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Abstract

Many IoT systems generate a huge and varied amount of data that need to

be processed and responded to in a very short time. One of the major challenges

is the high energy consumption due to the transmission of data to the cloud.

Edge computing allows the workload to be offloaded from the cloud at a location

closer to the source of data that need to be processed while saving time, improv-

ing privacy, and reducing network traffic. In this paper, we propose an energy

efficient approach for IoT data collection and analysis. First of all, we apply a

fast error-bounded lossy compressor on the collected data prior to transmission,

that is considered to be the greatest consumer of energy in an IoT device. In a

second phase, we rebuild the transmitted data on an edge node and process it

using supervised deep learning techniques. To validate our approach, we con-

sider the context of driving behavior monitoring in intelligent vehicle systems

where vital signs data are collected from the driver using a Wireless Body Sen-

sor Network (WBSN) and wearable devices and sent to an edge node for stress

level detection. The experimentation results show that the amount of transmit-

ted data has been reduced by up to 103 times without affecting the quality of

medical data and driver stress level prediction accuracy.
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1. Introduction

Cloud computing that is centrally deployed on a global scale has become an

indispensable part of processing IoT data. However, cloud-assisted Internet of

things (CoT) faces several difficulties such as transmission latency, bandwidth

constraints, and high energy consumption. For instance, sending a single bit

of data over the cellular network consumes a lot of energy which decreases the

lifetime of the IoT system.

On the other hand, edge computing has emerged as a promising paradigm

that pushes the cloud services to the edge of the network. It can be seen as

a decentralized cloud that drives the computing power closer to the source of

data and allows local decision making. Edge computing was shown to be a

better solution than the cloud in numerous IoT applications [1]. For instance,

applications that demand near real-time responses such as autonomous driving

cars and eHealth can not work properly with the cloud due to the high latency

and ineffective bandwidth caused by the large number of sensors connected to

the network.

Wireless Sensor Networks (WSNs), Wireless Body Sensor Networks (WBSNs),

and wearable devices make up the essential blocks of IoT architectures. Many

of these smart objects, that are responsible for the collection, processing, and

transmission of data, are still battery operated and resource constrained. The

three major constituents of a smart object that consume energy are the mi-

crocontroller (MCU), transceiver, and sensor units. Among all tasks, it is

well known that data transmission is the highest energy-consuming task in IoT

nodes [2] [3]. An important step towards energy efficiency in IoT applications is

the transfer of computational tasks from the cloud to the edge. In general, the

radio communication task between the IoT nodes and the edge consumes less

energy than transmitting the data directly to the cloud over the cellular net-

work [1] [4]. Equally important, reducing the amount of data to be transmitted

to the edge can further increase the lifetime of the IoT nodes and save storage
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at the edge.

Figure 1: IoT network architecture

In this paper, we consider the IoT network architecture shown in Figure 1,

where the data are collected from smart objects such as wearables and sensor

devices and sent periodically to an edge node using short range communication

protocols (e.g. WiFi, Bluetooth). The edge node is responsible for the process-

ing, analyzing, filtering, storing, and sending the data to the cloud. To start,

The energy conservation problem is tackled by proposing a fast error-bounded

lossy data compression technique to be deployed on the IoT devices. The ob-

jective is to reduce the number of bits to be transmitted periodically to the

edge node. Then, we study the effect of lossy compression on the performance

of machine and deep learning models deployed at the edge, and trained on re-

constructed data with degraded quality as compared to the original data. To

do so, we consider the driving behavior monitoring use case where physiological

signals are collected from drivers and sent to the edge node in order to detect

their stress level. The stated problem in this work can be formulated as follow:

Does the loss of information due to lossy compression and energy conservation

techniques deployed on the IoT nodes affect the analysis and processing of the
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data at the edge?

The rest of the paper is organized as follows: Section 2 presents the work

related to data analysis on the edge and data reduction in IoT applications.

Section 3 explains the proposed compression scheme. Section 4 discusses the

case studied in this paper and presents the prediction model deployed at the

edge. Section 5 details the experimental results. Section 6 discusses and analyses

the obtained results and section 7 concludes the paper.

2. Related Work

In this section, we first introduce the analysis of data in edge computing

using machine and deep learning, and then we discuss data reduction in IoT

applications.

2.1. Machine and deep learning in edge computing

The use of machine and deep learning techniques for data processing could

help edge devices to be smarter, and improve privacy and bandwidth usage.

In [5], the authors introduced deep learning for IoT into the edge computing

environment and proposed an approach that optimizes network performance

and increase user privacy. Machine and deep learning in edge computing can

bring multiple improvements to the traditional approaches that rely on cloud

computing by:

• Processing data using conventional machine learning techniques and trans-

ferring the results or necessary features extracted from raw sensor data.

• Deploying part of deep learning networks layers on the edge and trans-

ferring the extracted features whose size is smaller than that of the input

data.

• Deploying neural networks on the edge with minimized size that maintain

accuracy.
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• Training the networks on the cloud and shipping the trained models to

the edge.

The aforementioned approaches reduce the pressure on the network by reducing

the size of the data to be transferred to the cloud. For instance, each layer

in a deep learning network processes and scales down the size of the generated

features from the previous layer. The more layers are deployed on the edge, the

smaller is the size of the features to be transferred to the cloud and the more

they are incomprehensible, hence, increasing the privacy.

Edge nodes are devices such as mobile phones, IoT gateways, and local

PCs that have a limited processing capability as compared to cloud servers.

The size of neural networks deployed on these devices should be reasonable.

In [6], the authors showed that different lightweight libraries and algorithms

can be deployed on edge nodes such as smartphones and enable real-time data

analytics.

2.2. Data reduction in IoT applications

Different data reduction schemes for energy saving in IoT applications have

been proposed in the state of the art. In [7][8], the authors proposed data re-

duction approaches based on adaptive sampling. These approaches work by

studying the level of variance between the collected data over a certain time

frame, and dynamically adjusting the sampling frequency of the devices. Adap-

tive sampling approaches work well in applications where the collected time

series are stationary. In the case of quickly varying data, these approaches per-

form poorly. In [9], the authors proposed a data reduction mechanism based

on dual prediction. The proposed mechanism works by building a model that

describes the sensed phenomenon and deploying it on both the edge node and

the IoT devices. The advantage of prediction approaches is that the model at

the edge predicts the sensed measurement without requiring any radio commu-

nication unless the prediction error exceeds a predefined threshold. However,

such prediction mechanisms suffer when it comes to devices like a high frequency
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motion sensor, where the data collection frequency is high and the data varies

quickly.

Numerous aggregation and compression approaches that take advantage of the

temporal correlation in the collected data have been proposed [10, 11, 12, 13, 14].

In [10], the authors proposed a data filtering technique based on the Pearson

coefficient metric. This method works by recursively dividing the dataset into

two equal parts and aggregating the data based on the correlation between the

subsets. In [11], the author proposed a data aggregation method for incoming

data stream in IoT based monitoring systems. The proposed method is an ap-

proximation with ‘extremums’ technique that reduces the volume of data to be

stored or transmitted. The results show that this method was able to achieve

a compression of up to 10 times on temperature data. In [12, 13], the authors

proposed data compression techniques that take advantage of the temporal cor-

relation in the collected data. The proposed techniques are based on the simple

and computationally efficient 1-D Discrete Wavelet Transform (DWT) via lifting

scheme and the Differential Pulse Code Modulation (DPCM). The aforemen-

tioned data reduction techniques, in addition to many others proposed in the

literature, perform well on stationary univariate time series. However, an im-

portant number of IoT devices nowadays include more than one sensor and are

able to collect multiple features. Therefore, data reduction techniques that work

efficiently on multivariate time series are required.

Compressive Sensing (CS) and transform domain compression techniques

that are usually used for images have been proposed as well for multivariate

time series compression in IoT applications. In [15], the authors proposed a

multisignal compression technique based on the theory of fuzzy transform. The

proposed method has been applied on multisignal environmental data collected

by a wireless sensor network and reduced the data by approximately two times.

In [16], the authors proposed the 2-D lifing wavelet transformation to compress

multisignal data collected from different sensor nodes. The proposed method

uses the Haar wavelet and achieves a compression ratio of 1.33 and recovery

accuracy of 98.4%. Transform domain compression techniques are character-
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ized by the ability to recover the data accurately. However, the compressing

performance of these techniques remains limited. On the other hand, CS theory

has emerged as an efficient approach for energy-efficiency in IoT applications in

recent years [17] [18]. By taking advantage of the signal sparsity, CS approaches

assure an accurate signal recovery by sampling signals at a much lower rate than

the traditional Shannon-Nyquist theorem. Nevertheless, CS techniques suffer

when dealing with non-sparse multi-dimensional signals containing diverse fea-

tures with different scales of values.

The major drawbacks of the above-mentioned propositions is that they yield

low compression ratio on non-stationary multi-sensor data and they are not

tested on real devices. This paper proposes a data compression technique for

IoT applications and resource constrained devices that works efficiently on mul-

tivariate time series and implemented on a real wearable device. In the following

sections, the proposed lossy compressor is presented and the impact of informa-

tion loss on data analytics at the edge is studied.

3. Error-bounded lossy compression

In this paper, a lighweight version of the work presented in [19] is given. The

authors in [19] proposed a fast error-bounded lossy compression scheme namely

SZ for High Performance Computing (HPC) applications. This compression

scheme has been proposed to deal with the huge amounts of data generated

during the execution of HPC applications. The original SZ compresses input

data files that are in binary format and can have different data shapes and data

types (single-precision and double-precision). In this work, we propose to adapt

the SZ algorithm for IoT devices by considering only the floating point data

type and discarding the other types which make the code smaller in size and

easier to compile on tiny devices. Moreover, the algorithm was adapted to take

a 1-D array of float sensor data as input and return a byte array that is going

to be transmitted to the edge node. The motivations behind choosing SZ for

IoT applications are as follows:
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• SZ allows the compression of multivariate time series containing diverse

features with different scales

• SZ allows the control of information loss by using an error bound

• SZ leads to higher compression ratio than the multi-dimensional transform

domain compression techniques

The proposed compression scheme is defined in Algorithm 1. It is considered

that the data are transmitted to the edge after each period P of time t. The

collected data are in the form of M × N array, where M denotes the number

of readings and N denotes the number of features. For example, consider a

motion sensor that collected 128 gyroscope and accelerometer readings for the

three coordinate axes after a period P . In that case, M is equal to 128, and N

to 6.

To begin, the 2-D array is converted to the 1-D array (Algorithm 1, line 4).

Then, the flattened array is compressed using the lossy SZ technique. Finally,

the resulted binary array is transmitted to the edge. Algorithm 2 presents the

main steps employed by the adapted SZ compression scheme. Note that the

adaptation has been done by extracting the necessary functionalities from the

original SZ to make it fit on wearables and resource constrained devices.

Algorithm 1 Proposed compression scheme

Require: E (error bound)

1: while Energy > 0 AND Sensors status = ON do

2: for each period do

3: data[M,N ]← collected sensors data

4: input[M ×N ]← Flatten(data)

5: bin output← adapted SZ(input, E,M,N) (Alg 2)

6: transmit Data(bin output)

7: end for

8: end while
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The SZ compressor starts by compressing the 1-D array using adaptive curve-

fitting models. The bestfit step employs three prediction models: Preceding

Neighbor Fitting (PNF), Linear-Curve Fitting (LCF), and Quadratic-Curve Fit-

ting (QCF). The difference between the three models resides in the number of

precursor data points required to fit the original value. The adopted model is

the one that yields the closest approximation. Note that the fitted data are

transformed into integer quantization factors and encoded using Huffman tree.

In the case when none of the prediction models in the curve-fitting step satisfies

the error bound, the data point is marked as unpredictable and is then encoded

by analyzing the IEEE 754 binary representation. (Algorithm 2, line 2).

Algorithm 2 Adapted SZ steps

Require: input (1-D array), E (error bound),M (num rows),N (num columns)

Ensure: output (binary array)

1: Bestfit Curve-Fitting Compression

2: Compressing Unpredictable Data

As for the error bound, the absolute error bound has been used in which the

compression/decompression errors are limited to be within an absolute error.

For instance, if the value of a data point is considered to be X, an absolute

error bound of 10−1 means that the decompressed value should be in the range

[X − 10−1, X + 10−1].

4. Case Study

The combination of IoT, cloud computing, and healthcare has taken a lot

of attention during the past years. Among the major challenges that face the

healthcare applications are:

• Latency due to communication between cloud and IoT devices

• Limited network bandwidth due to the high amount of generated data

• High cost of privacy and security breaches
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Here is where the benefits of edge computing take place. As mentioned in pre-

vious sections, edge computing can be considered a major solution for latency

and bandwidth challenges in IoT and healthcare applications. In a similar way,

efficient on-node data compression can increase the lifetime of the application,

and reduce the size and the number of transmitted packets which may affect the

latency and network bandwidth positively. However, the integrity of the data

and loss of information due to compression remain critical issues for healthcare

applications. In this section, the impact of data compression and energy effi-

ciency on the analysis of medical data at the edge is studied. Let us consider

the case of driving behaviour monitoring and stress detection where the physi-

ological signals are continuously collected from a driver and transmitted to the

edge node for analysis and detection of stress level.

In the following, the dataset used in our work is described, then the process-

ing and analysis of the data are discussed, and finally, the model used for stress

level detection is presented.

4.1. Dataset

The Stress Recognition in Automobile Drivers database published on Phys-

ioNet has been used in this work [20][21]. This dataset contains multiple physi-

ological signals recorded from healthy volunteers, taken while they were driving

on a specified route in and around Boston, Massachusetts. The driving task

done by each driver varies from about 50 min to 1.5 h and can be divided into

six sections as shown in Figure 2:

• Rest [1,6]: The resting periods in the beginning of the driving task and at

the end of it are labeled as ”low stress”

• City [2,5]: Driving in the city periods in sections 2 and 5 are labeled as

”high stress” since the subjects drove in a busy main street and frequently

handled the traffic conditions and the unexpected emergencies created by

cyclists and jaywalkers
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• Highway [3,4]: Driving on the highway periods in sections 3 and 4 are

labeled as ”moderate stress”

Note that the labeling of the data has been validated by drivers’ self-reported

questionnaires in [20].

REST

CITY

HIGHWAY RAMP HIGHWAY

CITY

REST

Low Stress Low StressHigh Stress High StressModerate Stress

1

2

3 4

5

6

Figure 2: Driving task

This study is conducted on 9 drivers among 17 available in the database since

the marker indicating the driving sections (rest, city, highway) is not present in

all drivers files. Five physiological signals were used for stress detection, namely

electrocardiogram (ECG), heart rate (HR), galvanic skin response (GSR) of the

hand and foot, and respiration rate (RR).

4.2. Data processing and analysis

For each driver data file, the noise has been removed from HR and GSR

signals following [22]. In order to study the impact of data compression on the

information contained in the data, a feature extraction phase is used from which

time-domain and frequency-domain features are extracted from the ECG signal

in addition to the two main components of the GSR signal namely: Skin Con-

ductance Level (SCL), and Skin Conductance Response (SCR). The objective

of this step is to compare the features extracted from the original data with the

features extracted from the compressed data.

Table 1 describes the features extracted from the ECG signal by applying

time and frequency domain analysis such as FIR-filters and fast fourier trans-

form methods. In order to analyze the GSR signal, which can be considered
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Table 1: Features extracted from ECG signal

Feature Description

RMSSD
Root mean square of the Inter-beat (RR) Intervals (the time

intervals between consecutive heart beats)

meanNN Mean RR interval

sdNN Standard deviation RR interval

cvNN
Coefficient of Variation (CV), i.e. the ratio of sdNN divided

by meanNN

CVSD
Coefficient of variation of successive differences, i.e. the

RMSSD divided by meanNN

medianNN
Median of the absolute values of the successive differences

between the RR intervals

madNN Median Absolute Deviation (MAD) of the RR intervals

mcvNN
Median-based Coefficient of Variation (MCV), i.e. the ratio

of madNN divided by medianNN

pNN20

The number of interval differences of successive RR intervals

greater than 20 ms divided by the total number of RR

intervals

pNN50

The number of interval differences of successive RR intervals

greater than 50 ms divided by the total number of

RR intervals

an important sensitive measure for emotional arousal, we extract the slow vari-

ation (SCL) and the faster alterations (SCR) following a convex optimization

approach proposed in [23]. Table 2 shows the features extracted from the GSR

signal.

4.3. Stress detection using Feed-Forward Neural Network (FFNN)

This section considers the features shown in Tables 1 and 2 in addition to

heart rate (HR) and respiration rate (RR) as a single sequence in which a label

is assigned. The prediction task is a supervised sequence classification task. A
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Table 2: Features extracted from GSR signal

Feature Description

meanGSR Mean value of GSR signal

meanSCL Mean value of SCL

slopeSCL Difference between max and min values of SCL

meanSCR Mean value of SCR

maxSCR Max value of SCR

FFNN is a network that contains a large number of neurons, arranged in layers:

one input layer, one or more hidden layers, and one output layer.

Figure 3 shows the FFNN architecture used in the classification task. The

neural network consists of 17 input neurons, corresponding to a sequence of

17 physiological features. Additionally, the neural network is provided with a

correct label of that sequence. That is, whether the sequence corresponds to

low stress, moderate stress, or high stress. Providing that edge analytics require

lightweight algorithms to perform reasonable machine learning [6], we have used

a network with a minimized size that maintains accuracy. The implemented

network has four hidden layers consisting of 60 neurons, which use the ReLU

activation function [24]. The number of layers The network was trained with a

variant of stochastic gradient descent ‘Adam’ [25] and categorical cross entropy.

Furthermore, Dropout regularization technique [26] has been used to prevent

overfitting and 10-Fold Cross Validation has been used to validate and find the

optimal set of hyperparameters for the model. Finally, the network has been

trained for 300 epochs with a learning rate of 0.01.

5. Experimental Results and Analysis

In the following sections, the results of applying the aforementioned data

compression technique on physiological data are presented. Two metrics are

discussed in the following: data reduction, and the impact of information loss

on the prediction accuracy.
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Figure 3: FFNN

5.1. Data reduction and energy conservation

The data sets and the signals were recorded from the drivers at 496 Hz.

In order to test the efficiency of the proposed compression scheme, we have

deployed the data on the SD card of a Polar M600 wearable. In the same

way, the compression technique written in C language using Android NDK

toolset was implemented. After each period p = 1min, an array data[M,N ]

is transmitted using Android (Bluetooth Low Energy) BLE to the edge device,

which is a local PC where the received data are processed and analyzed. The

results are then transferred to the cloud. Note that M , the number of readings,

is equal to 148800 and N , the number of features, is equal to 5.

The experimentation has been conducted for around 4 hours, equivalent to 241

periods. Figure 4 shows the difference between the amount of data transmitted

with and without compression. The x-axis denotes the periods, and the y-axis

denotes the number of bytes needed to represent the data in logarithmic scale.

The transmission of the original data after each periods requires around 2976000

bytes, while the number of bytes required for transmitting the compressed data

varies between 28732 bytes and 41602 bytes. Thus, reducing the transmitted

data by up to 103 times.

Figure 5 describes the change of the wearable battery level over 241 periods

for five different scenarios:

14



1 30 60 90 120 150 180 210 241
# of period

105

106

107

# 
of 

by
tes

Original
Compressed

Figure 4: Amount of original and compressed data transmitted over 241 periods

• Black line: the wearable device is in the idle state

• Red line: the wearable device is continuously collecting data (motion and

heart rate sensors are turned on)

• Yellow line: the wearable device is collecting data and running the com-

pression algorithm after each period

• Green line: the wearable device is collecting data, and performing com-

pression and transmission after each period

• Blue line: the wearable device is collecting data, and performing data

transmission after each period (no compression)

The results clearly show the impact of data reduction on the communication

task energy consumption. The battery level of the device continuously collecting

data was decreased to around 86% after 241 periods. Note that by comparing

the sensing and computation tasks with the idle state, it can be noticed that

these tasks contribute a little in the energy consumption of the device. On

the other hand, when applying the proposed data compression scheme prior to

transmission, the battery level was decreased to 83% while sending the data
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Figure 5: Polar M600 battery level over 241 periods

without compression decreased the battery level to around 56%. As a result,

the device lifetime could be increased by up to 27% after 4 hours.

5.2. Loss of information and stress detection

In this section, the impact of information loss on the prediction accuracy of

the proposed FFNN for stress level detection is studied. For each of the drivers

datasets, a sliding window of 30 seconds with 75% overlap on the data is applied,

and the physiological features described in the previous section are extracted

from each window. Note that for each window, the extracted features form a

set/sequence labeled as low, moderate, or high stress that is going to be fed as

an input to the neural network.
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Figure 6: 2500 original ECG samples vs compressed ECG samples

Figure 6 compares the original ECG signal transmitted to the edge without

compression with the compressed signal using an error bound of 10−1. Even

though the compression has affected slightly the shape of the signal, the po-

sitions of the peaks that are used to exploit the signal and extract the most

important features remain unchanged. Note that one of the advantages of the

SZ algorithm is that the error bound is controllable and can be initialized ac-

cording to the medical need. In other words, the trade off between compression

ratio and loss of information can be easily controlled by the medical staff.

Table 3 shows the Root Mean Square Error (RMSE) between the features

extracted from the compressed and original ECG and GSR signals for the 9

drivers. Notice that the average RMSE for each feature is small, and the im-

portant features such as heart rate, respiration rate, and R-R interval have a

RMSE close to zero, which means that the compression had very low impact on

the information loss.

In order to fully answer the stated problem in section 1, the sequences of

features are randomly divided into train and test sets (75%/25%). Two models

are considered, the first one was trained on the sequences of features extracted
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Driver #
Average

4 6 7 8 9 10 11 12 16

HR 0.27 0.08 0.07 0.10 0.04 0.08 0.07 0.07 0.26 0.11

RMSSD 1.57 1.68 1.18 0.94 1.20 2.45 3.77 2.28 2.42 1.94

meanNN 0.91 1.24 0.24 0.23 0.25 1.02 0.30 0.70 1.09 0.66

sdNN 0.61 1.01 0.29 0.33 0.58 1.12 1.65 0.87 1.44 0.87

cvNN 0 0 0 0 0 0 0 0 0 0

CVSD 0 0 0 0 0 0 0 0 0 0

medianNN 2.19 1.4 0.67 1.34 1.01 2.08 1.74 1.06 1.63 1.45

madNN 1.91 1.19 1.01 1.22 1.12 1.96 1.95 0.88 1.52 1.41

mcvNN 0 0 0 0 0 0 0 0 0 0

pNN50 1.78 2.2 1.23 1.51 1.91 1.92 2.24 1.56 1.27 1.72

pNN20 2.52 3.63 1.70 1.95 1.93 2.39 1.80 1.92 3.38 2.35

mean gsr 0 0 0.01 0.02 0.02 0.01 0.02 0 0 0

mean scl 0.23 0.22 0.23 0.21 0.21 0.20 0.20 0.19 0.23 0.21

slope scl 0.38 0.36 0.34 0.34 0.28 0.33 0.34 0.29 0.44 0.34

mean scr 0.22 0.22 0.23 0.21 0.21 0.20 0.20 0.19 0.23 0.21

max scr 0.37 0.31 0.30 0.31 0.23 0.30 0.23 0.27 0.41 0.30

RR 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Table 3: Root mean square error between the features extracted from original data and the

features extracted from reconstructed data

from the original data and the second one on the sequences of features extracted

from the compressed data. For hyperparameter optimization, 10-fold cross val-

idation is performed on the training sets, and then our models are evaluated on

the test sets. Table 4 summarizes the stress level detection performance of the

aforementioned models. The results show that the average accuracy achieved

by the two models is 98%. It can be noticed that not only the compression

did not affect the prediction accuracy but even improved it in some cases such

as for driver 7 and driver 12, which is due to the denoising capability of the

compression technique.
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Accuracy

Original Compressed

Driver 4 1.0 0.99

Driver 6 1.0 1.0

Driver 7 0.97 0.98

Driver 8 0.98 0.98

Driver 9 0.98 0.97

Driver 10 0.99 0.99

Driver 11 0.92 0.94

Driver 12 0.99 0.99

Driver 16 0.99 0.98

Average 0.98 0.98

Table 4: FFNN prediction accuracy on test sets (25%) corresponding to sequences of features

extracted from original and compressed data respectively

6. Discussion

Most of the IoT devices nowadays are equipped with multiple sensors and are

able to collect different types of data. Thus, the compression techniques must

deal with multisensor readings at a single device. Furthermore, in the case

of real-time or near real-time applications, the reconstruction (decompression)

time of the algorithm must be small in order to pass the data to the machine

learning model and return the prediction/classification results to the user in the

shortest time possible. Although transform-based compression and compressed

sensing (CS) can be used for dealing with multisensor readings, these methods

have several disadvantages that make the choice of SZ for this type of prob-

lems is the best solution. Transform-based compression techniques transform

raw data to a set of coefficients, and need to be followed by an entropy coding

step to encode the coefficients in order to achieve an acceptable reduction rate.

On the other hand, CS requires that a signal is sparse in some domain and

doesn’t contain noise in order to achieve an “exact” reconstruction, which is
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not the case in real world applications. CS is also an asymmetric algorithm,

which means that the decompression needs a higher computational complexity

than that of the compression and longer time in order to recover the data, mak-

ing it inefficient for applications that require fast responses. Another issue for

transform-based techniques and CS is adaptability. In other words, the com-

pression algorithm must adapt and perform well across different applications,

subjects, and activities. For instance, the multivariate time series used in this

paper contains different variables having different statistical characteristics. So

in order to apply CS to multivariate data, each of the variables contained in

the data must meet the conditions needed by CS to work perfectly, which is not

always the case.

Data size (bytes) Compression time (seconds) Decompression time (seconds)

11904000 0.036 0.05

2976000 0.012 0.01

992000 0.005 0.006

99200 0.003 0.002

Table 5: Average compression/decompression time for the SZ algorithm on different data sizes

Table 5 shows the time needed by the proposed SZ algorithm deployed on a wear-

able device (Polar M600) to compress and decompress different sizes of input

multivariate data. It can be seen that the average compression/decompression

time is small, thus making SZ suitable for near real-time applications. For the

above-mentioned reasons, the proposed SZ can be a better candidate for mul-

tisensor readings compression not only for its fast compression/decompression

and high compression rate, but also for its ability to adapt for different appli-

cations and scenarios.

7. Conclusion

Since bringing intelligence closer to IoT devices reduces network latency and

energy consumption due to radio communications, data reduction can be seen
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as an additional solution to increase the lifetime of IoT devices. In this pa-

per, an energy efficient data reduction scheme for IoT-Edge applications was

proposed. The proposed scheme is based on an error-bounded lossy compres-

sor designed for high performance computing applications that produce large

amounts of data during the execution. The compression algorithm was adapted

to fit on a Polar M600 wearable and its performance was tested on medical mul-

tivariate time series. The results showed that the we were able to reduce the

amount of transmitted data to the edge device by up to 103 times and thus to

increase the lifetime of the wearable. Furthermore, we considered the use case

of drivers stress recognition and studied the impact of lossy data compression

on the analysis, exploit, and classification of medical data. The results showed

that the information extracted from compressed data was valid, and the classi-

fication accuracy obtained from training the model on features extracted from

compressed data did not decrease.
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