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Abstract

This paper presents a control scheme regarding to improve the performances

of a piezoelectric actuator (PEA) for precise positioning tasks. The piezoelec-

tric actuator exhibits strong nonlinear disturbances for 1- and 2-DOF motion,

i.e. input-dependent hysteresis, creep and cross-couplings. These unwanted

phenomena undeniably compromise the final precision of the targeted tasks

(micromanipulation) and therefore it should be conveniently considered during

the controller synthesis. In this regard, the dynamic equation is also split into a

nominal model and a uncertain model including parametric uncertainties. We

propose to use simultaneously a the discrete linear extended-state linear Kalman

filter (ES-LKF), to estimate the aforementioned disturbances and the velocity,

and Lyapunov-based controller to guarantee asymptotic stability while meeting

the actuator limits. The proposed strategy permits to perform accurate posi-

tioning, for regulation and trajectory-tracking tasks, without a prior knowledge

of parametric and unmodeled uncertainties. Real-time experiments were car-

ried out with circular trajectories to demonstrate the efficiency of the proposed

approach.
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parametric and dynamic uncertainties, bounded-input controller.

1. Introduction

These last years, the advance of microrobotics has increasingly enhanced dif-2

ferent applications. Particularly, in micromanipulation applications, technolo-

gies based on piezoelectric actuators represent a wide spectrum ranging from4

walking actuators, multi-DOF positioning systems to manipulation (transport

and pick-and-place) of micro-sized objects. The advantageous performances6

profile provided by piezoelectric actuators (PEAs), bandwidth and resolution,

is however degraded by static and dynamic disturbances (hysteresis and creep).8

Such PEAs adverse behavior depends on both current and past inputs. Hystere-

sis arises either in static regime (constant inputs) or dynamic regime (fast-/slow-10

time varying inputs). Furthermore, multi-DOF micropositioning applications

bring unwanted cross-couplings for both sequenced or simultaneous motions.12

The control of PEAs has been addressed using feedforward and feedback

control approaches, or a combination of both. Feedforward-based schemes rely14

on the accuracy of the PEA’s model and thus its inverse is able to compen-

sate hysteresis reaching desired displacements. In the feedforward control of16

PEAs, several approaches are available to model and then to compensate for

the hysteresis: the Preisach [1][2][3], the Prandtl-Ishlinskii [4][5][5][6][7] and the18

Bouc-Wen approaches [8][9]. In the two formers, a complex hysteresis is mod-

eled by the sum of many basic hysteresis (hysterons). Both approaches can be20

very accurate with the use of a high number of elementary hysteresis, which

represents a computational burden implementation. Alternatively, the Bouc-22

Wen model of hysteresis, has an interesting simplicity and is able to represent

a large class of hysteresis. Although the low cost and the high packageability24

(no sensors required) of the used feedforward control approaches, their main

limitation is the lack of robustness face to model uncertainties and to external26

disturbances.

On the other hand, feedback control has been used to deal with the motion28
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control of PEAs. In this case, the controller’s performances will be as good as

the quality of the measurements and/or the estimation of the system’s states,30

which in practice are noisy and/or missing (e.g. only position measurement is

available). Two control applicative categories might be distinguished based on32

the control operational regime:

• Regulation Task34

In this regime, hysteresis, creep and couplings (multi-DOF PEAs) are

considered as a constant disturbance introducing a static error. Thus,36

classical PID or event intelligent adaptive schemes can fullfil the control

objective[10][11].38

• Trajectory-tracking Task

The aforementioned parasitic disturbances become dynamic. Therefore,40

robust control schemes are required to overcome significant uncertainties.

Recent works encompass sliding-mode control (SMC), SMC+adaptive and42

H∞ schemes. Such controllers are able to reject the effect of the afore-

mentioned disturbances[12][13][14][15][16].44

State observers, either deterministic or stochastic, represent an interesting al-

ternative for both operation profiles, not only to estimate missing states (e.g.46

velocity) and/or to improve state(s) measurement(s) (e.g. filtering[17] ) but also

to estimate unknown inputs (1DOF unknown input observers [18],[19]) In this48

case, we have accomplished effective tracking of simultaneous time-varying tra-

jectories (while rejecting inherent parasitic and dynamic uncertainties) having50

only position measurement while velocity is estimated from the ES-LKF. This

reinforce and validates the proposed estimation and bounded-controller archi-52

tectures. We are interested on (at micro/nano level) measurement resolution,

displacement, and the accuracy of them and eventually their dynamics (see [20]).54

For this reason, it is important to have reliable sensory systems featuring such

performance.56

The present paper addresses a multi-DOF piezoelectric micro-positioning

actuator devoted to dexterous micro-positioning tasks. The worst-case sce-58

3



nario corresponds to piezocantilever’s simultaneous motion tracking a time-

varying trajectory. Besides parasitic disturbances, input-dependent hysteresis60

and creep, input-interconnection couplings also degrades the positioning per-

formance. From experimental observations on specific off-the-shelf piezocan-62

tilevers, we have witnessed that the parameters change during repeated test

solicitation affecting the closed-loop effectiveness. Therefore, to apply the afore-64

mentioned control schemes for extensive trials requires a prior-to-trial identifi-

cation phase. Alternatively we have proposed to split the dynamic model into a66

nominal model, that features initial identification parameters, and an uncertain

parameters variations denoting the parametric disturbance. Both uncertainty68

terms, dynamic and parametric, are condensed into a overall lumped disturbance

which will be further estimated. In order to overcome such evoked issues, we70

proposed and implemented in real-time a generalized disturbance compensation

scheme based on an extended-state linear Kalman filter (ES-LKF) combined72

with a bounded-input controller. Unlike the previous works cited above, the

actuator limits are considered within stability analysis which lies within the74

Backstepping technique. The asymptotically stability of the closed-loop system

needs to be explicitly proven while experimental controllers are used due the76

nonlinear nature of the saturation of the actuator(s). Furthermore, for these

kind of applications, if the voltage amplitude is too high, there is a risk of78

depolarization of the material leading to a loss of the piezoelectric properties.

Consequently, overvoltages due to an excessive solicitation on the piezoelectric80

actuator to effectuate rapid responses (large bandwidth) or large courses may

destroy the latter. Therefore, in this paper we design a controller that meets82

the real actuator’s limits while providing asymptotic stability analysis. We have

conducted an experimental stage to evaluate the trajectory tracking of the of84

the piezocantilever for a two-dimensional time-parametrized references trajecto-

ries, whose effectiveness is validated not only for the disturbance compensations86

(effective estimation) but also meeting the saturation limits of the controller.

Furthermore, trajectory tracking of second order systems, as PEAs, requires the88

knowledge of both states.
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The paper is organized as follows: the description and model of the piezo-90

cantilever is presented in section-2. In section-3 the characteristics of the exper-

imental setup are described. In section-4 is described the LKF-based estimation92

algorithm as well as the closed-loop compensation scheme. Numerical and Ex-

perimental results are presented in section 5 and 6, respectively. Finally, the94

conclusions and perspectives are given in section-7.

2. Dynamic Modeling of the Piezocantilever96

The actual paper considers as reference model for the piezocantilever the

Bouc-Wen model of hysteresis, which corresponds to a cascade structure fea-98

turing a static hysteresis model plus a second order linear dynamic system (see

Fig. 1). Such model stands out for its simplicity reagarding computation and100

implementation. Another aspect is the compatibility of the the Bouc-Wen model

for controllers synthesis [8][9].102

The nonlinear equations which model the behavior of the multi-DOFs piezo-

cantilever are written as104


aiδ̈i + biδ̇i + δi = dpiui −Hi

Ḣi = dpiAbwiu̇i −Bbwi |u̇i|hi − Cbwiu̇i |hi|
(1)

where δi is the motion of the i−axis, i ∈ {y, z} correspond to the bi-axial dis-

placement, Abwi, Bbwi and Cbwi are coefficients determining the hysteresis shape106

and amplitude and dpi is a positive coefficient that defines the magnitude deflec-

tion, while hi represents the hysteresis internal state. The dynamic parameters108

Static Hysteresis

Model

H(U)

U Linear dynamics

(2nd-order system)

δs δ

1-DOF piezoactuator

Figure 1: Hammerstein Model of a 1-DOF Piezocantilever
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are denoted by ai and bi, which are obtained through an identification process.

In our case, these parameters are set to a typical (or average) specifications of110

the piezocantilever.

2.1. Model Extension112

Single-axis positioning evolves in presence of hysteresis Hi and creep Ci,

whereas, a bi-axial motion introduces a novel disturbances, generated by a dy-

namic input-interconnection couplings. The coupling effects are depicted (see

Fig. 2). Such adverse couplings increase during simultaneous 2D operations, i.e.

tracking a time-varying circular trajectories. From the latter we can regroup

creep (for details see [4]) cross couplings into a generalized disturbance Θi, i.e.

Θi = −Hi + Ci + Ii, (2)

which allows to rewrite the nonlinear model (Equ. 1) as

aiδ̈i + biδ̇i + δi = dpiui + Θi (3)

where Ci the creep terms, Ii the interconnection disturbances (couplings). More-

over, in some cases the accuracy of the coefficients of the dynamic equation

Static
Hysteresis
Model
(Hy)

Uy
Σ

2nd order
linear

dynamics

δys δy

Coupling
due to Uy

Static
Hysteresis
Model
(Hz)

Uz
Σ

2nd order
linear

dynamics

δzs δz

Coupling
due to Uz

Figure 2: Block scheme of coupling’s structure
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(Equ. 3) varies in function of the identification process quality. Then, (Equ. 3)

is rewritten as

(aNi + ∆ai)︸ ︷︷ ︸
ai

δ̈i + (bNi + ∆bi)︸ ︷︷ ︸
bi

δ̇i + (cNi + ∆ci)︸ ︷︷ ︸
ci

δi = dpiui + Θi, (4)

where (·)Ni
stand for the nominal/characteristic/initial values of the model,

∆(·)i the parametric uncertainties. From the latter structure it is possible to

include such parametric uncertainties into a lumped disturbance Θi reducing

the system (Equ. 4) to

aNi
δ̈i + bNi

δ̇i + cNi
δi = dpiui + Θi (5)

with

Θi = −Hi + Ci + Ii︸ ︷︷ ︸
parasitic nonlinearities

− (∆ai δ̈i + ∆bi δ̇i + ∆ciδi)︸ ︷︷ ︸
parametric uncertainties

(6)

3. Experimental Setup Description

The experimental positioning system features a 2DOF piezocantilever which114

evolves along the y and z axes. This actuator is designed with 36 piezo-electric

layers to work at low input voltage. The total dimensions of the active part116

are 25x1x1 mm3. This cantilever is controlled by two inputs Uy and Uz that

are varying in the range of ±20 volts. The first extremity of the cantilever is118

clamped while the other moves within the 2D y-z plane based on the input Ui

with i ∈ {y, z} (see Fig. 3).120

3.1. Model Identification

The parameters corresponding to the coefficients of the dynamic equation122

(Equ.1) of the piezocantilever have been identified using the ARMAX approach

(Autoregressive-moving-average model with exogenous inputs) with an experi-124

mental 10 Volts step response applied to the piezocantilever (see Tab. 1). For

the sake of comprehension Fig. 5 illustrate the signals used for the identification126

process for the y−axis and its effect on the z−axis.
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Figure 3: Experimental setup is composed of two cofocal sensors arranged orthogonally (1)

and a piezoelectric cantilever (2)
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Figure 4: Experimental architecture

The cantilever displacement in the 2D yz-plane is given by δi, with i ∈ {y, z}.128

The measurement of δi is acquired by two external confocal sensors orthogonally

arranged aiming at the the piezocantilever’s tip (see Fig. 3).130

4. Estimation and Control Strategy

A discrete linear Kalman filter (LKF) is designed and implemented in real-

time to estimate the static and dynamic disturbances for a two-dimensional
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Figure 5: Piezocantilever step response to a 10V step input Uy (Uz = 0)

Parameter value Parameter value

(y-axis) (z-axis)

aNy 4.4209× 10−9 aNz 3.5125× 10−9

bNy
3.7378×−6 bNz

2.9062× 10−5

dpy 5.13 dpz 3.702

Table 1: Dynamic parameters of the piezocantilever.

micro-positioning task of the piezocantilever. The Linear Kalman Filter (LKF)

is derived from a 2nd-order continuous state-space system
ẋ(t) = Ax(t) +Bu(t) +Mω(t) → process

y(t) = Cx(t) + ν(t) → sensor(s)

(7)

where the state vector x = (δi, δ̇i)
T . This model considers the following hypoth-132

esis:
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H1. The pair AC verifies the observability property134

H2. The terms ω(t) = (ωδi , ωδ̇i)T and ν(t) = (νδi , ν δ̇i)T stand for a white

Gaussian random process respectively and represent the uncertainties in

the process and outputs (sensors). Such terms verify

E [ω(t)] = 0 and E [ν(t)] = 0 (8)

with constant power spectral density (PSD) W (t) and V (t) respectively.

The covariance matrix of the model

Q = E
[
ω(t)ω(t)T

]
= diag[σ2(ωδi), σ2(ωδ̇i)] (9)

The sensor covariance matrix

R = E
[
ν(t)ν(t)T

]
= diag[σ2(νδi), σ2(ν δ̇i)] (10)

It is also assumed that both stochastic processes are not correlated, i.e.

E
[
ω(t)ν(t)T

]
= 0 (11)

4.1. Disturbance Estimation Based on ES-LKF136

Let us recall the piezocantilever model given by Equ. 5

aNi
δ̈i + bNi

δ̇i + cNi
δi = dpiui + Θi (12)

This model corresponds to two scalar disturbed systems defining the motion

behavior along y and z axes (see Fig. 6). This model may be rewritten into the

state-space representation

ẋ = Ax+Bu+ Pd

y = Cx

(13)

The positions δi are provided by the confocal chromatic sensors and d = Θi

corresponds to the dual-axis disturbance. The velocity is obtained via the esti-

mation provided by the LKF. The matrices of the system (Equ. 13) are given

10



by:

A =

 0 1

− ci
ai
− bi
ai

B =

 0

dpi
ai

P =

 0

1
ai

C =

(
1 0

)
(14)

It is assumed that no prior information about the disturbance is available.

However, we consider that the disturbance has a slow time-varying dynamics

that can be modeled by a random walk process

Θ̇i = ωΘi , (15)

where ωe(t) = (ωδi , ωδ̇i , ωΘi)T . The latter assumption allows us to introduce

an extended state-space vector:

xe = (δi, δ̇i,Θi)
T (16)

and its associated extended-state model describing the dynamics is obtained

from (Equ. 15) in which the unknown input disturbance Θi is incorporated in138

the transition matrix:

ẋe = Axe + Bu+Mωe (17)

y = Cxe + ν (18)

with

A =


0 1 0

− ci
ai
− bi
ai

1
ai

0 0 0

 B =


0

dpi
ai

0

 (19)

1
aNy s

2 +bNy s+cNy

δy

+

uy
+

Θy = Iy(uz)−Hy(uy) + Cy −Θ∆y

1
aNz s

2 +bNz s+cNz

δz

+

uz
+

Θz = Iy(uy)−Hz(uz) + Cz −Θ∆z

Figure 6: Simplified disturbed model
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M =


1 0 0

0 1 0

0 0 1

 C =

(
1 0 0

)
(20)

The continuous-time model (Equ. 17) can be discretized with sampling time Ts140

and considering a zero-order hold (zoh) yield

xek+1 = Akxek + Bkuk + ωk (21)

yk = Ckxek + νk (22)

with142

xek = (δik , δ̇ik ,Θik)T (23)

Ak = eATs (24)

Bk =
(∫ Ts

0
eATs

)
B (25)

ωek = (ωδik , ω
δ̇i
k , ω

Θi

k )T (26)

νek = νδik (27)

where ωk and νk are discrete-time band-limited white gaussian random pro-

cess with zero-mean characterizing uncertainties on the model (unmodeled dy-

namics and parametric uncertainties) and measurement (noisy sensors) equa-

tions, respectively. The model uncertainties discrete covariance matrix Qk is:

Qk = E
[
ωekω

eT

k

]
=
∫ Ts

0
eAtMQMT eA

T tdt (28)

where the continuous covariance matrix stands for

Q = diag[σ2(ωδik ), σ2(ωδ̇ik ), σ2(ωΘi

k )] (29)

The algorithm that computes the estimate (including the disturbance Θi) of the

state vector xek is initialized as follows:144

• The piezocantilever-based micro-positioning system is in the equilibrium

state

xek0 = (0, 0, 0)T (30)
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• The initial covariance matrix P0 is considered as

P0 = diag
[
σ2(δi0), σ2(δ̇i0), σ2(Θi0)

]
(31)

The corresponding LKF recursive algorithm features a prediction-estimation

structure and is provided next

Prediction stage

x̂estk = Akx̂estk + Bkuk

Ppredk = AkPestkATk +Q

Kk = PpredkCTk
(
CkPpredkCTk +R

)−1

Estimation stage

yk = measurement vector

x̂estk = x̂predk +Kk (yk − Ckx̂predk)

Pestk = (I −KkCk)Ppredk (I −KkCk)
T

where Kk denotes the Kalman filter gain, and I is the identity matrix. The

estimated vector state generated by the LKF is the written:

x̂ek = (δ̂ik ,̂ δ̇ik , Θ̂ik)T (32)

For the actual work it was considered

Θ̂ik = Cdx̂ek (33)

with Cd = (0, 0, 1)T

4.2. Bounded-input Controller Design146

Assuming the knowledge of the disturbance Θ̂ik , the goal consists in driving

the equilibrium point of the actual piezoactuator through a controller whose148

asymptotic stability is demonstrated, but also a controller that meets the ac-

tuator’s limits (saturation). To this end, the Backstepping technique provides150

an appropriate framework to construct the controller since the aforementioned
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dynamic model (Equ. 12) features a cascade form suitable to apply such control152

technique.

Let us remind the dynamic model by assuming that the voltage u(t) is within

the limitation:

δ̈ =
dp
a
u− b

a
δ̇ − 1

a
δ + Θ (34)

Where we have dropped the subscript i and Nto avoid notation abuse. Since we

are concerned on solving the trajectory tracking problem, the latter dynamic

model is rewritten in terms of the error ξ. To do so, the control input must

contain the reference dynamic δ̈d. Thus, the control input is written

u =
a

dp

[
u? + δ̈d + tanh

(
b

a
˙̂
δ +

1

a
δ

)]
(35)

where u? will be designed later. Introducing (Equ. 35) in (Equ. 34) leads to

cancel out the nominal dynamics, after an arbitrary time t1, since the piezocan-

tilever features a stable behavior, i.e.

lim
t→t1

tanh

(
b

a
˙̂
δ +

1

a
δ

)
=
b

a
˙̂
δ +

1

a
δ (36)

Through (Equ. 35) it is possible to perform a coordinates change allowing to

rewrite the system in terms of the error.

ξ̈ = δ̈ − δ̈d = u∗ + Θ (37)

controller system

Θi

sensor

νi

ui

ES-LKF

(δ̂ri ,
˙̂
δri )T (êi, ėi)

T δi δmi

−

(δ̂i,
˙̂
δi)

T
Θ̂i

Figure 7: Closed-loop architecture
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whose state-space representation is

ξ̇1 = ξ2

ξ̇2 = u? + Θ

(38)

where ξ1 = δ − δ(t)d and ξ2 =
˙̂
δ − δ̇d(t) are the position and velocity errors,154

respectively.

156

Remark. For trajectory tracking purposes, i.e. stabilizing the system

(Equ.38), requires the full knowledge of the vector state x = (δ, δ̇)T and only158

position is measured. Thus, the state-vector is completed with the LKF-based

velocity estimation
˙̂
δ.160

4.2.1. Stability Analysis

Before proceeding with the control design, let us present the following useful162

properties

• P1. tanh(χ) ≤ χ164

• P2. 1 ≥ sec2(χ) > 0

• P3. −χ < − tanh(χ)166

• P4. −χ2 < − tanh2(χ)

where χ ∈ Rn. In order to synthesize the controller we use the Backstepping

technique. Backstepping starts (stabilizes) with the first integrator (position)

by introducing a virtual controller and continue in this sense until reaching the

control input at the last step (for details see [21]).

Step 1: Let us propose the Candidate Lyapunov Function (CLF) to deduce a

control that provide global asymptotic stability (GAS) for the first integrator

subsystem (Equ.38a)

V1 =
1

2
tanh2(ξ1) (39)

15



whose the time-derivative

V̇1 = tanh(ξ1)sech2(ξ1)ξ2 (40)

using P2 (Equ.39) is rewritten as

V̇1(ξ) ≤ tanh(ξ1)ξ2 (41)

which is rendered negative-definite (V̇1(ξ) < 0) provided that

ξ2 = −λ1 tanh(ξ1) (42)

where λ1 is a positive scalar gain. Hence, we can conclude that ξ1 is not only168

stable but also converges asymptotically to the origin.

Step 2: Let us define an error state variable z for ξ2, where the previous virtual

controller is used as a reference in order to impose a constrained behavior, i.e.

ξd2 = −λ1 tanh(ξ1). Thus, let us consider

tanh(z) , ξ2 − ξd2 = ξ2 + λ1 tanh(ξ1) (43)

from which the state is given

ξ2 = tanh(z)− λ1 tanh(ξ1) (44)

Differentiating (Equ.43) yield

sech2(z)ż = ξ̇2 + sech2(ξ1)ξ̇1 = ξ̇2 + sech2(ξ1)λ1ξ2 (45)

At this point, using (Equ.44) and (Equ.45), the model (Equ.38)

ξ̇1 = tanh(z)− λ1 tanh(ξ1)

ż = 1

sech2
(z)

[
u? + Θ + λ1sech2(z)(tanh(z)− λ1 tanh(ξ1))

] (46)

Let the final CLF be

V2 =
1

2
tanh(ξ1)2 +

1

2
tanh2(z) (47)

Obtaining the corresponding time-derivative of V2(ξ1, z) and using P2 yields

V̇2 ≤ tanh(ξ1)ξ2 + tanh(z)ż (48)

16



Using (Equ.46) in (Equ.48) leads to

V̇2 =

−λ1 tanh2(ξ1) + tanh(ξ1) tanh(z) + tanh(z)
[
u? + Θ + λ1 tanh(z)− λ2

1 tanh(ξ1)
]

(49)

In order to render (Equ.49) into a negative-definite function, we introduce the

following controller through the error dynamics ξ̈ (Equ. 38b).

u? = −Θ̂− tanh(z)(λ1 + λ2), (50)

where λ2 > 0 is the second gain and also it is considered that δ and δ̇ are origin-

convergent states, indicating that after some time τ1 they lie into the linear

domain of tanh(·). Introducing the controller (Equ. 50) via ξ̇2 (see Equ. 38) in

(Equ. 49) leads to

V̇2 = − tanh2(ξ1) + (1− λ2
1) tanh(ξ1) tanh(z)− λ2 tanh2(z) (51)

considering P3 and P4 (Equ. 51) is rewritten as

V̇2 ≤ −ξ2
1 + (1− λ2

1)ξ1z − λ2z
2 (52)

As long as λ1 > 1 and λ2 > 0, V̇2 ≤ 0 which guarantees stability of the origin

and boundedness of the solutions as t→∞, i.e.

‖(ξ, z)T ‖ ≤ γ, (53)

where γ ∈ R+ stands for the stability region radius. However, we are interested

in drawing conclusions about asymptotic stability of the states vector. For this

reason, let us consider ν = (ξ, z)T and

A =

 λ1 − 1−λ2
1

2

− 1−λ2
1

2 λ2

 (54)

which allows to rewrite (Equ. 52) as

V̇2 = −νTAν (55)

which is definite negative if A is positive definite, i.e. det[A] > 0. The latter170

holds if
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• λ2
1 > 1172

• λ2 >
(1−λ2

1)2

4λ1
,

and whose negativity is assured, since the upper bound remains negative, i.e.

V̇2 ≤ −αmin{A}‖ν‖2 (56)

where αmin{·} stands for the minimum eigenvalue. Thus, V̇2 < 0 and hence the174

state-vector trajectories converge asymptotically to the origin, i.e. ξ1 → 0 and

z → 0, this means that ξ2 → tanh(ξ1) fulfilling the tracking objective.176

Therefore, replacing (Equ. 50) in (Equ. 35) we obtain the final expression of

the controller written as

u =
a

dp

[
−Θ̂− tanh(z)(λ1 + λ2) + δ̈d + tanh

(
b

a
˙̂
δ +

1

a
δ

)]

5. Numerical results: a comparative study

In order to motivate the proposed strategy, we present, for comparative pur-178

poses, two control scenarios: the regulation and tracking problems in 1DOF. We

observe the disturbance rejection performance of the PID versus the disturbance180

compensation based on the ES-LKF. For the actual simulation study we have

considered only the hysteresis (H(t)). The parameters used in the simulation182

are depicted in table 2.

The control integral and ES-LKF-based are described next:184

Parameter value

aN 0.1× 10−3

bN 0.1×−1

dp 4.1083

Table 2: Dynamic parameters of the piezocantilever.
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• Since the piezocantilever system (1) features a stable dynamic behavior

(natural PD) we add an integral term, with gain ki = 10, activated

u =
a

dp

(
1

a
δd +

b

a
δ̇d + δ̈d − ki

a

∫ t

0

ε(τ)dτ

)
(57)

where ε = δ − δd.

• Next, we have replaced the integral term by the estimation of the distur-

bance via the ES-LKF.

u =
a

dp

(
1

a
δd +

b

a
δ̇d + δ̈d + Ĥ(t)

)
(58)

For both cases we activate the control action at t = 0.75[s]. Let us consider186

the following cases:

1) Regulation case: we consider a step sequence reference (frequency= 1[Hz]188

and amplitude= 2[µm]). Thus, the desired position δd is a constant reference

toggling from δd = 0[µm] and δd = 2[µm].190

Remark. In Fig.8 it is depicted the numerical results where we have noticed

that in steady-state the performance that both approaches eliminate the192

static error. However, within the transitory phase the overshoot smaller with

ES-LKF approach. It is noteworthy that bigger values of for integral gain ki194

(ki > 10) increase the overshoot and provides a underdamped behavior.

2) Trajectory-tracking case: In this case the objective is to track a time-196

varying sinusoidal reference (frequency= 1[Hz] and amplitude= 2[µm]).

Remark. In Fig.9 it is shown that the compensation effect of both con-198

trollers (t > 7.5[sec]). The PID controller is not able to compensate, while

the controller based on the disturbance estimation tracks the reference tra-200

jectory satisfactorily. Moreover, at t = 1.6[sec] it is displayed numerically the

deviation between both errors witnessing the effectiveness of the proposed202

strategy.
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6. Real-time Experimental Results204

Section 4 has detailed the estimation strategy of the disturbance (dual-axis

hysteresis, couplings and creep) as well as the controller design via a constructive

design which guarantees GAS considering the bounded actuators. Therefore,

in this section it presented the experimental implementation of the proposed

strategy to track circular trajectory for both open- and closed-loop. Indeed,

the worst-case scenario occurs during simultaneous 2D positioning generating

also cross couplings. The positioning objective is to track a circular pattern at

0.1[Hz] and 1[Hz], and whose expressions are defined by the following time-

parametrized functions

δy(t)d = 30 sin(2πft) and δ̇y(t)d = 60πf cos(2πft)

δz(t)
d = 30 cos(2πft) and δ̇z(t)

d = −60πf sin(2πft)

(59)

Firstly, it is presented the open-loop performance to observe the effect of the

disturbance on the system’s response while attempting to track circular trajec-206

tory. Next, the proposed estimation alongside the controller are included to

compensate disturbances resulting from tracking a circular trajectory.208

Real-time experiments were carried out using Matlab-Simulinkr which is

linked to the dSPACEr DAQ1 via ControlDeskr. Experimental parameters210

are listed on the table 3.

6.1. Open-loop Experiments212

During micro-positioning operations the piezocantilever’s performance is sig-

nificantly deteriorated mainly due to hysteresis and creep. Besides to these ad-

verse effects, multi-DOFs (2DOF in our case) positioning tasks feature internal

dynamic couplings, this is shown by the curves matrix in Fig.10 and Fig.11. In

the open-loop case we consider a control input including the desired trajectory

1I/O Acquisition card
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Parameter Value

sampling time Ts 0.2× 10−3 [sec]

PSD WΘi
0.01

Ri 0.04

λ1i
1.2

λ2i
1

Table 3: Experimental parameters

without any feedback and/or disturbance estimation, i.e.

u =
a

dp

(
1

a
δd +

b

a
δ̇d + δ̈

)
(60)

In Fig. 12 and Fig. 13 it is observed that the error between the reference and

the position is quite significant reaching up to 30%. It is witnessed the need214

of incorporating not only a feedback approach but also disturbance-tolerant

trajectory-tracking controllers. On the other hand, the good performance of216

the position estimation and filtering imply that the overall disturbance Θ(t) is

well estimated. Thus at this stage the ES-LKF estimation is validated.218

6.2. Closed-loop Experiments

The experimental stage, presented next, provides a set of results intended220

to show the effectiveness of the proposed strategy in presence of parametric and

parasitic disturbances. Besides the robustness aspect, it is worthwhile highlight-222

ing the following:

• The trajectory-tracking objective is performed using the measured posi-224

tion δi and estimated velocity.

• The estimation of the lumped disturbance relies fully on the ES-LKF.226

The closed-loop scheme illustrated by Fig. 7 is used to compensate the

dynamic dual-axis disturbances arising from simultaneous 2D motion (i.e. a228
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Figure 10: Curves depicting the creep effect and its dual-axis coupling phenomena for an

input of 10V in both axes
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Figure 11: Curves depicting the hysteresis effect and its dual-axis coupling phenomena for a

10V sinusoidal input

circular trajectory reference) with the estimated generalized disturbance Θ̂(t).

In general, experimental results depicted in Fig. 14 and Fig. 15 reveal that230
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Figure 12: Open-loop performance @ 0.1Hz
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Figure 13: Open-loop performance @ 1Hz
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motion objective is fulfilled within the actuator voltage limits. Whereas the

error reached 30% in open-loop, these figures show that the circular reference,232

at 0.1[Hz] and 1[Hz], is successfully tracked having errors below 2% for both

axes. It is noteworthy to point out this performance since tracking tasks for234

second order system requires the knowledge of both states, and therefore the

aforementioned results imply not only the effective estimation of Θ̂(t) but also236

the good velocity estimation considering that only the position measurement is

available.238

7. Concluding Remarks

This paper addressed the control of two degrees of freedom (2-DOF) piezo-240

electric actuator (PEA) devoted to micromanipulation tasks. Although the

actuator exhibit interesting bandwidth and positioning resolution, it is typified242

by strong couplings between its two axes, and strong hysteresis and creep non-

linearities. These couplings and nonlinear phenomena finally compromise the244

overall performances of the tasks: loss of accuracy, stability compromised.

We have witnessed the effectiveness of the proposed estimation-control strat-246

egy not only by fulfilling the objective of a dynamic disturbed trajectory-

tracking having only position measurement with an estimated velocity, but also248

by a successful disturbance ESLKF-based compensation. Moreover, we have

shown the flexibility and robustness of the method by presenting two frequency250

cases and considering a partial knowledge of the a dynamic model (nominal

model). In this paper, we proposed a new strategy to control 2-DOF PEAs for252

microrobotics tasks. This strategy is based on two steps : firstly, an estima-

tion of the hysteresis, creep and couplings is implemented with a ES-LKF. The254

unknown dynamic of this disturbance is simply modeled by a random walk pro-

cess (Wiener process). Secondly, this estimation is used in a feedback scheme256

to compensate for this disturbance. Extensive experiments were carried out

and demonstrate the efficiency of the proposed approach of modeling and con-258

trol for low frequency trajectory tracking despite the simplicity of the feedback
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Figure 14: Closed-loop performance @ 0.1Hz
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Figure 15: Closed-loop performance @ 1Hz
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used. More elaborated control architecture should be developed to deal with260

high-speed tracking.
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