
Latency and Network Lifetime Trade-off in
Geographic Multicast Routing for Multi-Sink

Wireless Sensor Networks

Lucas Leão and Violeta Felea

FEMTO-ST institute, Univ. Bourgogne Franche-Comté, CNRS
DISC, 16 route de Gray, 25030 Besançon, France

{firstname.lastname}@femto-st.fr

Abstract. The deployment of multiple sinks in Wireless Sensor Net-
works may provide better reliability, timely communication and longevity,
depending on the routing strategy. Moreover, geographic routing is a
powerful strategy to avoid the costs related to maintaining high network
knowledge. In this paper, we present a Geographic Multicast Routing
solution (GeoM), focused on the latency and network lifetime trade-off.
Our solution considers a linear combination of network metrics during
the decision process of the next hop. Packets are forwarded to all sinks,
and duplications are defined on the fly during the forwarding. The net-
work lifetime is addressed with an energy balance strategy and a trade-off
between progress and energy cost. We make use of the maximum energy
consumption as an indication of the network lifetime. Simulation results
show that GeoM has an overall better performance than the existing
solutions, with improvements of approximately 11% for the average la-
tency, and 54% for the maximum energy consumption.

Keywords: Multi-Sink Wireless Sensor Networks · Routing · Multicast
· Latency · Network Lifetime · Geographic Routing.

1 Introduction

A Wireless Sensor Netowrks (WSN) is defined as a network composed of small
wireless devices with limited capacity in terms of memory, processing and com-
munication range. They share a common task of collecting and forwarding sensed
data from various sources to a base station (sink) [2]. Applications of WSN may
include environment monitoring in smart buildings and smart cities, military
surveillance, planetary exploration etc.

The design of a WSN may consider different techniques for communication
optimization, as for instance, the deployment of multiple base stations. A Multi-
Sink WSN (MS-WSN) provides an immediate performance gain in terms of
latency reduction [12]. Depending on the routing strategy, the deployment of
multiple sinks also increases the network reliability, since packets may be for-
warded to multiple different destinations.

2 L. Leão, V. Felea

In MS-WSNs, the final application drives the way communications take place.
The information may be collected and forwarded following different models in
order to cope with the application objective and requirements. As for instance,
in order to meet a specific requirement such as reliability, the communication
scheme may be designed as a many-to-many (any multiple sinks), or a many-to-
all (all sinks) solution. These models require different routing specifications and
strategies.

The routing perspective of the communication schemes are:

– Unicast: once the path towards a sink is defined, the route is reused until
a predefined objective is no longer satisfied. As for instance, in real-time
applications routes may change only when the maximum tolerable delay is
surpassed.

– Anycast: information is addressed to a group of sinks. It can be 1-anycast,
when information is forwarded to anyone of the sinks in the group, or k-
anycast when information must reach any k sinks. The anycast routing may
be applied to either increase network reliability (k sinks) or extend the net-
work lifetime (any one sink).

– Multicast: information is addressed to all sinks in the network. The infor-
mation of a single sensor node must be replicated and forwarded to each one
of the sinks. Multicast approaches are focused on network reliability.

In this work we are interested in the case of MS-WSN with Multicast com-
munication scheme, where packets must be forwarded to all sinks in the network.
For that, we propose a Geographic Multicast Routing solution (GeoM), focused
on reducing latency and increasing the network lifetime. Our algorithm differs
from the literature by combining techniques to reduce latency and balance the
energy consumption with multicast communication scheme and geographic rout-
ing. In geographic routing there is no need for routing tables or a setup phase,
since routes are constructed on the fly based on the location information. In
our solution, the next hop decision is taken using a linear combination of net-
work metrics along with predefined weights. Based on the amount of consumed
energy, the paths are constantly changed during the lifetime of the network,
which balances the energy consumption. We also combine and adapt two differ-
ent void handling techniques, making use of the right-hand rule and the passive
participation [4].

The remainder of this paper is organized as follows. Section 2 presents a brief
discussion on the existing works in MS-WSN routing. Section 3 describes our
assumptions and the system model. Our solution is detailed in section 4, along
with the testing scenarios and the discussion of the performance evaluation in
section 5. We conclude the paper in section 6 with the future perspectives.

2 Related Work

There are few examples of works treating the many-to-all case. Most of the MS-
WSN solutions are designed as unicast and 1-anycast routing protocols, dealing

Geographic Multicast Routing Protocol for MS-WSN 3

with the many-to-one and many-to-any cases. However, a unicast routing pro-
tocol could be used as a many-to-all solution if we assume that packets are
duplicated at source and forwarded in sequence. The problem is that the energy
consumption rises dramatically, since the number of packets forwarded individ-
ually is increased as a function of the number of sinks in the network. On the
other hand, k-anycast solutions could be used as a multicast routing protocol if
we assume that k equals the amount of sinks in the network. Because of that,
in this section we describe both multicast and k-anycast solutions.

2.1 Multicast

In [5] the objective is to relay the messages from multiple sources to multiple
sinks while reducing the number of links used to forward the messages. The
strategy considers maximizing the overlap of paths from sources to sinks. This
way, the same sub-routes, from the point of aggregation up to the splitting point,
are used from different sources to forward messages to sinks. The next hop is
defined by selecting the neighbors with more path overlaps and serving more
sinks. The algorithm also considers a process of changing routes, which is an
iterative mechanism that periodically triggers a search for new sub-routes.

The objective in [9] is to identify a routing tree connecting all sources to all
destinations with the minimal number of links. The solution applies a searching
method to identify an initial non optimal tree, which is improved by consecutive
search iterations. The routes are initially constructed based on the hop distance
to the sink. Each source has an independent path to each sink. Then, the algo-
rithm tries to merge the independent paths from a source to all sinks, reusing as
much as possible the same path. Later, the merge takes place with the sources,
trying to determine a point of aggregation and replication. The convergence node
is responsible to aggregate the message from the sources and re-split it to the
sinks.

Although the works in [5] and [9] describe distributed solutions for multicast
routing, they rely on heavy network knowledge in order to perform all the paths
optimizations. They are also focused on data aggregation as a method to reduce
energy consumption, and not explicitly oriented to latency minimization.

2.2 K-anycast

The authors in [3] propose RelBAS, a data gathering algorithm with a fault
recovery scheme specially designed to assure reliability. The algorithm considers
the construction of disjoint trees, rooted at each sink. However, the sensor nodes
serving as forwarders are also disjoint, meaning that a node serves as forwarder to
exactly one tree. In order to improve reliability, the solution considers forwarding
the packet to exactly k sinks, which are decided in advance. The nodes are always
part of exactly k trees, in order to forward the packet to the k sinks.

In [8] we find RPKAC, a routing protocol for Rechargeable MS-WSN de-
signed to reduce network latency and optimize the energy consumption, but

4 L. Leão, V. Felea

focused on assuring the delivery by forwarding the packets to k sinks. The au-
thors establish strategies to forward the packets to at least k sinks, at most k
sinks and exactly k sinks. The algorithm builds spanning trees rooted at the
source node, with nodes sending route request messages in order to define the
routing path. The neighbor nodes reply with their cost to reach a sink, and the
current node decides to join an existing path with the lowest cost. The cost is
calculated based on the linear combination of metrics: hop count, latency, energy
cost and energy replenish rate.

The main objective in KanGuRou [14] is to guarantee the packet delivery
to exactly k sinks and at the same time reduce the overall energy consumption.
The strategy considers a geographic routing towards a set of sinks. The path is
constructed in a greedy way. The current node builds a spanning tree to k sinks
with minimum cost. The next hop is decided based on the cost of the energy-
weighted shortest path (ESP). The solution assumes an adaptable transmission
range in order to reduce the energy cost. At each hop, the algorithm calculates
the cost over progress and decides to duplicate the packet towards different
paths in order to reach k sinks. When a packet is duplicated, it is targeted to
a set of specific sinks, in order to assure the delivery. The case of network void
areas inherent to geographic routing is handled using a recovery mode with face
routing, so packets can be forwarded out of the problematic area.

Routing solutions [3] and [8] are based on the hop-count distance, so the
packets are forwarded to the neighbor with the lowest hop-count distance to
the sink. This strategy implies either higher network topology knowledge or
an important setup phase, with nodes discovering their hop-count distance to
each sink. In [14] the focus is on reducing the energy consumption, favoring
transmissions to closer nodes. Since the transmission range is variable, the energy
cost to transmit a packet to a closer node is reduced. However, the amount of
hops is increased and consequently the latency.

3 System Model and Assumptions

We represent a MS-WSN as a graph G = (V,E), where V represents the set
of all nodes and E the set of existing wireless links. Each e ∈ E corresponds
to a pair of nodes (i, j) as long as i and j, with i ∈ V and j ∈ V , are within
each other’s transmission range (symmetric link). The set of neighbors of i is
represented by Vi. We also specify that V = S ∪N where S represents the set of
sink nodes and N the set of sensor nodes, with S ∩N = ∅. The number of sinks
is denoted by |S|.

We assume that every node is aware of its own geographic position and the
geographic position of all sinks. For simplification, the geographic positions are
represented by the Cartesian coordinates (x, y), and the distance is always the
euclidean distance represented as |ij| with i, j ∈ V . We also assume that packets
are generated by sensor nodes only. For the energy consumption, we follow the
radio model in [10], defining the consumed energy during transmission:

Geographic Multicast Routing Protocol for MS-WSN 5

ETx
= Eelec × p+ εamp × p× d2 (1)

and the consumed energy during reception:

ERx
= Eelec × p (2)

where Eelec is the dissipated energy for the transmitter/receiver electronics, εamp

is the dissipated energy for the transmit amplifier, p is the amount of bits of the
message and d is the transmission distance.

We consider two types of networks: with void areas and without void areas.
A network with void areas is defined by the existence of a specific node out of the
transmission range of a particular sink and for which there is no other neighbor
node that presents a better geographic progress towards that sink than the node
itself. In summary, ∃{n, si}, n ∈ V, si ∈ S, (n, si) /∈ E such that |nsi| < |vjsi|
for all vj ∈ Vn. Thus, the void area definition is for a node in relation to a sink.
Because of that, in a MS-WSN it is possible for a node to be in the void area in
relation to one or more sinks.

4 Geographic Multicast Routing

GeoM is a geographic routing protocol for Multi-Sink Wireless Sensor Networks
that is capable of forwarding a generated packet to all available sinks in the
network using a multicast communication scheme. It is focused on finding the
trade-off between latency and the network lifetime. The next hop is selected by
the current node based on the calculation of weighted metrics, and the high-
est intersection among forwarder candidates and sinks. The algorithm can be
divided into two steps: filtering and selection. The first step is responsible for
filtering the neighbor nodes in order to create a list of candidate forwarders. The
filtering takes place by eliminating the neighbor nodes with negative progress
and neighbors in void areas. If no neighbor is found, the recovery mode is trig-
gered and a neighbor is selected using a void handling technique. At the same
time, a broadcast message is sent to inform the neighbor nodes that the current
node is in a void area. The second step is dedicated to effectively selecting the
forwarders. The candidates are evaluated based on the weighted metrics, and a
forwarder is selected based on the largest intersection of sinks. We also consider
a metric called deviation factor, which increases the possibility of intersections
by relaxing the constraints of the weighted metrics. Although GeoM does not
require massive network knowledge, broadcast messages are used to periodically
advertise the existence of neighbor nodes, their void area status and the amount
of consumed energy.

4.1 Filtering Process

The filtering process starts with the reception of a packet. The first step is to
check if the current node n is a target sink itself. In this case, the node must be
removed from the list of destination sinks (Sr), since the packet has reached a

6 L. Leão, V. Felea

Algorithm 1 GeoM(n, Vn, H, packet) - Run at the current node.

Input: n: current node, packet: packet to be forwarded, Vn: set of neighbors of n, H:
set of neighbor nodes in void areas for a set of sinks

1: Sr ← get sinks(packet) /* Set of target sinks */
2: p← get progress(packet) /* Progress of the previous hop */
3: if n ∈ Sr then
4: Sr ← Sr\{n}
5: end if
6: if Sr = ∅ then
7: return
8: end if
9: L← ∅ /* Set of pairs [candidate, sink] */

10: /* Check if the current node offers a positive progress towards the sinks */
11: /* A negative value means that the packet is in recovery mode */
12: pnew ← ProgressTowards(n, Sr)
13: if pnew < p then
14: /* Select a candidate with the recovery mode using right-hand rule */
15: L = Recovery(n, Vn, S

′) /* In this case L has a single candidate */
16: ForwardersIntersec(n,L, Sr, packet)
17: return
18: end if
19: /* Look for the neighbors closer to the sinks than the current node */
20: S′ ← ∅ /* Set of found sinks */
21: for all vj ∈ Vn do
22: for all si ∈ Sr do
23: if dist(n, si) > dist(vj , si) and {[vj , si]} /∈ H then
24: L← L ∪ {[vj , si]}
25: if S′ ∩ {si} = ∅ then
26: S′ ← S′ ∪ {si}
27: end if
28: end if
29: end for
30: end for
31: if 0 < |S′| ≤ |Sr| then
32: ForwardersIntersec(n,L, S′, packet)
33: end if
34: /* Check if a forwarder was found to all sinks */
35: S′′ ← Sr\S′
36: if |S′′| > 0 then
37: /* Notify neighbors about the existence of a void area */
38: SendV oidNotification(n, Vn, S

′′)
39: L = Recovery(n, Vn, S

′′) /* In this case L has a single candidate */
40: ForwardersIntersec(n,L, S′′, packet)
41: end if
42: return

target sink (algorithm 1, line 4). The list of target sinks must be composed of a
set of unique and identifiable entities. This is important in order to assure that

Geographic Multicast Routing Protocol for MS-WSN 7

all packets are delivered to different sinks. If instead we had only a number of
target sinks to reach, we would risk delivering all the packets to the same sink,
because of the distributed aspect of our solution.

The second step is to check the progress of the current node in relation to the
previous hop. If the current node (n) progress to the set of remaining sinks (Sr)
represents a negative value compared to the value from the previous hop (line
12), it means that the packet was in Recovery Mode and no positive progress
was yet found. In this case the packet must keep the Recovery Mode status and
the forwarder candidate is selected using the right-hand rule [4]. The recovery
strategy follows the same principles of the works in [11], [13] and [14]. In this case,
only one node is selected and the packet is directly forwarded to this neighbor.

If the current node presents a positive progress towards the target sinks, the
filtering step starts. Based on the neighbor list (Vn) of the current node, the
algorithm creates a new list of candidate forwarders (L). The solution selects
the neighbor nodes with a positive progress to at least one sink, and excludes
the neighbors that have already announced being in a void area (line 23). The
H list represents the set of pairs [vj , si] in which vj is the neighbor node in a
void area for the sink si. At the same time, a second sink list (S′) is created in
order to store the found sinks (line 26). If the number of found sinks is smaller
than the amount of available sinks, it means that the algorithm could not find a
suitable candidate to all sinks (line 35). In this case, the recovery mode is again
activated in order to complete the list of candidates. A broadcast message (void
announcement) is sent in order to inform the neighbors nodes that the current
sink is in a void area (line 38). This strategy is important in order to allow future
packets to avoid going through the void area.

4.2 Selection Process

The selection process is called when a forwarder candidate has to be selected.
It is responsible for evaluating the list of candidates based on the weighted
metrics and searching for the maximum intersection of candidates and sinks in
order to avoid duplications. The first step is to calculate the weighted metrics
to all candidates in relation to the sinks (algorithm 3, line 1). The aggregated
decision metric W represents the value of the calculated weighted metrics to all
candidates in relation to all available sinks.

The calculation process considers three network metrics and it is described
in algorithm 2. The first is the relative distance from the candidate node and the
target sink (line 13). The second metric is related to the energy cost for sending
a packet from the current node to the candidate forwarder (line 14). The combi-
nation of these two metrics provides a balance between the progress towards the
sink and the energy cost of that progress. Finally, the third metric is the total
consumed energy of the candidate forwarder (line 15). This metric is used as a
way to distribute the load over all the nodes and balance the energy consumption
in order to avoid the early depletion of the battery. The total consumed energy
of the neighbor is obtained from the received broadcast messages.

8 L. Leão, V. Felea

Algorithm 2 W = CalculateMetric(n, Sr, L)

Input: n: current node, Sr: list of remaining sinks, L: set of pairs [candidate, sink]
with positive progress

Output: W : a matrix [|Sr|, |V |] that stores the calculated weighted metrics
1: /* α: weight for the distance metric, β: weight for the energy cost metric, */
2: /* δ: weight for the consumed energy metric */
3: W ← ∅
4: for all vi ∈ {vi|[vi, s] ∈ L} do
5: for all sj ∈ Sr do
6: D[vi, sj]← dist(vi, sj)
7: end for
8: E[vi]← EnergyCost(n, vi)
9: C[vi]← ConsumedEnergy(vi)

10: end for
11: for all sj ∈ Sr do
12: for all vi ∈ {vi|[vi, s] ∈ L} do
13: x← α× D[vi,sj]−Min(D[∗,sj])

Max(D[∗,sj])−Min(D[∗,sj])
/* for the distance between vi and sj */

14: y ← β × E[vi]−Min(E)
Max(E)−Min(E)

/* for the energy cost from n to vi */

15: z ← δ × C[vi]−Min(C)
Max(C)−Min(C)

/* for the energy consumption of neighbor vi */

16: W [sj , vi] = x+ y + z
17: end for
18: end for
19: return W

The second step is related to the pre-selection of candidates based on their
aggregated decision metric (algorithm 3, line 3). The algorithm fixes a sink and
calculates the mean and the standard deviation to all candidates having that
sink in their list. Later, a new list (C) is created having all the candidates
that passed the pre-selection step for each sink. The pre-selection eliminates
the candidates that have their aggregated decision metric with a value higher
than the mean plus a factor (γ) of the standard deviation (line 9). By using a
factor for the standard deviation the algorithm increases the forwarding angle,
allowing non optimal nodes to be selected. This strategy is important to increase
the possibility of intersections among candidates from one sink to another.

The third step of the selection process is responsible for calculating the largest
intersection among the pre-selected candidates. This strategy tries to avoid early
duplications, which translates to fewer packets being individually forwarded. In
order to start the process, the closest sink (s) to the current node is selected
(line 16) and all its candidates are inserted in the list (P [pk].nodes). The sink
s is removed from the list of remaining sinks (Sr) and included in the list of
the already selected sinks (Sused). The algorithm searches for the next sink
s by selecting the closest sink to an already selected sink (line 35). Later, the
algorithm checks the list of candidates of the new s against the list of the already
selected sink (line 27). If an intersection is detected, the sink s is added in the

Geographic Multicast Routing Protocol for MS-WSN 9

Algorithm 3 ForwardersIntersec(n,L, Sr, packet) - Run at the current node.

Input: n: current node, L: set of pairs [candidate, sink] with positive progress, Sr: list
of remaining sinks, packet: packet to be forwarded

1: W ← CalculateMetric(n, Sr, L) /* The matrix that stores the weighted metrics
*/

2: C ← ∅ /* The list that holds the structure having the candidate nodes */
3: for all sj ∈ Sr do
4: µWsj

← mean(W [sj , ∗])
5: σWsj

← stdev(W [sj , ∗])
6: for all vi ∈ {vi|[vi, s] ∈ L} do
7: /* Check if the calculated metric of the node vi for the sink sj is smaller */
8: /* than the mean of all other candidates plus a factor (γ) of the stdev */
9: if W [sj , vi] ≤ µWsj

+ γ × σWsj
then

10: C[sj].nodes← C[sj].nodes ∪ {vi}
11: end if
12: end for
13: end for
14: P ← ∅ /* P is the list that holds the intersection structure */
15: Sused ← ∅
16: s← ClosestSink({n}, Sr) /* Get the closest sink to n */
17: repeat
18: /* Go through P and search for intersection */
19: for all pk ∈ P do
20: if P [pk].nodes ∩ C[sj].nodes 6= ∅ then
21: P [pk].nodes← P [pk].nodes ∩ C[s].nodes
22: P [pk].sinks← P [pk].sinks ∪ {s}
23: C[s].nodes← ∅
24: end if
25: end for
26: /* If no intersection is found, a new entry is created (packet duplication) */
27: if C[s].nodes 6= ∅ then
28: p← |P |+ 1
29: P [p].nodes← C[s].nodes
30: P [p].sinks← {s}
31: C[s].nodes← ∅
32: end if
33: Sused ← Sused ∪ {s}
34: Sr ← Sr\{s}
35: s← ClosestSink(Sused, S) /* Get the closest sink to any selected sink */
36: until Sr 6= ∅
37: for all pk ∈ P do
38: v ← vi ∈ P [pk].nodes which minimizes mean(W [P [pk].sinks, vi])
39: SendPacket(P [pk].sinks, v, packet)
40: end for
41: return

10 L. Leão, V. Felea

P list corresponding to the intersection. Only the intersected candidates are
kept in the P [pk].nodes list. However, if no intersection is detected, a new entry
in the P list is created with the sink s and all its candidates. A new entry in
P represents a duplication of the packet due to the impossibility of finding an
intersection. The entire process is repeated iteratively for all sinks.

The final step considers that multiple candidates may still exist within an
entry pk of the P list, in the sense that a set of sinks P [pk].sinks may have more
than one candidate forwarder |P [pk].nodes| > 1. For that matter, the algorithm
searches for the candidate forwarder that minimizes the mean considering the set
of sinks P [pk].sinks. This is the opposite view of the pre-selection step, where the
mean was calculated on all candidates for a single sink. At this time, we calculate
the mean on all sinks in P [pk].sinks for a given candidate vi ∈ P [pk].nodes. Once
the candidate vi is defined, the packet is sent.

5 Simulation and Results

GeoM protocol was developed using Contiki OS [6], which is a lightweight open
source operating system designed for resource limited devices. Contiki OS is
implemented in C programing language and provides portability to different
platforms. We evaluated the performance of our solution through simulations
using Cooja [6], which is a network simulator for the Contiki OS. Cooja is a
Java-based application capable of emulating various sensor nodes [15].

The performance of our solution was compared to an existing approach (Kan-
GuRou) [14], that was also adapted to Contiki OS and tested with Cooja under
the same configurations. KanGuRou is a k-anycast solution, however it is capa-
ble of performing multicast routing, since k-anycast becomes multicast when k
equals the amount of all sinks. The decision to use KanGuRou as a benchmark is
related to the compatibility of assumptions. Both GeoM and KanGuRou are de-
signed for geographic routing, which implies a small need of network knowledge,
no routing table maintenance and no set up phase.

Table 1. Configuration for the simulations

Simulation Settings

Deployment Density (d) 8 neighbors (on average)

Network Area (variable) π×r2
d
× |V | (3)

Communication Range (r) 50 m
of Sensors (|N |) 50, 100, 150, 200, 250, 300
of Sinks (|S|) 10% of the number of Sensors
of Generated Networks 10 per scenario
of Scenarios 6 scenarios with voids and 6 without voids
Packet Size 240 bytes
Packet Generation Rate 20% chance at every minute for each sensor
Radio Type 802.15.4
MAC Protocol CX-MAC, modified version of [1]
Execution Time 120 minutes for each network

Geographic Multicast Routing Protocol for MS-WSN 11

The simulation environment and details are outlined in table 1. In order to
keep a similar deployment density over all variations of |V |, we make the network
area vary with the number of deployed nodes, as given by equation 3 in table 1.
We tested the solutions under different network topologies, varying the number
of sensor nodes and the existence of void areas (10 simulations for each scenario).

The performance is evaluated by observing the average of all metrics for
all simulations, and the results are presented with a confidence interval of 95%.
The considered metrics include the Latency, defined by the average time a packet
takes to be routed from the source to all sinks. It is calculated to each network
considering the sum of all latencies divided by the number of received packets.
We also analyze the Maximum Energy Consumption, which regards the node
that consumed the largest amount of energy in the network at the end of the
simulation. It gives an indication of the Network Lifetime, since it shows how
far the node is from the entire depletion of its battery. As per explanation, we
consider a network to be alive as long as all nodes have some energy. Therefore,
network lifetime is considered to be the earliest moment at which a node’s battery
is completely depleted.

Two main network scenarios were considered: with void areas and without
void areas. The results are presented the same way, and we vary the amount
of sensors and sinks in order to evaluate the behavior of the solution when the
network grows.

5.1 Networks without Void Areas

As we can notice in figure 1, GeoM presents a better performance in terms of

Fig. 1. Maximum Energy Consumption results with the network size varying from 50
to 300 nodes and sinks at 10% of the sensor nodes - networks without void areas.

12 L. Leão, V. Felea

Maximum Energy Consumption, with gains varying from 23% to 53%. For both
solutions, the value for the maximum energy consumption increases when the
network grows. However, the increase in GeoM is much smoother compared to
KanGuRou. This is explained by our energy balance strategy and the deviation
factor that distributes the load among other neighbors instead of using the same
path for every forwarding. We can confirm this observation with figure 2, that
shows the evolution of the maximum energy consumption during the simulation
for the scenario with 300 sensor nodes. We can see that GeoM has a much
smoother increase compared to KanGuRou. At the end of the simulation, GeoM
presents half of the value for the maximum energy consumption. In terms of
longevity, the maximum energy consumption for KanGuRou translates into a
faster depletion of the node’s battery.

Fig. 2. Evolution of the maximum consumed energy. Results for 300 sensors and 30
sinks in a network without void areas.

In figure 3 we present the distribution of nodes in terms of energy consump-
tion at the end of the simulation for the scenario with 300 sensor nodes. For
KanGuRou, we can see a huge concentration of nodes with a small energy con-
sumption, and a small group of nodes with a high level of energy consumption.
For GeoM, we can see a different configuration, with a concentration of nodes
at the first half of the range, which shows a better balance of the energy con-
sumption.

The network may face many issues when a node’s battery is completely de-
pleted. The first one is the risk of disconnection, when part of the network is
isolated and unable to forward packets to a sink. Even if a disconnection does
not take place at a first moment, void areas may be created, since the depleted

Geographic Multicast Routing Protocol for MS-WSN 13

Fig. 3. Final State of the Network with the distribution of nodes in terms of consumed
energy. Results for 300 sensors and 30 sinks in a network without void areas.

Fig. 4. Average Latency results with sensor varying from 50 to 300 nodes and sinks at
10% of the sensor nodes in a network without void areas.

nodes are generally the ones within the sink neighborhood. The consequence of
that is an increase of the latency and energy consumption, since a longer path

14 L. Leão, V. Felea

is expected in order to bypass the void area. Another issue is related to the
application, that faces a lack of coverage in the sensed field.

The Latency results are presented in figure 4. We can notice that even with
the energy balance strategy, GeoM presents a performance gain of around 7%.
This as a positive indication, since the energy balance and the deviation fac-
tor strategies normally increase the path length. The performance gain can be
explained by the fact that GeoM duplicates the packets a little earlier than Kan-
GuRou, which speeds up the delivery. This is part of the trade-off between better
energy consumption and latency.

5.2 Networks with Void Areas

The existence of a void area is a problematic and inherent issue in geographic
routing. Strategies must be applied in order to handle the packets entering in a
void area. GeoM deals with void areas using two existing techniques, the right-
hand rule and the passive participation (void announcements) [4]. When a packet
is in recovery mode, after being forwarded to a void area, the next hop decision
does not consider the energy and latency optimizations. Normally, the path to
exit the void area is always the same, regardless the amount of time it is used.
In order to avoid this scenario, GeoM makes use of the void announcements as
a way to prevent packets from entering in a void area, whenever it is possible.
The simulation results show that GeoM is able to handle void areas and provide
performance gains for both the energy and latency.

In figure 5 we can notice a performance gain varying from 5% to 26%. Even
with the existence of void areas, GeoM is capable of distributing the loads and

Fig. 5. Maximum Energy Consumption results with sensor varying from 50 to 300
nodes and sinks at 10% of the sensor nodes in networks with void areas.

Geographic Multicast Routing Protocol for MS-WSN 15

consequently reducing the maximum energy consumption. The network grow
affects GeoM positively, with an increase in the performance gain in relation to
KanGuRou. With the increase of the network size, the nodes in void areas may
be avoided more easily, since both sink options and the possibility of candidate
forwarder intersections are also increased.

We can see in figure 6, for the scenario with 300 sensor nodes, that GeoM and
KanGuRou have a similar behavior in terms of energy consumption over time.
However, GeoM has a slightly better curve compared to KanGuRou, reaching
the end of the simulation with a level of energy consumption that represents less
than 80% of the energy consumed by KanGuRou.

Fig. 6. Evolution of the maximum consumed energy. Results for 300 sensors and 30
sinks (network with void areas).

The distribution of the nodes in terms of energy consumption at the end of
the simulation presented in figure 7 shows that GeoM manages to balance the
energy consumption, even for the networks with void areas. This may represent
an increase of the network lifetime in relation to KanGuRou. If the initial battery
level of the nodes was set to 1J , at the end of the execution, KanGuRou would
already have nodes with depleted batteries, while all nodes for GeoM would still
be alive.

In terms of latency, GeoM presents a performance gain of around 10% in
relation to KanGuRou, as displayed in figure 8. This can be explained by the
void announcements strategy. When packets enter in void areas, the paths be-
come longer as a consequence of the void handling technique to exit the void
area. However, with the nodes announcing their void situation, neighbors try to
forward packets to other directions, avoiding the problematic area.

16 L. Leão, V. Felea

Fig. 7. Final State of the Network with the distribution of nodes in terms of consumed
energy. Results for 300 sensors and 30 sinks in networks with void areas.

Fig. 8. Average Latency results with sensor varying from 50 to 300 nodes and sinks at
10% of the sensor nodes (network with void areas).

Geographic Multicast Routing Protocol for MS-WSN 17

6 Conclusion

This paper presented a new Geographic Multicast Routing solution for Wireless
Sensor Networks with multiple sinks. Our strategy makes use of weighted metrics
to establish the list of forwarder candidates, and search for intersections among
the sinks and candidates in order to avoid duplications. The main goal was to
find a balance between Latency and Network Lifetime optimizations. We tested
our solutions through simulations against another geographic routing strategy
capable of forwarding packets to multiple sinks. The simulation results indicate
that our solution has an overall better performance than the existing protocol,
with maximum gains of approximately 11% for Latency and 54% for Maximum
Energy Consumption.

As future work, we plan to execute real-life experiments for GeoM and Kan-
GuRou using the testbed from the FIT IoT-LAB [7] and evaluate the perfor-
mance of the solution under real conditions.

Acknowledgments. This work is partially supported by the Brazilian National
Council for Scientific and Technological Development (CNPq). Computations
have been performed on the supercomputer facilities of the Mésocentre de calcul
de Franche-Comté.

References

1. Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a short preamble MAC
protocol for duty-cycled wireless sensor networks. In: Proceedings of the 4th Inter-
national Conference on Embedded Networked Sensor Systems. pp. 307–320. ACM
(2006)

2. Buratti, C., Conti, A., Dardari, D., Verdone, R.: An overview on wireless sensor
networks technology and evolution. Sensors 9(9), 6869–6896 (2009)

3. Chakraborty, S., Chakraborty, S., Nandi, S., Karmakar, S.: Fault resilience in sen-
sor networks: distributed node-disjoint multi-path multi-sink forwarding. Journal
of Network and Computer Applications 57, 85–101 (2015)

4. Chen, D., Varshney, P.K.: A survey of void handling techniques for geographic
routing in wireless networks. IEEE Communications Surveys & Tutorials 9(1),
50–67 (2007)

5. Ciciriello, P., Mottola, L., Picco, G.P.: Efficient routing from multiple sources to
multiple sinks in wireless sensor networks. In: European Conference on Wireless
Sensor Networks. pp. 34–50. Springer (2007)

6. Contiki OS: The Open Source OS for the Internet of Things, http://www.contiki-
os.org/, accessed: 2018-03-20

7. Facility, F.I.T.: FIT IoT-LAB, https://www.iot-lab.info/, accessed: 2018-03-20

8. Gao, D., Lin, H., Liu, X.: Routing protocol for k-anycast communication in
rechargeable wireless sensor networks. Computer Standards & Interfaces 43, 12–20
(2016)

9. He, X., Kamei, S., Fujita, S.: Autonomous multi-source multi-sink routing in wire-
less sensor networks. Information and Media Technologies 7(1), 488–495 (2012)

18 L. Leão, V. Felea

10. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient commu-
nication protocol for wireless microsensor networks. In: 33rd Annual Hawaii Inter-
national Conference on System Sciences (HICSS). pp. 1–10. IEEE (2000)

11. Heissenbüttel, M., Braun, T., Bernoulli, T., WäLchli, M.: BLR: beacon-less routing
algorithm for mobile ad hoc networks. Computer communications 27(11), 1076–
1086 (2004)

12. Kim, D., Wang, W., Wu, W., Li, D., Ma, C., Sohaee, N., Lee, W., Wang, Y., Du,
D.Z.: On bounding node–to–sink latency in wireless sensor networks with multiple
sinks. International Journal of Sensor Networks 13(1), 13–29 (2013)

13. Mitton, N., Simplot-Ryl, D., Stojmenovic, I.: Guaranteed delivery for geographical
anycasting in wireless multi-sink sensor and sensor-actor networks. In: 28th Annual
IEEE Conf. on Computer Communications (INFOCOM). pp. 2691–2695 (2009)

14. Mitton, N., Simplot-Ryl, D., Voge, M.E., Zhang, L.: Energy efficient k-anycast
routing in multi-sink wireless networks with guaranteed delivery. In: International
Conference on Ad-Hoc Networks and Wireless. pp. 385–398. Springer (2012)

15. Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-level sensor
network simulation with COOJA. In: Proceedings of 31st IEEE Conference on
Local Computer Networks. pp. 641–648. IEEE (2006)

