility into a single
urban logistics system. The next section expose the related
state of the art in operational research.

II. LITERATURE REVIEW

An efficient logistics system within urban environment
implies a reasonable quality of service into an environment
with low available space, shared infrastructures and a limited
budget, keeping in mind that urban congestion can also be
a significant source of delay, noise pollution and high-level
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gas emissions. There have been lots of studies and research
in recent years dedicated to the optimization of logistics
problem, sometimes considering several characteristics in-
dependently. Problems in which a set of vehicles is used
to fulfill transportation requests are called Vehicle Routing
Problem (VRP), as introduced by Dantzig [7] in 1959. Pickup
and Delivery Problems (PDP), also known as the Vehicle
Routing Problem with Pickup and Delivery (VRPPD) have
been surveyed and discussed by Savelsbergh [15] and more
recently by Berbeglia in both static [1] and dynamic [2] con-
text, within a general framework. In PDP, objects or people
are moved between origins and destinations. These moves
are made thanks to a fleet of homogeneous or heterogeneous
vehicles. According to Cordeau [4] Dial-A-Ride Problems
(DARP) can be considered as Pickup and Delivery Problems
(PDP) in which origins and destinations for each demand
are known beforehand. Additionally, DARP are problems
that better fit for people transportation because of narrow
time windows and objectives aiming better quality of services
rather than cost reduction. The transport request is expressed
with one-to-one relation where each demand has a single
origin point and a single destination point.

In the following subsections we review some papers deal-
ing with some variants of PDP including (but not limited
to) time windows and transfers with characteristics such
as heterogeneous fleet of vehicles, multiple depots or also
multiple echelons. Our state of the art focuses on both
static and dynamic problems with deterministic environment,
integrating interesting features for the urban context.

Pickup and Delivery Problems with Time Tindows
(PDPTW) are specific PDP problems with temporal con-
straints over sites, vehicles, demands and/or interactions
between those. [9] present in 1991 a general framework and
they exactly solve the problem using a column generation.
[14] introduce a new formulation of general PDPTW. They
tackle it with branch-and-cut algorithms and adding valid
inequalities. They solve instances with 96 requests, 194
nodes and 8 vehicles to the optimality. One variant studied
by [12] deals with coordination of heavy and light resources
to save time and reduce global cost. This problem was
solved with a two-staged heuristics. Initial solutions are first
created. They are improved using ejection chains, and then an
assignment stage with light resources is used until an optimal
assignment. Multi-objective PDPTW has also been treated
[11]. These authors solve a problem with several vehicles
and three objectives (total travel cost, makespan, number of
vehicles used) using an approximate ε-constraint solution to
create the efficient Pareto fronts.



Nowadays PDP and DARP most often involve several ve-
hicles. Benefits of transfer operations are intuitively guessed
over cost reduction and distance savings. PDP with transfers
(PDPT) was studied by [5] who propose general formulation
for the static variant. An extra binary variable z keeps track
of the exact position of requests. A branch-and-cut method
using Benders decomposition is proposed. [3] formulate a
dynamic PDPT involving additional demands arriving at
arbitrary times. Given solutions use a shortest path algorithm
on a dynamic graph, on instances with 200 to 2000 requests.

Regarding transfer operations arising in DARP (DARPT),
[13] present a general formulation and an adaptive large
neighborhood search method. The results prove savings due
to transfers while minimizing the total distance traveled. [8]
solve DARP with dynamic transfer points using insertion
techniques and constraints propagation.

III. MATHEMATICAL FORMULATION

A. Characteristics and assumptions

A fleet of vehicles V with heterogeneous capacity Qv

is considered. Vehicles are either dedicated to the mobility
of passengers or to the mobility of goods. Vehicles have
heterogeneous speed vv equal to the mean velocity while
visiting nodes through edges, and an associated depot wv,
from which each vehicle begins and ends its trip. Each
vehicle can only do one trip per period.

The graph G = (N,E) contains 3 sets of nodes, organized
as follows. The set W of vehicle depots dedicated to host
empty vehicles. The set Ω of Origin/Destination sites ex-
presses origins and destinations for transportation requests.
Each site can be origin and destination as it can be involved
in more than one request. Neither vehicle depots nor sites
have storage capacity. The set T of transfers points with a
storage capacity sct. This capacity is only considered for
vehicles transporting goods. It can not be expressed for pas-
sengers. Indeed, in urban context, infrastructures are assumed
to be large enough for welcoming as many passengers as
needed at any time, on any node. Storage capacity can be
fixed to zero, to imply no storage at all. Then the transfer
point requires both vehicles to meet during a same time
window. This induces some precedence and synchronization
constraints, which are discussed later in this paper. Two sets
T+ and T− are created, resulting from the duplication of set
T, representing respectively the incoming flow capture and
outgoing flow capture at any transfer point t ∈ T.

Any node i has an opening time window, expressed
by an earliest date ei and a latest date li. Any load-
ing/unloading operation must be realized within this time
window [ei; li]. The graph G is assumed to be complete,
oriented and asymmetric. The set of edges E connects nodes
in N = W ∪ Ω ∪ T ∪ T+ ∪ T−. A subset N′ = N \W con-
tains all nodes except vehicle depots. A cost dij is assigned
to each edge. It corresponds to the shortest path between an
origin node i ∈ N and a destination node j ∈ N such that
i 6= j.

Finally, transport demands are stored in a set of known
transportation requests R. For each request r ∈ R we know

the origin node S+
r , where request r will be picked up,

and the destination node S−r where it will be dropped-off.
A set Br lists vehicles that can handle r. The quantity qr

is the number of entities moving from the origin to the
destination. Service times for pickup δ+

r and for drop-off δ−r
are taken into account respectively for loading operations and
unloading operations. r can be handled only within a time
window [p+

r ; p−r ] where p+
r is the earliest date for the pickup

at S+
r , and p−r is the latest date for the drop-off at S−r . A

vehicle can visit several times a same node within its trip.
The maximum number of visits θi in an Origin/Destination

site i ∈ Ω is equal to the number of occurrences where node
i appears as origin S+

r plus the number of occurrences where
node i appears as destination S−r for all r ∈ R.

The maximum number of visits in a transfer site t ∈ T by
all vehicles v ∈ V is θt.

B. Decision variables

xvijab =


1 if vehicle v ∈ V is moving directly from
i ∈ N on the visit number a ∈ {1, . . . , θi} to
j ∈ N on the visit number b ∈ {1, . . . , θj},
0 else.

Avijab :
Arrival date of vehicle v ∈ V at node j ∈ N on
visit number b ∈ {1, . . . , θj} when coming from
node i ∈ N on visit number a ∈ {1, . . . , θi}.

Dv
ijab :

Departure date of vehicle v ∈ V at node i ∈ N on
visit number a ∈ {1, . . . , θi} when going to node
j ∈ N on visit number b ∈ {1, . . . , θj}.

zrvijab =


1 if vehicle v ∈ V is handling request r ∈ R
from i ∈ N on the visit number a ∈ {1, . . . , θi}
to j ∈ N on the visit number b ∈ {1, . . . , θj},
0 else.

τ rvv
′

ta =


1 if request r ∈ R is transfered with storage
operation from vehicle v ∈ V to vehicle
v′ ∈ V | v′ 6= v while v′ is leaving transfer
node t ∈ T on visit a ∈ {1, . . . , θt},
0 else.

Decision variables Av
ijab and Dv

ijab are both defined in
R+. Binary variable zrv

ijab allows us to track requests in-
dependently of the transport modes being used. Requests
are tracked on edges. We denote M a big number, used to
linearize some constraints.

C. Transfer operations

Any request can be transferred from one vehicle to another
if there is at least one transfer point available. These transfer
operations can take place under two major conditions. First,
the transfer point must be available so vehicles can operate on
it within its opening time window. Second, operations must
take place respecting all time constraints. Hence we define
two kinds of transfer operations we consider along this paper



: transfer with storage and transfer without storage. Storage
isn’t considered in the context of passengers transportation.

On one hand, transfers can be accomplished with storage,
and time constraint applied is only a precedence constraint
between two vehicles and their drop-off and pickup opera-
tions. On the other hand, transferring without storage implies
a synchronization constraint. Both vehicles must be at the
same transfer node within a common time window, and this
time window must be at least wide enough to realize their
respective operations.

In both cases (for passengers and for goods), requests are
not necessarily transferred, and therefore the unload time is
only the sum of service times of requests being transferred.

Transfer points are duplicated twice (fig. 1 & 2), so we can
separate incoming flow from outgoing flow. Since decision
variable z tracks requests on edges, pickup and drop-off
operations are executed by switching the binary value z
between two edges.

Fig. 1. Abstracted physical flow of a request being transferred from vehicle
1 to vehicle 2

Fig. 2. Same operation with our modeling. Transfer point is duplicated
twice.

D. Objective function

minimize
∑
i∈N

∑
j∈N |i6=j

θi∑
a=1

θj∑
b=1

∑
v∈V

(xvijab ∗ dij) (1)

The problem stated is solved with mono-objective func-
tion. The criteria is to minimize the overall distance traveled
by vehicles (1).

E. Constraints

∑
v∈Br

∑
j∈N ′

θi∑
a=1

θj∑
b=1

zrvijab = 1 ∀r ∈ R; i = S+
r ; j 6= i (2)

∑
v∈Br

∑
i∈N ′

θi∑
a=1

θj∑
b=1

zrvijab = 1 ∀r ∈ R; j = S−r ; i 6= j (3)

xvijab ∗M ≥
∑
r∈R

zrvijab ∀i, j ∈ N ;∀v ∈ V

∀a ∈ {1, . . . , θi}; ∀b ∈ {1, . . . , θj}
(4)

We choose here to deal with the non-selective variant of
PDPTW, meaning that all requests must be honored. The
variable z is used to track requests during transportation,
and constraints (2) and (3) force the request r to be picked
up from the origin node S+

r and to be dropped-off at the
destination node S−r , regardless of the vehicle v ∈ Br being
used.

As mentioned in 3.2, we use decision variable x to track
the route described by each vehicle. Constraint (4) ensures
that if the request r is handled by vehicle v when going from
node i on visit number a to node j on visit number b (i.e.
when zrv

ijab = 1) then this vehicle had to move on that edge
the exact same way.

∑
j∈N ′

θj∑
b=1

xvhj1b ≤ 1 ∀v ∈ V ;h = wv (5)

∑
j∈N ′

θj∑
c=1

xvhj1b ∗M ≥
∑
i∈N ′

∑
j∈N ′|j 6=i

θi∑
a=1

θj∑
b=1

xvijab

∀v ∈ V ; h = wv

(6)

∑
j∈N ′

θj∑
b=1

xvhj1b =
∑
i∈N ′

θi∑
a=1

xviha2 ∀v ∈ V ;h = wv (7)

Constraint (5) allows vehicles to be used or not. We
ensure with constraint (6) that each vehicle has to leave its
associated vehicle depot if and only if this vehicle is being
used anywhere in the graph, while constraint (7) forces this
same vehicle to finish his route at this same vehicle depot.

∑
j∈N

θj∑
b=1

xvijab ≤ 1 ∀i ∈ N ;∀v ∈ V ;∀a ∈ {1, . . . , θi}

(8)

∑
j∈N

θj∑
b=1

zrvijab ≤ 1 ∀r ∈ R; ∀i ∈ N ′

∀v ∈ Br; ∀a ∈ {1, . . . , θi}

(9)



∑
v∈Br

θt∑
a=1

zrvt′taa ≤ 1 ∀r ∈ R;∀t ∈ T ; t′ = t+ |T | (10)

A vehicle v or a request r on node i must only pass through
one edge [i, j] for each visit number a to ensure one unique
flow for vehicles (8) and for requests (9) departing from any
node. Any given request can only enter once at most in each
transfer point (10).

∑
j∈N |j 6=i

θj∑
b=1

xvija′b ≤
∑

j∈N |j 6=i

θj∑
b=1

xvijab ∀v ∈ V

∀i ∈ Ω ∪ T+ ∪ T−;∀a ∈ {1, . . . , θi − 1}; a′ = a+ 1

(11)

∑
v∈V

∑
j∈N

θj∑
b=1

xvt′′ja′b ≤
∑
v∈V

∑
j∈N

θj∑
b=1

xvt′′jab ∀j ∈W ∪ Ω

∀t ∈ T ;∀a ∈ {1, . . . , θt − 1}; t′′ = t+ 2 · |T |; a′ = a+ 1
(12)

Constraints (11) and (12) ensure that any solution must use
lowest visit index order while visiting an origin/destination
site or a transfer point.

∑
h∈N ′|h6=i

θh∑
a=1

xvhiab =
∑

j∈N |j 6=i

θj∑
c=1

xvijbc ∀v ∈ V

∀b ∈ {1, . . . , θi};∀i ∈ N

(13)

∑
h∈Ω∪T−|h6=i

θh∑
a=1

zrvhiab =
∑

j∈Ω∪T+∪T |j 6=i

θj∑
c=1

zrvijbc

∀r ∈ R; v ∈ V ; b ∈ {1, . . . , θi};∀i ∈ N ′
(14)

∑
v∈Br

zrvt′taa =
∑
j∈N ′

θj∑
b=1

∑
v∈Br

zrvt′′jab ∀r ∈ R;∀t ∈ T

∀a ∈ {1, . . . , θt}; t′ = t+ |T |; t′′ = t+ 2 · |T |

(15)

θt∑
a=1

zrvt′tab −
θt∑
c=1

zrvtt′′bc ≥ 0 ∀r ∈ R;∀t ∈ T

∀b ∈ {1, . . . , θt};∀v ∈ Br; t′ = t+ |T |; t′′ = t+ 2 · |T |
(16)

θt∑
a=1

zrvtt′′ab −
∑
j∈N

θt∑
c=1

zrvt′′jbc ≥ 0 ∀r ∈ R;∀t ∈ T

∀b ∈ {1, . . . , θt};∀v ∈ Br; t′ = t+ |T |; t′′ = t+ 2 · |T |
(17)

Route continuity for vehicles is defined by constraint
(13) which ensures that any vehicle arriving on any site
(except vehicle depots) will leave for the next destination.
Requests r ∈ R do need the same flow conservation (14)

but only on Ω sites. However note that origin node S+
r and

destination node S−r are excluded since physical flow must be
interrupted to make pickup and drop-off operations happen.
Any request r ∈ R entering a transfer point must leave it, no
matter which vehicle is transporting it (15). Thereby, transfer
operations can be achieved for one or more requests when
vehicles are visiting a transfer point. Equations (16) and (17)
allow respectively pickup and drop-off operations only on the
incoming transfer node and the outgoing transfer node (see
fig. 2).

∑
v∈V

θt∑
b=1

xvt′tab ≤ 1 ∀t ∈ T ;∀a ∈ {1, . . . , θt}; t′ = t+ |T |

(18)

∑
v∈V

θt∑
b=1

xvtt′′ab ≤ 1 ∀t ∈ T ;∀a ∈ {1, . . . , θt}; t′′ = t+2·|T |

(19)
Constraints (18) and (19) associate exactly one vehicle

at maximum to one visit index. Thus for any transfer point
t ∈ T, the maximum number of visits θt concern all vehicles,
and not per vehicle. These two constraints are used to ensure
that temporal constraints on transfer points are valid (eg.
precedence, operations order between two vehicles during a
transfer...).

θj∑
b=1

Dv
ij1b ≥ ei ∗

θj∑
b=1

xvij1b ∀v ∈ V ; i = wv;∀j ∈ N \ {i}

(20)

θh∑
a=1

Avhia2 ≤ li ∗
θh∑
a=1

xvhia2 ∀v ∈ V ; i = wv;∀h ∈ N \ {i}

(21)

Avijab ≥ Dv
ijab + xvijab ∗ dij/vv ∀i ∈ N ;∀j ∈ N | i 6= j

∀a ∈ {1, . . . , θi};∀b ∈ {1, . . . , θj};∀v ∈ V
(22)

Vehicles v ∈ V are allowed to leave their associated depot
wv only after the earliest date ewv

(20) and must return in it
before the latest date lwv

(21). Temporal continuity between
2 nodes is ensured with constraint (22) considering average
speed vv and distance between i and j called dij.

∑
j∈N\T−|j 6=i

θj∑
c=1

Dv
ijbc ≥

∑
h∈N\{T∪T+}|h6=i

θh∑
a=1

Avhiab

+
∑

r∈R|S+
r =i

(δ+
r ∗

∑
j∈N\T−|j 6=i

θj∑
c=1

zrvijbc)

+
∑

r′∈R|S−
r′=i

(δ−r′ ∗
∑

h∈N\{T∪T+}|h 6=i

θh∑
a=1

zr
′v
hiab)

∀i ∈ Ω ∪ T+; b ∈ {1, . . . , θi}; ∀v ∈ V

(23)



θt∑
c=1

Dv
tt′′bc ≥

θt∑
a=1

Avt′tab +
∑
r∈R

(σ−r (

θt∑
a=1

zrvt′tab −
θt∑
c=1

zrvtt′′bc))

∀t ∈ T ;∀b ∈ {1, . . . , θt}; v ∈ V ; t′ = t+ |T |; t′′ = t+ 2 · |T |
(24)

∑
j∈N |j 6=t′′

θj∑
c=1

Dv
t′′jbc ≥

θt∑
a=1

Avtt′′ab

+
∑
r∈R

(σ+
r (

∑
j∈N |j 6=t′′

θj∑
c=1

zrvt′′jbc −
θt∑
a=1

zrvtt′′ab)) ∀v ∈ V

∀t ∈ T ;∀b ∈ {1, . . . , θt}; t′ = t+ |T |; t′′ = t+ 2 · |T |
(25)

Temporal continuity on nodes is conditioned by taking into
account pickup and drop-off operations on origin/destination
nodes in Ω (23) but also on incoming transfer points in
T+(24) and outgoing transfer points in T−(25). If multiple
loading/unloading operations begin at the same time we
consider the sum of all service times, and vehicles are free
to move once all operations performed.

Avijab ≤ xvijab ∗M ∀i ∈ N ;∀j ∈ N | j 6= i

∀a ∈ {1, . . . , θi}; ∀b ∈ {1, . . . , θj}; ∀v ∈ V
(26)

Dv
ijab ≤ xvijab ∗M ∀i ∈ N ;∀j ∈ N | j 6= i

∀a ∈ {1, . . . , θi}; ∀b ∈ {1, . . . , θj}; ∀v ∈ V
(27)

∑
j∈N |j 6=i

θj∑
b=1

Dv
ijab ≤

∑
j∈N |j 6=i

θj∑
b=1

Dv
ija′b

+M(1−
∑

j∈N |j 6=i

θj∑
b=1

xvija′b)

∀i ∈ N \ T ;∀a ∈ {1, . . . , θi − 1}; a′ = a+ 1; ∀v ∈ V
(28)

∑
v∈V

θj∑
b=1

Dv
t′tab +M(1−

∑
v∈V

θj∑
b=1

xvt′tab)

≤
∑
v∈V

θj∑
b=1

Dv
t′ta′b +M(1−

∑
v∈V

θj∑
b=1

xvt′ta′b)

∀t ∈ T ; ∀a ∈ {1, . . . , θt − 1}; a′ = a+ 1

(29)

Constraints (26-27) enforce null values for arrival date A
and departure date D when vehicle isn’t passing on that edge.
For all origin/destination sites in Ω and any vehicle v ∈ V,
visit order is sorted chronologically thanks to equation (28).
Same constraint is applied on transfer points in T but
regardless of vehicles (one visit corresponds to one vehicle
at most)

∑
r∈R

∑
j∈N |j 6=i

θj∑
c=1

(zrvijbc ∗ qr) ≤ Qv ∀i ∈ N

∀b ∈ {1, . . . , θi}; ∀v ∈ V

(30)

Capacity constraint (30) allows vehicles to welcome a lim-
ited amount of entities on board at any time, corresponding
to the defined capacity Qv.

∑
h∈N |h 6=i

θh∑
a=1

Avhiab ≥ ei ∗
∑

h∈N |h6=i

θh∑
a=1

xvhiab ∀i ∈ Ω

v ∈ V ;∀b ∈ {1, . . . , θi}
(31)

∑
j∈N |j 6=i

θj∑
c=1

Dv
ijbc ≤ li ∀i ∈ Ω

∀v ∈ V ;∀b ∈ {1, . . . , θi}

(32)

∑
h∈N |h6=t′

θh∑
a=1

Avht′ab ≥ et ∗
∑

h∈N |h6=t′
xvht′ab

∀t ∈ T ; t′ = t+ |T |;∀v ∈ V ;∀b ∈ {1, . . . , θt}

(33)

∑
j∈N |j 6=t′′

θj∑
c=1

Dv
t′′jbc ≤ lt

∀t ∈ T ; t′′ = t+ 2 · |T |;∀v ∈ V ; ∀b ∈ {1, . . . , θt}

(34)

∑
j∈N |j 6=i

θj∑
b=1

Dv
ijab − δ+

r +M(1−
∑

j∈N |j 6=i

θj∑
b=1

zrvijab) ≥ p+
r

∀r ∈ R; ∀v ∈ V ; ∀a ∈ {1, . . . , θi}; i = S+
r

(35)

∑
j∈N |j 6=i

θj∑
c=1

Dv
ijbc − δ−r −M(1−

∑
h∈N |h 6=i

θh∑
a=1

zrvhiab) ≤ p−r

∀r ∈ R; ∀v ∈ V ; ∀b ∈ {1, . . . , θi}; i = S−r
(36)

Constraints (31-32) apply on all vehicles so any visit
matches time windows [ei; li] on any origin/destination site
i ∈ Ω. Constraints (33-34) are also time window constraints
arising for transfer points t ∈ T, such all vehicles can only
visit them during time window [et; lt]. Finally, requests r ∈ R
can only be handled within a specific time window [p+

r ; p−r ]
on origin node S+

r and destination node S−r (35-36).



∑
j∈N |j 6=t′′

θj∑
b′=1

Dv′

t′′ja′b′ +M(1−
∑

j∈N |j 6=t′′

θj∑
b′=1

zrv
′

t′′ja′b′)

≥
θt∑
b=1

Dv
tt′′ab + δ+

r −M(1−
θt∑
b=1

zrvt′tab)

∀v ∈ V ; ∀v′ ∈ V ; ∀r ∈ R; ∀t ∈ T ; t′ = t+ |T |
t′′ = t+ 2 · |T |; ∀a ∈ {1, . . . , θt}; ∀a′ ∈ {1, . . . , θt}

(37)

θt∑
a′=1

Av
′

tt′′a′b′ −M(1−
∑

j∈N |j 6=t′′

θj∑
c=1

zrv
′

t′′jb′c)−M ∗ τ rvv
′

tb′

≤
θt∑
b=1

Dv
tt′′ab − δ−r +M(1−

θt∑
b=1

zrvt′tab)−M ∗ τ rvv
′

tb′

∀r ∈ R; ∀v ∈ Br; ∀v′ ∈ Br; ∀t ∈ T ; t′ = t+ |T |
t′′ = t+ 2 · |T |; ∀a ∈ {1, . . . , θt}; ∀b′ ∈ {1, . . . , θt}

(38)∑
r∈R

∑
v∈Br

∑
v′∈Br

(τ rvv
′

ta ∗ qr) ≤ sct ∀t ∈ T ;∀a ∈ {1, . . . , θt}

(39)

Transfers operations have been discussed earlier in this
paper, and two situations have been presented. In both cases,
precedence constraint (37) must always be applied so vehicle
v ∈ V and v′ ∈ V can exchange one request r ∈ R, including
service time δ+

r needed to exchange it. However if there is
no storage, another temporal constraint has to be applied :
synchronization constraint (38). Both vehicles are sharing a
common time window so requests can be transshipped from
on vehicle to another. In the other case where storage arises,
constraint (39) ensures the respect of storage capacity at
any visit (since one visit correspond to one vehicle at most,
visiting the transfer point).

IV. COMPUTATIONAL RESULTS

Problem formulation implies to create new instances as no
similar ones have been found in literature to our knowledge.
4 initial fictive instances were created (F00-F03). Each
instance is studied in the case with no transfer operation,
in the case with transfer operation without storage and in
the case with transfer and storage allowed. Finally these 3
new instances are studied in both mono-visit and multi-visit
cases. Given results (fig. 3) are obtained with exact methods
using IBM CplexTMsolver on a Xeon E7-4850 @ 2.4 GHz
with 16 cores and 32 threads.

As expected instances are solved widely faster consider-
ing mono-visit over multi-visit, and faster without transfer
operations allowed. In mono-visit, saving for instance F01
obtained by allowing transfers without storage is 1.6% and
raise to 3.7% with storage. Allowing several visits for each
vehicle leads to 12.7% of saving which is significant for
this size of instance. Saving for F02 is only 1.2% and
is obtained by whether allowing transfer operations with

Fig. 3. Computational results

storage or allowing vehicles to visit each site more than
one time. Computational times are really high when solving
multi-visit variant of this instance because of the amount
of requests considered and so the potential number of visit
increasing for each site. Instance F03 shows 2.3% saving
when allowing transfer operations and storage in mono-visit,
but saving is extended to 22% when allowing several visits.

Because of low scalability potential, exact methods can
only deal with few amount of requests, vehicles and sites.
Finally, let’s illustrate results by considering one fictive
instance F00 (fig. 4) composed of 2 vehicles, 2 depots, 4 sites
and one transfer point. The 2 vehicles must satisfy 3 requests
with heterogeneous quantities. Also each vehicle has its own
time window ([0;60] for the first one since it’s affected to
vehicle depot number 0, and [40;100] for the second one
associated to vehicle depot number 1). From this instance, 6

Fig. 4. Fictive instance F00

different variants are generated, organized as follow. Transfer
operations are forbidden (1), transfer operations are allowed
only without storage (2) and finally allowing storage (3). One
visit per vehicle is allowed for 1-3, i.e. in mono-visit, and we



duplicate these instances allowing multiple visits per vehicle
(4 to 6), i.e. in multi-visit.

Numeric results obtained are shown in (fig. 3) and prove
that this instance can be solved in mono-visit only if transfer
operations with storage are allowed (solution in fig. 5).

Fig. 5. F00 solved with mono-visit and transfer with storage allowed

However, better solution can be found if a vehicle can
visit one site multiple times (multi-visit) and for this instance
saving appeared to be almost 5% (solution in fig. 6). How-
ever, one can safely speculate about narrow relations between
requests density and distribution among origin/destination
sites, the number of vehicles being available (time window
and load on board), and savings that can be made using
multi-visit. Another speculation is about savings made by
allowing transfer operations. In the case of 2 vehicles that
are willing to proceed a transshipment, one first observation
is towards their respective time windows. Indeed, if both
vehicles are sharing a common time window (i.e. joint
time windows) then transfer operation will more likely
happen with synchronization and so without storage. One
major interest in this particular case would be to allow
storage because vehicle being transshipped could have a
temporary lack of free space at the date considered. The
other observation concerns the case where both vehicles
aren’t sharing a common time window (i.e. disjointed time
windows). Vehicles will most likely transship request if there
is a transfer point with storage capacity and of course free
space in it, for the complete duration of storage.

Fig. 6. F00 solved with multi-visit and transfer without storage (same
solution obtained with storage allowed)

V. CONCLUSION

In this paper, a general formulation has been developed
to answer new urban mobility challenges, considering both
goods and passengers viewpoints. This variant of PDP with
time windows includes transfer operations with and without
storage, vehicles are allowed to visit one site several times,
and it ensures that vehicles must visit sites and transfer points
within defined time windows. Computational results show
potential savings on some instances but also show complexity
and limits in terms of scalability. We can observe that
using transfer points does not always improve the objective
function. Indeed, the location of these points can strongly
impact the quality of the solutions. The next step in our work
will be to develop rules that will determine the number of
transfer points and their position. Solving large examples is
very difficult with this model, but is still a starting point for
defining metaheuristics to solve this PDP variant.
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