
Genetic algorithm to optimize unloading of large containers vessel in
port of Tripoli-Lebanon

A. SKAF1,2, S. LAMROUS1, Z. HAMMOUDAN2, M.-A. MANIER1

1 Univ. Bourgogne Franche-Comté, FEMTO-ST Institute/CNRS, (UTBM), Belfort, 90010, France
2 Univ. Libano-Française (ULF), Tripoli, Lebanon

(ali.skaf@utbm.fr, sid.lamrous@utbm.fr, zakaria.hammoudan@gmail.com, marie-ange.manier@utbm.fr)

Abstract— The quay crane scheduling problem (QCSP) in
the lebanese port (Tripoli) is discussed in this study. It consists
in assigning each crane to a set of bays for a given vessel,
while sequencing the unloading of these bays. In a previous
study, we discussed two exacts methods whose main drawback
is the difficulty to obtain results for large instances. That’s
why, we propose a genetic algorithm which enables us to
overcome this and to get quickly near optimal solutions. We
have tested and validated our method on real instances from
the port of Tripoli.

Keywords – optimization, quay crane, scheduling problem,
genetic algorithm, case study

I. INTRODUCTION AND RELATED WORK

Port of Tripoli is the second port in Lebanon, it receives
about 400 ships every year and has only two quay cranes.
In 2018 for the first time, the port receive big containers
vessels loaded by more than 2000 containers. Quay cranes
serve to unload or load containers from the vessel to the
store or to the trucks. Like the other ports, one of the
challenges in the port of Tripoli-Lebanon is to address the
Quay Crane Scheduling Problem (QCSP), subject to non-
interference constraints for the quay cranes, assignments
conditions with bays, and positioning problem. Fig.1 is an
illustration of the quay cranes and the containers while Fig.2
is an illustration of the containers vessels and quay cranes
assignment.
In a previous study, we proposed exact methods to solve
the QCSP with non-interference constraints in the port of
Tripoli-Lebanon. But solving large instances spends long
execution times and reaches the out of memory exception.
So the objective of this paper is to reduce the execution time
by using a metaheuristic approach.
Several researchers addressed the QCSP in the literature. [8]
Moghaddam et al. (2008) presented a novel, mixed integer
programming (MIP) model for the quay crane scheduling
and assignment problem, after that [11] Wang et al. (2009)
determined the sequence of unloading operation, with the
objective to minimize the weighted operation time of jobs
and travel time.
[4] Chung et al. (2012) proposed a modified genetic algo-
rithm to deal with the problem and to test the optimization
reliability of the proposed algorithm. A set of well-known
benchmarking problems was solved, meanwhile [13] Yi et al.
(2012) aimed to minimize the total handle time of all tasks,

using a polynomial time algorithm to solve the problem.
[3] Azza et al. (2014) founded the handling sequence of
tasks at ship; their objective is to minimize the time spent
by the vessel at berth and minimize the total cost. Mixed-
integer linear programming and ant colony algorithm were
used in the previous papers to solve the problem. [6] Liu
et al. (2015) proposed models and algorithm for the gen-
eral double-cycling problem with internal-reshuffles, where
reshuffle containers are allowed to move directly from one
stack to another. A branch-and-price framework is used to
solve the problem.
[7] Liu et al. (2016) studied a scheduling problem with
two uniform quay cranes; their objective was to minimize
the turn-around time of a vessel, then [1] Alnaqbi et al.
(2016) aimed to minimize the latest starting time for the
vessel and its handling time. They used Mixed-integer linear
programming and hybrid algorithm to solve the problem,
meanwhile [2] Awar et al. (2016) proposed a solution to
minimize the entire processing time for all vessels, mixed-
integer linear algorithm is used to solve the problem.
[5] Haoyuan et al. (2017) proposed a simulation model of
container terminal, in order to solve its quay crane scheduling
problem, with the objective to optimize the shortest total
delay time for all vessels, [9] Salhi et al. (2017) elaborated
a model that combines three distinct problems, namely berth
allocation, quay crane assignment, and quay crane scheduling
that arises in container ports, genetic algorithm was devel-
oped to solve the problem and finally, [12] Xiazhong et al.
(2017) aimed to find the optimal storage location of container
groups while minimizing both the maximum completion time
and the traveling time of trucks. They used mixed-integer
linear programming and tabu search to solve the problem.
This brief review suggests that methods such as genetic
algorithms are adapted to solve the Quay Crane Scheduling
Problem (QCSP).
In the previous work, [10] Skaf et al. (2018) created a mixed-
integer programming (MILP) model solved with CPLEX,
and a dynamic programming (DP) algorithm to solve the
addressed problem. Our dynamic programming algorithm
finds all possible choices for the quay cranes-bays assign-
ment while taking into consideration the non-interference
constraints between quay cranes. It allows to find the optimal
completion time for a containers vessel. We observed that
dynamic programming provided better results than MILP in
terms of CPU time and completion time for large number

of bays. Nevertheless, the inconvenient of the DP is that
for larger instances, per example for 40 bays, it may takes
5 hours to give a result. For such instances, we propose
in this paper a genetic algorithm to obtain optimal or near
optimal results with a quick execution time, for the quay
cranes scheduling problem without cranes crossing.
Later on in this paper, section 2 proposes a mathematical for-
mulation (MILP). Section 3 provides a detailed explanation
of the genetic algorithm, section 4 provides the experimental
results obtained with this one, that we compare with the
dynamic programming results. Finally, section 5 gives a
conclusion and some perspectives.

Fig. 1. Quay cranes and containers

Fig. 2. Containers vessel

II. MATHEMATICAL FORMULATION

A. Assumptions

The quay crane problem we have studied has the following
characteristics: containers unloading is in a single vessel,
all quay cranes move on the same track and need to work
without any interference between them. A crane is assigned
to a single bay at a time and it cannot work in another bay
until it completes unloading containers in the current bay
(no preemption). Finally, each bay is handled by at most one
quay crane at a time. In this study, the quay cranes travel
time between bays is ignored as it is very short compared to
the unloading times.

B. Notations

Q : number of quay cranes
i : index for quay crane (i=1 to Q)
B : number of bays
j : index for bay (j=1 to B)
C j : number of containers in bay j

Tc : time to unload a container by a quay crane and put
it in the storage. It is supposed to be the same for all
containers in all bays.
M : big integer

C. Decision variables

x(j,i) = 1 if bay j is handled by quay crane i
= 0 otherwise

z(j, j′) = 1 if the unloading of bay j finishes before
starting to unload bay j’

= 0 otherwise

t j completion time of bay j

Cmax makespan

D. Modeling
The following is the mixed integer linear formulation

we have presented in a previous work ([10] Skaf et al.
(2018)). Here we use some of those equations in the fitness
calculation of the genetic algorithm which we will talk
about later.

Objective
Minimize Cmax (1)

Subject to
Q

∑
i=1

x(j,i) = 1 ∀ j ∈ B (2)

t j ≥ (T c∗C j) ∀ j ∈ B (3)

t j− t j′ +(T c∗C j′)+ z(j, j′) ∗M > 0 ∀ j, j′ ∈ B (4)

t j− t j′ +(T c∗C j′)− (1− z(j, j′))∗M ≤ 0 ∀ j, j′ ∈ B (5)

Q

∑
i=1

i∗ x(j,i)+1≤
Q

∑
i′=1

i′ ∗ x(j′,i′)+(z(j, j′)+ z(j′, j))∗M

∀ j, j′ ∈ B, j < j′ (6)

Cmax = max
j

t j (7)

x(j,i) = [0,1] ∀ j ∈ B,∀i ∈ Q (8)

z(j, j′) = [0,1] ∀ j, j′ ∈ B, j < j′ (9)

Equation (1) is the objective function which serves to
minimize the latest completion time among all bays.
Constraint (2) ensures that every bay must be handled
only by one quay crane. Constraint (3) ensures that the
completion time is bigger than the working time in each
bay (Working time = number of containers * time needed to
unload a container and store it). Constraint (4) shows when
bay j finishes before bay j’ starts and constraint (5) shows
the opposite. Constraint (6) avoid the interference between
the quay cranes and finally constraint(7) defines the Cmax
value.

III. GENETIC ALGORITHM

Due to the difficulty to solve large instances, we propose
in this work a genetic algorithm (GA). A genetic algorithm
(GA) is a heuristic search algorithm that was first proposed
by [Holland, 1975] and developed and applied by [Goldberg,
1989]. It can be easily coded and often gives good solutions.
Roulette wheel selection, order crossover and swap mutation
are used due to their results efficacy.
The steps of the genetic algorithm are provided as follows :
first we generate an initial population of solutions, then for
all generations we should make a test about non-interference
constraints of quay cranes in other words we want to know if
quay cranes work without crossing. If yes, we calculate the
fitness value, otherwise we set the fitness value zero. After
that, if the current generation is the last one, then the program
is ended, otherwise we should execute the genetic algorithms
steps such as roulette wheel selection, order crossover and
swap mutation.

A. Chromosome representation

In a genetic algorithm, a solution is called a chromosome.
In our case, it is composed of series of bays. Table I provides
a chromosome and the bay number represents a gene.

TABLE I
CHROMOSOME REPRESENTATION

6 9 1 10 3 8 7 2 4 5

For example, the second element (second gene) in the
chromosome represents the bay number 9.

B. Assignment of initial positions for quay cranes

We propose to fix the initial position of each quay crane i
to the position of bay 1+(i-1)*D, (i ∈ Q) with D is a random
integer between 1 and B/Q (if B/Q is a rational number, we
take its natural part number). It allows a homogeneous initial
distribution of the cranes along the vessel.
Let us note that with this formula, the first quay crane
position should always be at the first bay.
Example: Let us suppose that we have 10 bays and 3 quay
cranes, then D should be a random number between 1 and
10/3 (hence between 1 and 3). If D=3, then the main position
of quay crane 1 is on bay 1, quay crane 2 is on bay 4 and
quay crane 3 is on bay 7.

C. The scheduling of quay cranes

The quay crane scheduling works as explained in
Algorithm 1. After determining the initial positions of
the cranes, the bays are assigned to the cranes. We use a
sequential procedure which considers the bays in the order
of these ones in the associated chromosome.
The four following main steps are distinguished. For each
one we illustrate it with the previous numerical example
(with the given chromosome and the initial position
assignment) with 3 quay cranes and 10 bays.

Algorithm 1 Quay cranes scheduling
if QC nb = 1 then

QC ← bay j;
bay j←−1;
j ← j+1;
CPQC←CPQC + tbay j ;

end
else

if CPQCi Not in {CPQC}/CPQCi then
CPQCi = Min{CPQC};
bay j←−1;
j = Next bay Index({bay});
CPQCi ←CPQCi + tbay j ;

end
else

if ∆(bay)> 0 then
QCi← bay j with shorter distance;
bay j←−1;
j = Next bay Index({bay});
CPQCi ←CPQCi + tbay j ;

end
end
else

QCi← bay j with smaller index number;
bay j←−1;
j = Min bay Index({bay j});
CPQCi ←CPQCi + tbay j ;

end
end
QC : Quay crane, CPQC : completion time of the quay crane
tbay j : time that quay crane took to finish working in bay j
∆ = |bayi−bayk|
Next bay Index{bay} : function to get the next bay
Min bay Index{bay} : function to get the smaller bay number

In this example, the main completion time of the three
quay cranes is initialized to 0, because no unloading
operation has been performed until now (iteration init in
Table II).
In the chromosome, we consider the current bay (current
gene) which corresponds to an unassigned bay, and we
assign it to a crane. For example, let us take the first gene
of the chromosome (bay 6), and we suppose the processing
time for all bays is 10.
1. Non-Crossing : The first step is a test of interference
which identifies the two cranes which are candidate to
unload the bay in the current gene, i.e. we keep the cranes
whose last position is immediatly at the left or at the right
of this current bay. For our example, quay crane 2 and quay
crane 3 can handle bay 6 without interference with quay
crane 1.
2. Makespan : Among these two cranes, we choose the one
which is available sooner. In case of equality, that means
if the two cranes have the same completion time, then we
go to step 3 to discriminate them according to a distance
criterion. In our example, the completion times of quay
crane 2 and quay crane 3 are equal.

3. Distance : If no crane has been chosen in step 2 with
the time criterion, we assign the current bay to the nearest
crane. In case of equality (if the two cranes are at equal
distance from the bay), we choose the crane at the left
(with the smallest index). The distance between bay 6 and
bay 4 (which quay crane 2 works inside) is 1 bay and the
distance between bay 6 and bay 7 (which quay crane 3
works inside), is 0 bay. Then crane 3 is nearer from bay 6
than crane 2.
4. Assignement : Assign bay 6 to quay crane 3. Update
the position of quay crane 3 and the associated completion
time (see iteration 1 in Table II). Then update the current
gene (following one) in the chromosome (gene 2 then bay
9 in our example). Repeat the four steps until all bays are
assigned to one quay crane.

TABLE II
DETAILED EXAMPLE

Iteration QC1 QC2 QC3

init
bay position 1 4 7

partial scheduling /0 /0 /0
completion time 0 0 0

1
bay position 1 4 6

partial scheduling /0 /0 6
completion time 0 0 10

2
bay position 1 4 9

partial scheduling /0 /0 6, 9
completion time 0 0 20

3
bay position 1 4 9

partial scheduling 1 /0 6, 9
completion time 10 0 20

4
bay position 1 4 10

partial scheduling 1 /0 6, 9, 10
completion time 10 0 30

5
bay position 1 3 10

partial scheduling 1 3 6, 9, 10
completion time 10 10 30

6
bay position 1 8 10

partial scheduling 1 3, 8 6, 9, 10
completion time 10 20 30

7
bay position 7 8 10

partial scheduling 1, 7 3, 8 6, 9, 10
completion time 20 20 30

8
bay position 2 8 10

partial scheduling 1, 7, 2 3, 8 6, 9, 10
completion time 30 20 30

9
bay position 2 4 10

partial scheduling 1, 7, 2 3, 8, 4 6, 9, 10
completion time 30 30 30

10
bay position 2 5 10

completed scheduling 1, 7, 2 3, 8, 4, 5 6, 9, 10
completion time 30 40 30

D. Fitness

The previous procedure prevents the interference between
quay cranes, but nevertheless all quay cranes must be
checked if they satisfy the constraints or no. Constraints (4)
and (5) can be used and then the quay crane scheduling can
be checked if it satisfies (6), if yes then the fitness is as
shown in Eq.(10) else it will be set to zero.

Fitness = 1/Cmax (10)

E. Roulette wheel selection

Selection is a process in which individuals from a popula-
tion are chosen according to the values of their cost or ”fit-
ness” function to form a new population. Individuals evolve
through successive iterations of selection, called generations.
Each individual is selected proportionally to their ”fitness”
function, so an individual with a higher fitness function will
be more likely to be selected than another with a lower fitness
value. This function can be considered as a measure of profit
or quality that one wishes to maximize. A simple operator
of selection is the technique of the weighted roulette where
each individual of a population occupies a surface of the
roulette proportional to the value of its function ”fitness”.
For reproduction, candidates are selected with a probability
proportional to their ”fitness”. For each selection of an
individual, a simple rotation of the wheel gives the selected
candidate. Roulette Wheel Selection works as follows :
Calculate the sum of all fitness, then generate a number
between 0 and the sum, after that add the fitness values to a
partial sum X starting from the top of population, and finally
the chosen chromosome is the first chromosome for which
X overpass the random number.
The procedure is illustrated in Fig.3.

Fig. 3. Roulette wheel selection

F. Order crossover

Order crossover works as follows:
Select a random substring from one parent randomly, then
create an offspring by copying the selected substring in their
corresponding positions. After that, delete from the second
parent all existing in the substring and place the genes in the
empty positions of the offspring from left to right. Finally
we should take in consideration the order of the sequence of
the offspring creation.
The procedure is illustrated in Fig.4.

Fig. 4. Offspring

G. Swap mutation

In the mutation all individuals are tested bit by bit. It
selects two positions on the chromosome randomly, then
swaps the values on these positions.
The procedure is illustrated in Fig.5.

Fig. 5. Swapped bays

IV. EXPERIMENTAL RESULTS

A. Results comparison between dynamic programming and
genetic algorithm

In the previous work, we solved some instances using
CPLEX and Dynamic programming, small and large sizes
instances were generated randomly, and containers number
in each bay is also generated in a random way between
10 and 50 containers. In this paper we add the genetic
algorithm results with CPU time, as shown in Table III and
Table IV, results comparison is made for small and large
instances with CPU time and with the GAP for makespan
and CPU time.

According to the primary tests, the population size,
the probability of mutation, the probability of crossover
and the limit of generations are 300, 0.2, 0.25 and 1000
respectively, in these computational experiments.

Programs are executed in a HP laptop core i5 CPU
2.50 GHZ with 12GB RAM, 250GB SSD, 2GB RAM
dedicated VGA, running in windows 8 professional.

TABLE III
SMALL INSTANCES

No. (B x C) Makespan CPU Time
DP GA GAP DP GA

(mins) (mins) (%) (s) (s)

1 4 x 2 43.29 43.29 0 < 1 < 1
2 4 x 3 29.25 29.25 0 < 1 < 1
3 5 x 2 69.03 69.03 0 < 1 < 1
4 5 x 3 57.33 57.33 0 < 1 < 1
5 6 x 2 95.94 95.94 0 < 1 < 1

B x C : bays number x cranes number

Table III shows that both dynamic programming and
genetic algorithm attained the optimal solution for the small
instances and their CPU time is different but acceptable and
realistic for the small instances.

TABLE IV
LARGE INSTANCES

No. (B x C) Makespan CPU Time
DP GA GAP1 DP GA GAP2

(mins) (mins) (%) (s) (s) (%)

1 12 x 2 171.99 173.16 0.68 < 1 < 1 44.07
2 12 x 3 115.83 117.12 1.1 < 1 < 1 25
3 13 x 2 184.86 184.86 0 1.03 < 1 46.6
4 13 x 3 124.02 126.36 1.85 < 1 < 1 50.51
5 14 x 2 201.79 204.75 1.45 2.36 < 1 66.52
6 14 x 3 128.7 129.92 0.94 2.45 < 1 64.49
7 15 x 2 226.13 231.66 2.39 2.78 < 1 70.14
8 15 x 3 139.89 143.91 2.8 3.16 < 1 71.2
9 16 x 2 215.28 218.79 1.6 3.57 < 1 72.83
10 16 x 3 152.1 154.44 1.52 4.83 1.23 74.53
11 17 x 2 221.13 223.3 0.97 5.41 1.38 74.49
12 17 x 3 156.78 159.12 1.47 10.95 2.58 76.44
13 18 x 2 249.21 253.89 1.84 12.97 2.66 79.49
14 18 x 3 168.48 168.48 0 36.57 5.03 86.25
15 19 x 2 264.42 265.59 0.44 47.53 9.39 80.24
16 19 x 3 180.18 182.52 1.28 143.68 11.98 > 90
17 20 x 2 271.44 273.78 0.85 173.04 14.15 > 90
18 20 x 3 187.2 189.54 1.23 579.76 25.17 > 90
19 21 x 2 279.63 280.8 0.42 679.001 36.13 > 90
20 21 x 3 194.22 197.73 1.78 2313.81 31.18 > 90
21 22 x 2 285.48 288.99 1.21 2932.66 43.88 > 90
22 22 x 3 201.24 203.58 1.15 14862.35 44.58 > 90
23 23 x 2 NA 297.18 - NA 56.13 -
24 23 x 3 NA 209.43 - NA 59.58 -

B x C : bays number x cranes number
NA : Interrupt execution time after 5 hours. (No results)

GAP = ((DP makespan - GA makespan)/DP makespan) *100

As shown in Table IV, starting from instance 23 and be-
yond, dynamic programming was unable to provide solution
after more than 5 hours of CPU processing time, meanwhile
genetic algorithm provides better solution in a very reduced
time.
The GAP between the optimal solutions and the near optimal
solution is between 0% and 2.8%, so we can say that the
proposed genetic algorithm is successful and practical for
the mentioned problem.

B. Results stability of Genetic Algorithm

As shown in Table V, for the small instances and after 5
executions, the same results appears.

TABLE V
STABILITY ANALYSIS FOR SMALL INSTANCES

Execution 4x2 4x3 5x2 5x3
1 43.29 29.25 69.03 57.33
2 43.29 29.25 69.03 57.33
3 43.29 29.25 69.03 57.33
4 43.29 29.25 69.03 57.33
5 43.29 29.25 69.03 57.33

In Table VI, for the large instances, after 5 executions for
the same instance, minimum 2 executions have the same near
optimal result, with a percentage of 40% while the 3 others
give results more or less 3% away from the near optimal
result. Example for 10 bays and 2 quay cranes, first, third
and fourth execution give the near optimal solution obtained
by the genetic algorithm = 136.23, while the second and the
fifth execution give results more or less 3% away from the
near optimal solution.
Percentage calculation for second execution:
139.74 - 136.23 = 3.51
(3.51/139.74) * 100 = 2.51% from the near optimal result.

TABLE VI
STABILITY ANALYSIS FOR LARGE INSTANCES

Execution 10x2 12x3 16x2
1 136.23∗ 117.12∗ 218.79∗

2 139.74 120.63 218.79∗

3 136.23∗ 119.46 219.96
4 136.23∗ 119.46 218.79∗

5 140.91 117.12∗ 221.13
∗: near optimal solution obtained by the GA

C. Results comparing to port of Tripoli-Lebanon

TABLE VII
DP RESULTS VS PORT RESULTS

N. Cranes Bays Containers Port results DP Saved time %
1 2 6 25 40 19.5 51.25
2 2 4 62 95 44.78 52.86
3 2 3 90 103 70.2 31.84
4 2 4 84 96 49.14 48.81
5 2 5 600 480 351 26.88

In Table VII the mentioned port results are compared to
the dynamic programming (DP) results while in Table VIII
they’re compared with genetic algorithm (GA) results.
In the first example, two quay cranes and six bays containing
in total 25 containers, the time to unload a container by a
quay crane is about 1.17 minutes, DP result is 19.5 minutes,
then in the port, the unloading time of 25 containers is about
40 minutes, finally the DP enables us to save time by 51.25%,
while GA result is 21.84 minutes and it enables to save time
by 45.4%. Although the percentage of the saved time by
GA is smaller than DP percentage, so the GA results are

good and can be applied. The model accommodates the true
conditions of the port.

TABLE VIII
GA RESULTS VS PORT RESULTS

N. Cranes Bays Containers Port results GA Saved time %
1 2 6 25 40 21.84 45.4
2 2 4 62 95 45.95 51.63
3 2 3 90 103 72.54 29.57
4 2 4 84 96 52.01 45.82
5 2 5 600 480 355.68 25.9

V. CONCLUSION

On large instances, this paper shows the premises of the
QCSP solving by metaheuristics. The results show that the
proposal is promising to have quickly good solutions. Here,
the first attempt explores a search space with a genetic
algorithm. To further improve the quality of solutions in
terms of execution time and convergence towards the optimal
solution, other types of metaheuristics deserve to be tested.
A large-scale comparison of benchmarks in the literature is
obvious to the following of this work.

REFERENCES

[1] B. Alnaqbi, H. Alrubaiai, and S. A. Alawi, “Combination of a
dynamic-hybrid berth allocation problem with a quay crane scheduling
problem,” 2016 7th International Conference on Information, Intelli-
gence, Systems & Applications (IISA), 2016.

[2] K. A. Awar, M. Alawani, and S. A. Jaberi, “A multi-vessel quay
crane scheduling problem,” 2016 7th International Conference on
Information, Intelligence, Systems & Applications (IISA), 2016.

[3] L. Azza, M. E. merouani, and A. Medouri, “Ant colony system for
solving quay crane scheduling problem in container terminal,” 2014
International Conference on Logistics Operations Management, 2014.

[4] S. Chung and K. Choy, “A modified genetic algorithm for quay crane
scheduling operations,” Expert Systems with Applications, 2012.

[5] L. Haoyuan and S. Qi, “Simulation-based optimization on quay crane
scheduling of container terminals,” 2017 29th Chinese Control And
Decision Conference (CCDC), 2017.

[6] M. Liu, S. Wang, and C. Chu, “A branch-and-price framework for the
general double-cycling problem with internal-reshuffles,” 2015 IEEE
12th International Conference on Networking, Sensing and Control,
2015.

[7] M. Liu, F. Zheng, Y. Xu, and C. Chu, “Approximation algorithm for
uniform quay crane scheduling at container ports,” Discrete Mathe-
matics, Algorithms and Applications, 2016.

[8] R. T. Moghaddam, A. Makui, S. Salahi, M. Bazzazi, and F. Taheri, “An
efficient algorithm for solving a new mathematical model for a quay
crane scheduling problem in container ports,” Computers & Industrial
Engineering, 2008.

[9] A. Salhi, G. Alsoufi, and X. Yang, “An evolutionary approach to a
combined mixed integer programming model of seaside operations
as arise in container ports,” ADVANCES IN THEORETICAL AND
APPLIED COMBINATORIAL OPTIMIZATION, 2017.

[10] A. Skaf, S. Lamrous, Z. Hammoudan, and M.-A. Manier, “Exact
method for single vessel and multiple quay cranes to solve scheduling
problem at port of tripoli-lebanon,” 2018 International Conference on
Industrial Engineering and Engineering Management, 2018.

[11] S. Wang and W. Hu, “Multi quay crane scheduling problem based
on aco in container terminals,” 2009 International Conference on
Management and Service Science, 2009.

[12] C. Xiazhong, Z. Ye, and H. Hongtao, “Optimization research of joint
quay crane scheduling and block selection in container terminals,”
2017 International Conference on Service Systems and Service Man-
agement, 2017.

[13] D. Yi, L. GuoLong, and L. ChengJi, “Model and heuristic algorithm
for quay crane scheduling at container terminal,” 2012 9th Interna-
tional Conference on Fuzzy Systems and Knowledge Discovery, 2012.

