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Abstract. Reconstructing the phylogeny of large groups of large diver-
gent genomes remains a difficult problem to solve, whatever the meth-
ods considered. Methods based on distance matrices are blocked due to
the calculation of these matrices that is impossible in practice, when
Bayesian inference or maximum likelihood methods presuppose multiple
alignment of the genomes, which is itself difficult to achieve if precision
is required. In this paper, we propose to calculate new distances for ran-
domly selected couples of species over iterations, and then to map the
biological sequences in a space of small dimension based on the partial
knowledge of this genome similarity matrix. This mapping is then used
to obtain a complete graph from which a minimum spanning tree rep-
resenting the phylogenetic links between species is extracted. This new
online Newton method for the computation of eigenvectors that solves
the problem of constructing the Laplacian eigenmap for molecular phy-
logeny is finally applied on a set of more than two thousand complete
chloroplasts.

Keywords: Nonlinear dimentionality reduction; Laplacian eigenmap;
Online matrix completion; Biomolecular phylogeny

1 Introduction

Molecular phylogenetics is the science of analysing genetic molecular differences
in DNA sequences, in order to gain information on an organism’s evolution,
with the goal to better understand the process of biodiversity. It has been a
topic of extensive interest for the bio-informatics community for many decades.
Using statistical and computational tools, the result of the molecular phyloge-
netic analysis is the computation of a phylogenetic tree, hence giving access
to possible inference of the old DNA sequence of their last common ancestor.
The analysis begins with a phase of multiple alignment of biological sequences
consisting, e.g., of nucleotides or amino acids. The alignment then shows the
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modifications undergone by the sequences over time: a column showing, for ex-
ample, a polymorphism indicates a mutation, when a gap is a sign of an insertion
or a deletion of a sub pattern. From an evolution model (mutation matrix), the
goal is then to find the evolutionary tree that maximizes the likelihood of hav-
ing the evolution indicated by the multiple alignment, under hypothesis of the
chosen evolution model.

In order to produce the optimal multiple alignment of a set of sequences, one
considers a relevant collection of authorized editing operations (for example, for
biological sequences: changing a letter, creating a gap, and increasing a gap),
each having a cost, and one looks for the smallest succession of editing opera-
tions allowing to pass from one sequence to another in the set. The underlying
assumption is that nature is parsimonious, but the associated optimization prob-
lem is known to belong to the class of NP-hard optimisation problems. Multiple
alignment being fundamental in any molecular phylogeny study, various meth-
ods have therefore been proposed in order to produce a “good” alignment, if not
optimal, by increasing the alignment as and when, by e.g. adding a new sequence
to be aligned at each iterate. Quality of the alignment is systematically ”inverse
proportional” to the computation time. Based on these alignments, the biolog-
ical data can be transformed into numbers, and further analysis can be put to
work. In particular, the work in [2] demonstrates that using PCA and clustering
[9] can be instrumental in the investigation of phylogenetic data by providing
a clear and rigorous picture of the underlying structure of the dataset. Other,
more sophisticated tools such as the recent nonlinear dimensionality reduction
techniques [19] can be employed, but have not yet gained sufficient appeal among
data analytics practitioners in the community.

One of these methods, the Laplacian eigenmaps [3], has a great potential for
improving the statistical analysis of phylogenetic data by accounting for their
non-linear (potentially) low dimensional structure. One main drawback of such
methods is that all pairwise distances between genomes are implicitely assumed
available, which, due to the computational burden of estimating the alignments,
is a very complicated issue that hinders the wider application of such refined
methods. On the other hand, Laplacian eigenmap computation being as simple to
perform as the PCA, online approaches [11] that only need a small proportion of
the pairwise distances have a great potential for overcoming these computational
issues. Such online algorithms progressively estimate the principal eigenvectors
without having to wait for the full matrix to be known. This problem is very
much related to the online matrix completion problems.

Our goal in the present paper is to provide an efficient online optimisation
technique for the computation of the Laplacian eigenmap [3] for the embedding
and analysis of phylogenetic data, and to demonstrate the applicability of the
approach to the analysis of real data. Application of Laplacian eigenmaps to gene
sequence analysis and clustering was first proposed in [5]. The main novelty of
our work is to propose a principled approach to reducing the number of pairwise
affinities that need to be computed in the context of gene sequences. Moreover,
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we devise a new stochastic gradient algorithm for computing the most significant
eigenvectors based on optimisation on manifolds [17], [1].

2 Background on the Laplacian eigenmap

The Laplacian eigenmap [3] is based on the construction of a similarity matrixW .
This matrix is intended to measure the similarity between each pair of sequences
by providing a number ranging between 0 and 1. The main assumption on W is
that the greater the similarity is, the closer are the sequences to each other.

In order to create this similarity matrix, a multiple global alignment of the
DNA sequences is performed using the MUSCLE (Multiple Sequence Compar-
ison by Log-Expectation [8]) software. Then, an ad hoc Needleman Wunsch
distance [14] is computed for each pair of aligned sequence, and with the ED-
NAFULL scoring matrix. This distance takes into account that DNA sequences
usually face mutations and insertion/deletion. Note that, by using MUSCLE as
first stage of this matrix computation, we operate only one (multiple) sequence

alignment, instead of n(n−1)
2 (pairwise) alignments in the classical Needleman

Wunsch algorithm (that usually contains two stages: finding the best pairwise
alignment, and then compute the edit distance).

Let us denote by M the distance matrix obtained by this way. M is then
divided by the largest distance value, so that all its coefficients are between 0
and 1. W can finally be obtained as follows:

∀ i, j ∈ [[1, n]], Wi,j = 1−Mi,j ,

in such a way that Wi,j represents the similarity score between sequences i and
j. Once the similarity matrix has been constructed, the next step is to create
the normalized Laplacian matrix, as follows:

L = D−1/2(D −W )D−1/2,

where W is the similarity matrix defined previously and D is the degree matrix
of W . That is to say, D is the diagonal matrix defined by:

∀i ∈ [[1, n]], Di,i =
n∑

j=1

Wi,j .

L being symmetric and real, it is diagonalisable in a basis of pairwise orthogonal
eigenvectors {φ1, ..., φn} associated with eigenvalues 0 = λ1 6 λ2 6 ... 6 λn. The
Laplacian Eigenmap consists in considering the following embedding function:

ck1
(i) =


φ2(i)
φ3(i)

...
φk1+1(i)

 ∈ Rk1 ,

where ck1(i) is the coordinate vector of the point corresponding to the ith se-
quence. In other words, the coordinate vector of the point corresponding to the
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ith sequence is composed of the ith coordinate of each of the k1 first eigenvectors,
ordered according to the size of their eigenvalues. The next section addresses the
problems of getting around the computation of all pairwise affinities.

3 The online Newton method on the sphere for
computing the Laplacian eigenmap

In this section, we introduce our online Newton algorithm for computing the
eigenvectors of the Laplacian matrix. The computation of the main eigenvector
is equivalent to a maximisation problem on the unit sphere:

max
‖x‖2=1

vtLv. (1)

Taking the spherical constraint into account is crucial in practice, although not
usually discussed in the literature; see [17].

3.1 Background on eigenvector computation with partially observed
matrices

One particular problem which has recently attracted a lot of interest is the one
of matrix completion, which asks whether one can recover the eigenvectors of a
matrix based on a small fraction of the entries only. Our eigenvector computation
for Laplacian eigenmap embedding is directly related to that problem.

It is well known in particular that matrix completion can be solved under
low rank assumptions, even with very few queries of the matrix entrees [6].
This observation raised the question of understanding if practical progressive
estimation of the principal eigenvectors of an unknown low rank matrix can
be efficiently performed. This problem was recently studied in [7] for positive
semi-definite matrices.

The approach of [7] uses a deflation approach and a lacunary gradient method.
Their analysis is based on a non trivial extension of the arguments for the conver-
gence analysis of the plain stochastic gradient algorithm of [16] for PCA, where
it was shown that convergence of the method does not depend on the spectral
gap.

3.2 Our online Newton algorithm

Our method is an improvement of [7]. In the full observation setting, descent
methods on manifolds provide some of the fastest methods for eigendecomposi-
tion [1,4,17]. However, to the best of our knowledge, no stochastic variant has
been proposed in the literature. Our approach is thus the first to fill this gap,
and we will apply it to the relevant problem of molecular phylogenetics, where
computing pairwise affinities is prohibitively expensive.

The standard Newton method on the sphere reads:
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– Compute y(l) = (L− xtLx I)−1x(l)

– Set α(l) = 1/x(l)
t

y(l), w(l) = −x(l) + α(l) y(l), and θ(l) = ‖w(l)‖2.

– Update x(l+1) = x(l) cos(θ(l) + sin(θ(l))/θ(l) w(l).

The online version of this method is based on replacing the matrix L with
a matrix filled with zeros in the places where the pairwise affinity has not been
computed at the current iterate. The main trick is to replace this sparse matrix
with a low rank approximation obtained using a singular value decomposition.
Algorithm 1 provides the details of this method, in which normal matrix and
zeros means matrices with parameter size, and respectively normaly distributed
or equal to 0. qr() returns the QR decomposition of a provided matrix while svd()
stands for the singular value decomposition. randint returns integers uniformly
distributed between the two parameters, and M t is for the transposition of a
matrix M .

Data: Number of sequences N, targeted dimension r, Number of
iterations L

Result: the largest eigenvalue and its eigenvector
Initialization;
/*Compute a random orthonormal matrix */
Q = normal matrix(N ,5);
Q = QQt;
X = normal matrix(N ,r);
X, = qr(X);
SX=zeros(N, r)
Main loop;
for l = 1, ..., L+1 do

Qstoch = zeros(N,N);
for n = 0, ..., 5000 do

i = randint(N);
j = randint(N);
Qstochi,j = Qi,j ;

end
QQstoch = (IN -X.Xt)*Qstoch*X;
U, S, V = svd(QQstoch);
U = first column of U ;
S = diagonal matrix whose first component is the first component of
S;
V =first column of V ;

X = XV tcos( 10
l S)V + Usin( 10

l S)V ;
X,RR = qr(X);
SX = SX + l.X;
XX = SX/l2;
XX=normalization of XX;

end
Algorithm 1: The online Newton method on the sphere
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A typical convergence behavior of the associated eigenvalue with the present
method is presented in Figure 1 below (here, the largest one, the other ones
being computed using a deflation approach).

Fig. 1. Typical convergence behavior for our online Newton method for the computa-
tion of the eigenvalue associated with the eigenvector of interest (here, the largest one,
the other ones being computed using a deflation approach.

4 Application in molecular phylogeny

4.1 General presentation

Any molecular phylogeny study begins with a phase of multiple alignment of bi-
ological sequences consisting, e.g., of nucleotides or amino acids [12]. The align-
ment then shows the modifications undergone by the sequences over time: a
column having, for example, a polymorphism indicates a mutation, when a gap
is a sign of an insertion or a deletion of a sub pattern. From an evolution model
(mutation matrix), the goal is then to find the evolutionary tree that maximizes
the likelihood of having the evolution indicated by the multiple alignment, under
hypothesis of the chosen evolution model.

The running time to compute the alignment between two sequences of respec-
tive lengths m and n being equal to O(mn/ log n) by using Needleman Wunsch
algorithm, various approaches propose to use a quick approximation of the latter
to more efficiently fill the distance matrix equivalent to multiple alignment (and

which basically requires N(N−1)
2 distance calculations for a set of N sequences).

In view of this observation, we propose to reconstruct the phylogenetic link from
an incomplete estimate of the distance matrix. Following the online descent on
the sphere presented previously, we can estimate one by one all the eigenvectors
of the distance matrix.

The Laplacian eigenmaps applied by using the eigenvectors associated to the
three largest absolute eigenvalues leads to an embedding of the N sequences in
points belonging in a space of dimension 3. A complete undirected graph can be
deduced, in which each sequence occupies a vertex of the graph, and for which
the edge between nodes i and j is weighted by the Euclidean distance between
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points i and j associated with the sequences thus labelled. The extraction of a
covering tree of minimal weight, for example with the Kruskal algorithm, allows
to infer a phylogenic relationship between the original sequences without having
to calculate multiple alignment, and knowing only a small part of the distance
matrix. Such an approach is applied to a concrete dataset in the following section.

4.2 Data collection and analysis

Thousands of complete genomes of chloroplasts are available now, which can
be found for instance on the NCBI website. A Python script was written that
automatically downloads all complete sequences of chloroplasts currently avail-
able on this website, which amounts to 2,112 genomes of average size: 151,067
nucleotides (ranging from 51,673 to 289,394 nuc.). They represent the global
diversity of plants as a whole.

Even though they all derive from a common ancestor (probably a cyanobac-
terium), this ancestor dates back to such a time that the genomes are very
divergent from each other. Each gene in the core genome of chloroplasts there-
fore corresponds to potentially very different nucleotide sequences between two
very distant plants. Also, if calculating the distance of a couple of representa-
tives of a given gene is quite feasible, aligning the thousand DNA sequences
of any core gene is very difficult, and leads to an extremely noisy alignment.
Multiple alignment tools such as Muscle [8] take several hours to a day of cal-
culations even for small core genes, while requiring a large amount of memory.
And the alignment does not ultimately resemble much, so that the phylogenetic
tree built from this alignment has many badly supported branches, and leads to
obvious inconsistencies in view of taxonomy. The data set is much too large for
T-Coffee [15], when ClustalW [13] allows, by its various modes, either to obtain
in a reasonable time a very noisy alignment, or gets lost in endless calculations.

One way to obtain a phylogenetic tree well supported on a substantial part of
the core genome of these chloroplasts would consist in calculating separately, for
each order or family of plants, a multiple alignment followed by a phylogenetic
inference. Then, to group this forest of trees in a supertree, by means of an ad hoc
algorithm. Although feasible, such an approach has two important limitations.
On the one hand, branch support information is lost when the super tree is
built. On the other hand, the number of trees to calculate in the forest increases
exponentially with the taxonomic level chosen to separate species, and if the
calculation time for each tree is reduced, this reduction is compensated by the
number of trees to calculate. Conversely, the approach detailed in this article
allowed us to reconstruct a reliable phylogeny in a reasonable time, see below.

4.3 Experimental results

The 2,112 complete sequences have been automatically annotated by Dogma [20]
and GeSeq [18], two web services specifically designed for gene prediction in
chloroplastic genomes. This latter has outperformed the former in terms of ac-
curacy, when considering their ability to recover well the annotations of some
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Fig. 2. Obtained phylogeny with RPL2 gene (extraction from the big graph)

reference genomes. Such a result is not surprising, taken into account the fact
that Dogma has been released almost 2 decades ago while GeSeq is a brand new
algorithm: to make its predictions, GeSeq relies on a basis of knowledge that is
much more recent and complete than the one of Dogma, which was therefore
abandoned in the remainder of the study.

According to GeSeq annotations, each genome as 81.86 genes in average, the
smallest genome exhibiting 32 genes while the largest one has 92 genes. The
pan genome has 92 genes, while the core genome is constituted by RPL2, RPS2,
RRN16, and RRN23. Being everywhere, these 4 genes can be used to compute
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the phylogeny of the 2,112 genomes. Each core gene leads to a distance matrix
of size 2, 112× 2, 112 to estimate, thus to 2, 112 eigenvectors on which to apply
the Laplacian eigenmap technique, and then to infer the tree.

Our approach allows to infer a phylogenetic tree of the set of all available
complete chloroplasts in a very reasonable time. The latter is a function of the
hyperparameter L setting the stop criterion in the loop determining a new eigen-
value, which measures the variation in the estimate of a given eigenvalue: when
it is below the threshold set by the user, the estimate is returned and the next
eigenvalue is considered by investigating the subspace orthogonal to the previ-
ously obtained eigenvectors.

Fig. 3. Phylogenetic tree using Muscle and RAxML

Our proposal has been fully designed using Python language, and the net-
workx library [10] has been used to compute the covering tree of minimal weight:
Euclidian distance between each resulting couple of 3D points has led to a com-
plete graph, whose covering tree of minimal weight has been computed with
Kruskal. To validate the obtained tree and for the sake of illustration, we fo-
cused on a small subset of 30 divergent sequences of RPL2 gene, investigating
whether the phylogenetic relationships extracted from the big tree with 2,112
species are in agreement with the taxonomy obtained with a more classical ap-
proach, still applicable for this small collection of sequences.
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Our obtained phylogenetic is represented in Figure 2, while the tree in-
ferred with RAxML (multi-alignment using Muscle, GTR+Gamma evolution-
ary model) is provided in Figure 3. As can be seen on this small randomly
extracted sub-set, the phylogenetic reconstruction is coherent and broadly sen-
sible, despite the fact that the tree was reconstructed over a small part of the
Needleman-Wunch distance matrix. The errors that can be detected in our tree
can be reduced by using the hyperparameter values: a compromise must be found
to obtain an efficient and accurate calculation.

5 Conclusion

In this paper, we proposed a new online Newton method for the computation
of eigenvectors that solves the problem of constructing the Laplacian eigenmap
for molecular phylogeny. As a follow up project, we plan to study the problem
of active learning in the same framework in a future publication, in order to
optimise the selection of the pairs on which the alignment is performed. Exten-
sible backend for hyperparameter auto-tuning will be provided, and the scalable
phylogenetic tool will be applied on genome sets of large scale.
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A A python implementation

The following code gives the Python implementation of the method for the more
general case of the Stiefel manifold, a generalisation of the sphere. (The case of
the sphere corresponds to taking r = 1.)

from numpy.random import normal
from numpy.linalg import eig, qr, svd, norm
from numpy import matrix, zeros, eye, diag
from random import randint
from math import sin, cos
from pylab import plot, show

N, r = 10, 1

Q = matrix(normal(0,1,(N,5)))
Q = Q ∗Q.T

umax,lambmax = eig(Q)
lambmax = lambmax[:,umax.argmax()]
umax = max(umax)
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X = matrix(normal(0,1,(N,r)))
X,R = qr(X)

SX=matrix(zeros(X.shape))
L = 1000
lamb, scal = [], []
for l in range(1,L+1):

Qstoch = matrix(zeros(Q.shape))
for ll in range(0,5000):

i=randint(0,N−1)
j=randint(0,N−1)
Qstoch[i,j]=Q[i,j]

QQstoch = (eye(N)−X ∗X.T)∗Qstoch ∗X
U,S,V = svd(QQstoch)
U=U[:,0:r]
S=diag(diag(S[0:r]))
V=V[0:r,0:r]
X = X ∗V.T ∗cos(10./(l ∗∗1)∗S)∗V+U ∗sin(10./(l ∗∗1)∗S)∗V
X,RR = qr(X)
SX=SX+l ∗X
XX=SX/l ∗∗2
XX=XX/norm(XX);
lamb.append(max(diag(XX.T ∗Q ∗XX)))
scal.append(abs(X.T ∗umax))

plot(range(len(lamb)),lamb)
show()
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