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Abstract—Many applications in Internet of Things (IoT)
require an ubiquitous localization to provide their services.
Whereas the global navigation satellite systems is mainly used in
outdoor environment, multiple solutions based on mobile sensors
or wireless communication infrastructures exist for indoor local-
ization. One of them is the fingerprinting approach which consists
in collecting the signals at known locations in a studied area
and estimating the locations of new incoming signals thanks to
the collected database. This approach interests many researches
due to its connection with machine learning concepts. In this
paper we propose to implement a deep learning architecture for
a fingerprinting localization based on Wi-Fi channel frequency
responses in IoT context. Our solution, DelFin reduces the
median and 9-th quantile localization errors up to 50% and 47%
respectively compared to other fingerprinting methods. DelFin
has been tested with different spatial distributions of training
locations in the studied area and still performed the best results.

I. INTRODUCTION

By 2020, the deployment of the fifth generation (5G) of mo-
bile networks will face to the diversification of consumers’ and
industries’ needs, the paradigm of Internet of Things (IoT) and
the multiplication of ubiquitous applications with their own
specifications and requirements [1]–[4]. To handle this, the 5G
will encapsulate different standards which have to be designed
for high data throughputs, low-cost and low-energy systems,
and critical equipment [5], [6]. These three conditions are so
many reasons which lead to a multiplication of indoor local-
ization solutions depending on embedded sensors in devices or
the spatial sparsity of anchor stations. Nevertheless, the future
indoor localization solutions have to take into account any kind
of connected devices in respecting the ambient connectivity,
a branch of IoT paradigm. This implies a fast and low-
cost deployment of localization solutions in 5G networks by
exploiting only the existing network infrastructure supporting
one or several wireless communication technologies.

Nowadays, Wi-Fi and Bluetooth Low-Energy (BLE) tech-
nologies are largely present in the indoor environment. In BLE,
the available metric is the received signal strength (RSS) which
requires multiple anchor stations in the studied area to perform
an accurate localization [7]. This supplementary requirement
does not stick with the ambient connectivity because it is
necessary to ensure communications with at least three anchor

stations. Unfortunately, this condition is often not respected
like in domestic environments. In Wi-Fi, RSS is also supported
by the technology [8]–[12]. However, with the integration of
orthogonal frequency division multiplexing (OFDM) scheme
to handle the multipath effects, the channel state information
(CSI) provides new information to estimate target locations
[13]–[19]. Today, CSI can be recorded in the studied area with
a dedicated equipment [20], [21] or specific modifications of
commercial off-the-shelf devices [22], [23]. Otherwise, CSI
could be also estimated thank to a propagation model such as
ray models but this requires a knowledge of the studied area
topology.

Associated with multiple inputs multiple outputs (MIMO)
communications, CSI based localization systems can take
advantage of the multipath effects to determine the direction
of arrivals (DoA) of each path. Assuming that the direct
path corresponds to the direction with the lowest time-of-
arrival (ToA) or the highest RSS, the anchor station is able
to estimate the target device location. Then, multiple solu-
tions emerge from this approach such as SpotFi [24] with
the implementation of multiple signal classification (MUSIC)
algorithm [25] or FILSAM [26] with the method of direction
estimation (MODE) [27]. However, this approach deals with
some drawbacks. If the system exploits the ToA metric, it
requires a robust synchronization between the anchor station
and the target device, or several available anchor stations to
calculate the time difference of arrival (TDoA) metric. If the
system exploits the RSS metric, its accuracy is deteriorated by
shadowing i.e. an obstacle between the anchor station and the
target device. Finally, the determination of DoAs requires to
know the antenna elements geometry of MIMO antennas and
a regular spacing among elements.

Another approach is the fingerprinting. It consists in build-
ing a training dataset with samples collected at different loca-
tions in a studied area. Then, the system estimates locations
according to new incoming samples thanks to the training
dataset. Obviously, the fingerprinting technique is close to
machine learning (ML) concepts and then, many researches
implement ML algorithms such as k-nearest neighbors [8], the
Naı̈ve Bayes classifier [10], [13], the support vector machine
[16] or the decision trees [28]. Nevertheless, the ML algo-
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rithms have to deal with data complexity of the selected metric.
To handle this, some solutions propose to implement spectral
methods such as principal component analysis [11]. Recently,
with high computer calculation powers, some solutions pro-
pose deep learning architectures such as the ConFi system
with a convolutional neural network (CNN) [18] or the BiLoc
system with restricted Boltzmann machine and deep belief
networks [19]. However, the proposed solutions have been
tested in only one room or with input data structure requiring
a large amount of samples which does not correspond to IoT
context.

Hence, this paper presents DelFin a new deep learning
based CSI fingerprinting indoor localization estimating target
locations with 5 GHz Wi-Fi data communications in IoT
context. This architecture is a CNN which learns the amplitude
of channel frequency responses and where the shape of input
data samples only depends on the number of radio links and
subcarriers exploited in the OFDM scheme. In this way, DelFin
is able to determine a new location with only one transmitted
data packet which saves the battery life and with only one
anchor station to respect the ambient connectivity. Many
samples have been collected at different locations according
to the fingerprinting approach in a 5-room apartment with an
outside corridor (see Fig. 1). Some of these samples used
for training DelFin have been collected at regularly spaced
locations known as training locations. Next, DelFin has been
tested with collected samples at randomly scattered locations
known as testing locations. All samples have been collected
with only one anchor station, a gateway composed of multiple
antenna elements, deployed in the experiment area. Then, the
gateway receives CSI samples transmitted by a device with one
antenna element representing a low-cost system. The device
has been set at all training and testing locations. The number
of collected samples at each location has been limited in
order to deal with fast deployments in the studied area. Data
communications use 20 MHz channel bandwidth in 5 GHz
Wi-Fi to stick with IoT context.

Compared to existing solutions, DelFin is the first CNN
trained on a limited number of samples in a purpose of fast
deployment for real use-cases and applications. Furthermore,
it is the first CNN based localization which is able to provide
a location estimation with one-shot transmission. DelFin has
been also the first to be tested in a multi-room indoor environ-
ment with different spatial distributions of training locations
in the studied area. Finally, DelFin is the first deep learning
architecture based indoor localization designed for respecting
the ambient connectivity, a branch of IoT paradigm.

II. CSI METRIC AND DATASETS COLLECTION

This section presents the CSI metric extracted by our
channel sounding equipment and the datasets collection in the
studied area.

A. Channel State Information

Received signal strength (RSS) is globally exploited by in-
door localization systems because of its native implementation

in the medium access control (MAC) layer of any wireless
devices to evaluate the quality of service. However, this metric
requires multiple anchor stations to have an unique location
estimation and it suffers from shadowing and multipath effects.
To handle the multipath effect, the OFDM scheme has been
introduced in many wireless communication standards such as
the IEEE 802.11 a/g/n/ac/ax standards. This scheme gives ac-
cess to the CSI metric which consists in dividing the frequency
bandwidth into sub-elements called subcarriers. Despite of this
scheme, a localization based on a single anchor station is
still restrained by the propagation phenomenon. However, the
MIMO communication becomes more and more ubiquitous
which sticks with the ambient connectivity. Then, an unique
wireless system with multiple antenna elements may provide
locations of connected devices in a target area depending
on the antenna elements geometry. Then, in the frequency
domain, the CSI metric called the channel frequency response
(CFR) can be mathematically represented for a MIMO-OFDM
communication with R receiving antenna elements, S subcar-
riers and T transmitting antenna elements as follows:

hr,s,t = |hr,s,t|ej∠hr,s,t (1)

where r ∈ [1, . . . , R], s ∈ [1, . . . , S] and t ∈ [1, . . . , T ].
Unfortunately, wireless communication systems do not pro-

vide natively the CFR data. Then, some free-access solutions
have been proposed such as Linux CSI Tool [23] or Atheros
CSI extraction tool [22]. For our testbed, CFR data have then
been collected with a channel sounder [20] due to its flexible
parametrization. The CFR samples have been recorded on 20
MHz bandwidth i.e. 56 subcarriers with a central frequency at
5.2 GHz in order to avoid interferences from other equipment.
This technical specification sticks with IoT context and our
solutions could be compared with existing solutions based on
IEEE 802.11 standard.

The channel sounder includes one receiver and one trans-
mitter to estimate CFR data. Here, the receiver was the unique
anchor station in studied area and corresponds to a gateway
with multiple antenna elements. Its antenna elements geometry
corresponds to an uniform linear array. The transmitter has
been designed to be equivalent to a low-cost and low-energy
target device with one antenna element. Then, the input data
sample is a CFR data tensor where the three dimensions are
respectively limited by the number of antenna elements at the
gateway, the number of subcarriers and the number of antenna
elements at the target device. Finally, DelFin processed only
the amplitude of CFR data. Mathematically, the input data of
our deep learning solution can be written as bellow:

Hinput =

|h1,1,1| · · · |h1,56,1|...
. . .

...
|h8,1,1| · · · |h8,56,1|

 . (2)

B. Datasets collection

Our experiment took place in a 5-room apartment with an
outside corridor representing a domestic environment. To be as
close as possible to a real life situation, electronic devices and
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furnitures have been installed in the studied area. Then, the
fingerprinting approach consists in collecting data samples at
different locations known as training locations and estimating
locations according to new incoming data samples. To evaluate
the system performance, the fingerprinting approach defines
some testing locations which do not correspond to training
locations. The training locations in fingerprinting technique are
often placed on the nodes of a regular mesh grid of the studied
area whereas the testing locations are randomly scattered
between the training locations. Fig. 1 presents the training
locations in blue marks and the testing locations in red marks.
The yellow star refers to the anchor station location according
to a specific use case in 5G networks, the fixed wireless
technology [5]. Hence, the receiver of our channel sounder,
the gateway has been set to this location. The transmitter, the
target device has been set at all training and testing locations.
The height and orientations of transmitter and receiver did
not change during the data acquisition and remained the same
for all locations to study only a two-dimensional localization.
In our experiment, the testbed is composed of 108 training
locations and 14 testing locations.

The samples at training locations have been collected in two
different scenarios. The first scenario considers non-moving
transmitter and receiver that are in a non-varying propagation
medium i.e. no moving people and no modification of the area
topology. The second scenario conserves a non-varying prop-
agation medium but the transmitter is slightly moved around
the location defined as a central location. Both scenarios have
been selected for training samples because a technical team
can easily reproduce these scenarios in an on-site survey.
Furthermore, these samples can be generated thanks to a radio-
propagation simulator. 20 samples per training location have
been collected for both scenarios. Then, the resulting training
dataset is composed of 4,320 samples with their associated
2D Cartesian coordinates. For the testing dataset, 80 samples
per testing location have been collected in a specific scenario.
In this case, both transmitter and receiver are stationary as
previously but the propagation medium is varying i.e. there
are moving people and area topography modifications. The
number of moving people was up to 3 and the topography
modifications consisted in sliding some furnitures and swing-
ing doors. Finally, the testing dataset samples collected in the
14 testing locations are composed of 1,120 samples.

III. DEEP LEARNING ARCHITECTURE

This section highlights the deep learning architecture,
DelFin which learns the amplitude of CFR samples associ-
ated with the two dimensional Cartesian coordinates. This
architecture is based on convolutional neural networks [29]
combining 4-steps convolutional layers and fully-connected
layers. Input data are a tensor H ∈ RR×S×T according to
the representation in Section II. The bias and regularization
variables are omitted in the presentation because our solution
does not implement these parameters.

Fig. 1. Experiment area.

A. 4-step convolutional layers

A 4-step convolutional (SCNN) layer implemented in
DelFin is consecutively composed of: a zero-padding, a con-
volutional step, an activation function and a max-pooling. At
the end of our 4-step convolutional layer, a dropout is applied
to regularize the learning process in order to avoid a possible
overfitting of the training dataset.

First of all, the zero-padding step is an artificial processing
to extend the input tensor size by adding zero elements at
different dimensions before the convolutional step. In DelFin,
the zero-padding adds zeros in the first two dimensions of the
tensor H . Then, if (Z1, Z2) are respectively the number of
added zeros in the first two dimensions, the resulting tensor is
Hpad = (hpadr,s,t) ∈ R(R+Z1)×(S+Z2)×T .

Next, the convolutional step is applied to the resulting
tensor. This consists in defining the number and size of
convolutional kernels, and the strides i.e. how to slide the
convolutional kernel along the first two dimensions of the input
tensor. Mathematically, let K be the number of convolutional
kernels, Wk = (wku1,u2,t) ∈ RU1×U2×T the k-th convolutional
kernel where (U1, U2) ∈ N2 is the size of all convolutional
kernels, and (a1, a2) ∈ N2 the strides of convolutional kernels
respectively along the first and second dimension, then the
output of convolutional operation can be written as follows:

hconvrc,sc,k =

T∑
t=1

U1∑
u1=1

U2∑
u2=1

wku1,u2,th
pad
a1βc+u1,a2ωc+u2,t

(3)

with βc = rc − 1 and ωc = sc − 1, and where
rc ∈ [1, 2, . . . , Rconv], sc ∈ [1, 2, . . . , Sconv], k ∈
[1, 2, . . . ,K], Rconv = floor(R+Z1−U1

a1
) + 1 and Sconv =

floor(S+Z2−U2

a2
) + 1.

Hence, the convolution step builds a new tensor Hconv =
(hconvrc,sc,k

) ∈ RRconv×Sconv×K . This tensor is then processed
by an activation function. DelFin implements the scaled ex-
ponential linear unit (sELU) activation function introduced
in self-normalizing neural networks [30]. Contrary to other
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activation functions, sELU does not require a specific batch
normalization and has some complementary properties such
as training deep architectures with many layers, implementing
complex regularizations and learning with a strong robustness.
Then, the sELU activation result of each tensor element is
calculated as follows:

hconv.actrc,sc,k = λ

{
hconvrc,sc,k

if hconvrc,sc,k
> 0

α(eh
conv
rc,sc,k − 1) if hconvrc,sc,k

≤ 0
(4)

with λ = 1.0507 and α = 1.6733.
After being processed element by element in the activation

function step, the new tensor Hconv.act = (hconv.actrc,sc,k
) ∈

RTconv×Sconv×K becomes the input of max-pooling step. This
step consists in extracting the highest value in a window
sliding with strides along the dimensions of Hconv.act. Math-
ematically, let (V1, V2) ∈ N2 be the size of the max-pooling
window and (b1, b2) ∈ N2 the strides of max-pooling window,
an output of the max-pooling step can be written as follows:

houtputrmp,smp,k
=

V1
max
v1=1

V2
max
v2=1

(hconv.actb1βmp+v1,b1ωmp+v2,k) (5)

with k ∈ [1, 2, . . . ,K], βpm = rmp − 1 and ωpm =
smp − 1 and where rmp ∈ [1, 2, . . . , Rmaxp], smp ∈
[1, 2, . . . , Smaxp], Tmaxp = floor( (Tconv−V1)

b1
) + 1 and

Smaxp = floor( (Sconv−V2)
b2

) + 1.
Those outputs built a new tensor and a dropout is applied

to this one i.e. some of its elements are randomly set to
zero. Then, the SCNN layer is repeated according to the
user specifications or to reach a specific data structure before
applying the full-connected layers.

B. Full-connected layers

Classically, the last part of CNN is one or several fully-
connected (FC) layers and takes as input data the output
tensor of the last SCNN layer. Its structure depends on the
activation function, the weight of connections and the neurons
number per layer. Let L1 and L2 be two neurons layers where
the neurons of L1 are fully-connected to neurons of L2 and
(NL1

, NL2
) ∈ N2 are respectively the number of neurons in

layer L1 and in layer L2. If (yn1
, wn2

n1
) ∈ R2 are respectively

the output value of the n1-th neuron of layer L1 and the weight
of connection with the n2-th neuron at the layer L2, the input
value of the n2-th neuron is calculated as follows:

xn2
=

NL1∑
n1=1

wn2
n1
yn1

(6)

where n2 ∈ [1, . . . , NL2
].

Then, this value is evaluated by a sigmoid activation func-
tion. Finally, the outputs of sigmoid function are randomly set
to zero by a dropout procedure before being processed by the
next FC layer.

C. DelFin architecture

DelFin architecture mixes three SCNN layers and three FC
layers. In DelFin, the zero-padding step in SCNN layers has
been defined in order to preserve the first two dimensions

TABLE I. DelFin architecture
.

High-level
Layer Sub-layers Parameters

Input H ∈ RR×S×T

ZeroPadding2D (Z1,Z2)1=(2,2)

Conv2D K1=32, (U1, U2)1=(3,3),
(a1, a2)1=(1,1)

SCNN #1 act=’sELU’
MaxPooling2D (V1, V2)1=(2,4), (b1, b2)1=(2,4)

Dropout 25%
ZeroPadding2D (Z1,Z2)2=(2,2)

Conv2D K2=32, (U1, U2)2=(3,3),
(a1, a2)2=(1,1)

SCNN #2 act=’sELU’
MaxPooling2D (V1, V2)2=(2,4), (b1, b2)2=(2,4)

Dropout 25%
ZeroPadding2D (Z1,Z2)3=(2,2)

Conv2D K3=32, (U1, U2)3=(3,3),
(a1, a2)3=(1,1)

SCNN #3 act=’sELU’
MaxPooling2D (V1, V2)3=(2,2), (b1, b2)3=(2,2)

Dropout 25%
FC #1 Dense N1=64, act1=’sigmoid’

Dropout 50%
FC #2 Dense N2=64, act2=’sigmoid’

Dropout 50%
Output Dense Nout=2, actout=Identity

which may be reduced after applying the convolutional step
[31]. Then, if the first two dimensions of convolutional kernels
are odds, the procedure requires to add Z1 = 2floor(U1

2 )
to the first dimension and Z2 = 2floor(U2

2 ) to the second
dimension of the input tensor. As the first two dimensions
is equivalent to an image, the zero-padding tries to add an
equivalent number of zeros on the left, right, top and bottom
of the image.

DelFin implements also SCNN layers in order to reduce the
input data complexity i.e. determining some relevant features
before applying the fully-connected layers. Hence, the first
two dimensions defined by the shape of H decrease in the
depth of our CNN architecture until reaching a specific value
similar to visual geometry group (VGG) like neural network
[32]. This value is identical for both dimensions and is equal
to 1. The resulting tensor of the three SCNN layers becomes
a features vector and its length is equal to the number of
convolutional kernels defined in the last SCNN layer. To obtain
this and because of the zero-padding procedure before the
convolutional step, DelFin ensures the complexity reduction
procedure by defining specific window sizes and strides in
each max-pooling step.

To learn the CFR input data space, DelFin minimizes mean
squared errors between the coordinates of training locations
and the estimated ones provided by the last FC layer of
DelFin. The minimization procedure is performed with the
adaptive moment estimation (Adam) algorithm and the back-
propagation operation to adjust the weights value. Adam is
well-suited for data with many parameters and DelFin sets the
parameters such as provided in the original paper [33]. Table I
presents an example of parameters configuration for DelFin
where the ones in bold are permanent in our deep learning
architecture.
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Finally, because of the multiple parameters, the noise in-
troduced by the dropouts and the convergence time, selecting
an optimal solution of network weights and defining a stop
criteria for the training step are huge challenges in machine
learning and depend on the problem. Then, we define the
following metric to select the optimal solution:

M =
C1P50% + C2P90% + C3P99% + C4Ploss

C1 + C2 + C3 + C4
(7)

where P50%, P90%, P99% are respectively median, 9-quantile
and 99-percentile localization errors calculated by DelFin
thanks to the testing dataset, C1, C2, C3, C4 are user-defined
weights and Ploss is the mean location estimation error on
the training dataset. In DelFin, we have set C1 = 0.75, C2 =
1, C3 = 0.25 and C4 = 1 in order to save models which
fit well the training dataset and have a good generalization
performance of localization. Then, this metric is calculated
for each epoch i.e. when DelFin learns entirely the training
dataset decomposed in several batches of 240 samples. Finally,
the DelFin weights are saved as optimal solution when M
is minimal. M has been considered as the lowest value if
no lower value of M was found after 4[KT + NT ] epoch
iterations, a heuristic limit to end the learning procedure where
KT = K1+K2+K3 and NT = N1+N2 according to Table I.

IV. RESULTS AND DISCUSSIONS

This section discusses some results and architecture issues
of DelFin with the CFR training and testing datasets collected
in our environment presented in Section II. The Keras library
with a TensorFlow 1.5 back-end has been selected to imple-
ment DelFin in Python 3.6. The training and testing phase
have been supported by a NVIDIA Quadro P5000 with CUDA
Toolkit 9.1 and cuDNN 7.1.

A. Analysis of DelFin configurations

This part highlights the variations of some parameters
according to the permanent settings presented in Table I.
These parameters are the number and size of convolu-
tional kernels and the quantity of neurons in the first
two FC layers. To ease our analyzes, we only consider
architectures where the number and size of convolutional
layers and the number of neurons are respectively the
same among SCNN and FC layers i.e. K1=K2=K3=K,
(U1, U2)1=(U1, U2)2=(U1, U2)3=(U1, U2) and N1=N2=N .

1) Number of neurons in FC layers: We analyze here
DelFin performances when the number of neurons in the first
two FC layers varies with K=32 and (U1, U2)=(3,3). Table II
gathers P50%, P90%, P99%, Ploss and M results in meter for
different configurations. The last column corresponds to the
required time to find the optimal solution of DelFin.

First of all, Table II shows that the time needed to find a
solution with our heuristic criteria does not have a particular
trend. We can notice when the number of neurons increases
in FC layers the mean error Ploss and the median error P50%

decrease. This means that the number of neurons in FC layers
is essential to learn efficiently the training dataset with a good

median generalization of our localization issue. However, the
extreme values such as shown by P99% remain difficult to
handle with DelFin.

To put forward this, Table III gathers P50%, P90%, P99%,
Ploss and M results in meters for K=128 and (U1, U2)=(3,3).
The results confirm the first observations based on the previous
table. However, P50% does not decrease when N increases
which means that the median generalization of our localization
issue seems to be linked to SCNN layers. According to the last
two rows, the mean error on training dataset reaches a limit
when the number of neurons is above 1,024 per FC layer.
TA large number of neurons in FC layer is required so that
DelFin fits well the training dataset according to the number
of convolutional kernels.

2) Convolutional kernel number: This part analyzes the
impact of convolutional kernels number on the DelFin ar-
chitecture. To do this, the number of neurons in FC layers
has been set to 1,024 and the size of convolutional kernels is
(U1, U2)=(3,3). Table IV presents the results of P50%, P90%,
P99%, Ploss and M with different SCNN layers.

From Table IV, we can observe that the number of kernels in
SCNN layers is also a parameter to fit well the training dataset.
However, this parameter does not particularly influence the
estimation of testing locations.

3) Convolutional kernel size: In this point, we modify
identically the first two dimensions of convolutional kernels
in all SCNN layers and keep K=128 and N=1024. Table V
summarizes P50%, P90%, P99%, Ploss and M of different
tested configurations.

The size of convolutional kernels does not influence the
training error but may affect slightly the performances on

TABLE II. Variations of FC layers neurons with K=32 and (U1, U2)=(3,3)
where P50%, P90%, P99%, Ploss and M are in meters

.

N P50% P90% P99% Ploss M Time
32 1.97 4.18 7.35 1.44 2.98 1:36:04
64 1.91 4.13 5.83 1.02 2.68 1:40:45
128 1.58 4.20 6.19 0.91 2.61 2:32:15
256 1.42 4.63 6.19 0.79 2.68 2:06:59
512 1.42 3.97 7.29 0.75 2.53 1:33:31

TABLE III. Variations of FC layers neurons with K=128 and
(U1, U2)=(3,3) where P50%, P90%, P99%, Ploss and M are in
meters

.

N P50% P90% P99% Ploss M Time
128 1.57 4.94 7.70 0.40 2.81 2:47:05
256 1.33 4.65 7.79 0.26 2.62 4:35:50
512 1.45 4.48 7.29 0.25 2.54 1:16:41

1024 1.55 4.36 7.21 0.14 2.5 4:55:32
2048 1.60 4.55 7.50 0.16 2.59 1:36:37

TABLE IV. Variations of kernels number in SCNN layers with
(U1, U2)=(3,3) and N=1024 where P50%, P90%, P99%, Ploss and M are
in meters

.

K P50% P90% P99% Ploss M
32 1.42 3.97 7.29 0.75 2.53
64 1.32 4.48 7.88 0.36 2.60

128 1.45 4.48 7.29 0.25 2.54
256 1.76 4.26 7.40 0.20 2.54
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TABLE V. Variations of squared convolutional kernel size with K=128 and
N=1024 where P50%, P90%, P99%, Ploss and M are in meters

.

(U1, U2) P50% P90% P99% Ploss M
(3,3) 1.55 4.36 7.21 0.14 2.5
(5,5) 1.83 4.8 7.56 0.08 2.7
(7,7) 1.58 4.95 7.77 0.1 2.57

TABLE VI. Variations of non-squared convolutional kernel size with K=128
and N=1024 where P50%, P90%, P99%, Ploss and M are in meters

.

(U1, U2) P50% P90% P99% Ploss M
(3,3) 1.55 4.36 7.21 0.14 2.5
(3,7) 1.55 4.39 7.33 0.15 2.51
(7,3) 1.39 4.29 7.45 0.12 2.44

Fig. 2. Comparison of different localization solutions with DelFin in IoT
context.

testing data. P90% is equal to 4.8 and 4.95 meters when the
first and second dimension of kernels are equal to 5 and 7
respectively. We pushed forward the analysis with non-squared
convolutional kernels in Table VI according to our previous
results.

We can observe that when the convolutional kernels have
a same or larger first dimension than the second one, the
estimation based on the testing dataset is slightly improved by
DelFin. Furthermore, the mean error on the training dataset is
independent of this parameter. This last part of our analysis
about DelFin configurations allows us to select the best
number and size of convolutional kernels with the best number
of neurons in FC layers for further comparisons.

B. Short comparison with some existing solutions

In this second part, DelFin is associated with the archi-
tecture performing the lowest M value i.e. K1=K2=K3=128,
(U1, U2)=(7,3) and N=1024. Then, DelFin is compared to
3 other methods which may correspond to the IoT context
and ambient connectivity perspective based on the amplitude
of CFR data. The first method is the FIFS method [13],
one of the first fingerprinting localization with CFR data.
The second methods implements a multi-layer perceptron
(MLP) algorithm with two hidden layers of 1024 neurons. The
last method implements a method known as Kernel Entropy
Component Analysis (KECA) [34] to reduce the CFR data

to relevant features on which is carried out a classification
with a NB classifier. Fig. 2 presents the cumulative distribution
function associated with the localization errors from the testing
dataset.

The results show that DelFin outperforms the other imple-
mented methods where P50% is decreased by 41%, 42% and
50% compared with MLP, FIFS and KECA, respectively. In
the management of outliers, DelFin decreases P90% by 10%,
20% and 41% compared with KECA, MLP and FIFS, respec-
tively. This comparison shows that deep learning structure is
efficient for fingerprinting approach and can achieve better
performances. However, 10% of samples have a localization
error above 4 meters which is not enough accurate compared
to the size of the studied area.

Fig. 3 presents the localization error from testing dataset
where the green arrows indicate the mean estimation of each
testing location with DelFin. Then, some estimations are quite
far away from the true location which can not be tolerated by
some location-based services.

C. Tests with new spatial distributions of training locations

Here, DelFin is trained using new spatial distributions of
training locations in the studied area. Fig. 4 displays a new
distribution of regularly spaced training locations (TL-Half)
and Fig. 5 proposes the followed path for recording CSI data
which is equivalent to a passive data collection (TL-Path).
Then, the localization performances of the tested methods
and DelFin are presented in Fig. 6 and Fig. 7. Fig. 6 shows
that DelFin still outperforms the other tested methods in this
distribution of training locations but with a slight reduction
of localization accuracy. This result allows to fasten the
deployment of fingerprinting solutions based on an on-the-
ground data collection by selecting the spatial distribution of
training locations based on TL-Half. In Fig. 7, DelFin does
not provide the best results of localization for a large number
of testing locations. This proves that DelFin architecture
with the selected parameters faces some limitations with

Fig. 3. Mean localization estimation of testing locations.
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Fig. 4. New training locations regularly spaced in the experiment area.

Fig. 5. Training locations following a path in the experiment area.

TL-Path. Thus, we have modified the convolutional kernels
size according to (U1, U2)=(3,3) and we plotted in Fig. 7
the result of localization performance (DelFin2). With this
slight modification, DelFin performs better than all other
tested methods. Then, a preliminary study such as provided
in Section IV-A is required to set the parameters to DelFin
which provides the best localization results.

V. CONCLUSION

DelFin is a new solution of deep learning based CSI
fingerprinting indoor localization in IoT context with a single
anchor gateway and single data packet exchange. Our solution
has been tested in a 5-room apartment with an outside corridor
and many furnitures. This is also a typical use cases of resi-
dential or small office environment. The architecture of DelFin
based on convolutional neural networks has been evaluated
by modifying the number of convolutional kernels, their sizes
and the number of neurons in full-connected layers. With an

Fig. 6. Localization accuracy of tested methods with TL-Half.

Fig. 7. Localization accuracy of tested methods with TL-Path.

heuristic criteria to select the optimal parameters, the analysis
puts forward the number of convolutional kernels and neurons
in full-connected layers to be well-defined to fit properly the
training dataset. An essential result is that the localization
based on a testing dataset does not vary among well-fitted
DelFin architectures. Finally, DelFin has been compared to
other methods which respects the IoT context. Our solution
outperformed the others by decreasing the median and 9-
quantile localization errors up to 50% and 47% respectively.
However, when the training locations describe a tracking path
in the studied area, DelFin has performances only slightly
better than the tested methods. Furthermore, a preliminary of
DelFin parameters in this situation is required to provide the
best localization performance. Then, the parameters selection
of deep learning architecture such as DelFin is also extremely
dependent on the distribution of training locations in the field.

In future works, DelFin will be evaluated using other
data collection scenarios for training and testing datasets,
with different locations of our anchor station and in new
environments such as a large office. The metric to select the
best weights configuration for DelFin will be also evaluated
through different distributions of training locations in the stud-
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ied area. DelFin will be also modified to integrate the phase
of channel state information and tested with other parameter
configurations and learning procedure. Finally, DelFin will be
extended to three-dimensional localization.
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