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Abstract— We introduce an algorithm to identify the non-
linear dynamics of a class of smart micropositioning systems,
which is modeled as a Hammerstein system, that is, a cascade
of a generalized Prandtl-Ishlinskii (GPI) hysteresis nonlinearity
with a linear dynamic system. The GPI hysteresis nonlinearity,
the linear dynamic system, and the intermediate signal between
them are assumed to be unknown. The first stage in the algo-
rithm is to identify the linear dynamic plant from measurements
of the input and output of the Hammerstein system. Then, the
unknown intermediate signal is reconstructed using the output
and the identified model of the linear system. Finally, the GPI
nonlinearity is estimated using the input and the reconstructed
intermediate signal.

I. INTRODUCTION

Smart positioning actuators, such as piezoelectric and
magnetostrictive actuators, are considered an attractive
choice for micro-positioning applications where fast response
(milliseconds) with high resolution (nanometers) is desired.
These actuators have been used in motion control applica-
tions to deliver fast output displacement in the micro/nano
level in response to the applied inputs (voltage or current
inputs) [1]. However, the advantages of smart positioning
actuators come with the hysteresis nonlinearities in the
output displacement. These nonlinearities cause oscillations
and inaccuracies with positioning errors if not correctly
considered [2]–[4]. Then, it is essential to characterize the
nonlinear dynamics of these smart actuators in order to
propose control techniques that can reduce the positioning
errors. The dynamics of smart positioning actuators can be
characterized by a Hammerstein system, that is, a cascade
of a hysteresis nonlinearity and a linear dynamic system,
see for example [5]–[7]. Different models have been used to
model hysteresis nonlinearties such as the Preisach model,
generalized Prandtl-Ishlinskii (GPI) model, Duhem model,
and Bouc-Wen model.

The GPI model has been recently used in different pre-
cision motion studies to model: (i) voltage-to-displacement
hysteresis loops of piezoelectric actuators, and (ii) current-to-
displacement hysteresis loops of magnetostrictive actuators
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[8]. The GPI model is constructed with a fewer number of
parameters than operator-based hysteresis models, and the
inverse model can be obtained analytically [8]. In this study,
we consider a Hammerstein system to model the nonlinearity
and the dynamics of smart-material based actuators. This
Hammerstein system has been used to model different smart
material-based actuators, see for example [5], [9].

Identification of Hammerstein systems has been studied
in the literature [10]–[16]. However, most of studies con-
sider Hammerstein systems with memeoryless nonlinearities.
Identification of Hammerstein systems in the presence of
hysteresis-backlash and hysteresis-relay nonlinearities was
studied in [17]. However, hysteresis-backlash and hysteresis-
relay nonlinearities cannot describe hysteresis nonlinearities
that appear in smart positioning actuators. In [3], pseudo
random binary sequences was used to identify the linear
dynamic part only of the piezoelectric actuator, while in
[18] neural networks were used to identify a hysteretic
piezoelectric robotic micro-manipulator.

In this paper, we consider the problem of identifying
Hammerstein systems with GPI hysteresis nonlinearities.
This work extends the results in [19], where Hammerstein
systems with Prandtl-Ishlinskii (PI) hysteresis nonlinearities
were considered. We assume that only the input and output of
the Hammerstein system are known, where the intermediate
signal of the Hammerstein system is inaccessible. The first
stage in the algorithm is to identify the linear plant from
measurements of the input and output of the Hammer-
stein system. Then, the unknown intermediate signal in the
Hammerstein system is reconstructed using the output and
the identified model of the linear part of the Hammerstein
system. Finally, the hysteresis nonlinearity is estimated using
the input and the reconstructed intermediate signal.

II. THE HAMMERSTEIN SYSTEM WITH THE GPI MODEL

This section presents the Hammerstein system that char-
acterizes the dynamics of a class of smart material-based ac-
tuators such as piezoelectric and magnetostrictive actuators,
see [2], [7], [20].

A. The Hammerstein system

Consider the discrete-time SISO Hammerstein system
shown in Figure 1, where u is the input, PD : R→ R is the
GPI hysteresis nonlinearity, v is the intermediate signal, and
y is the output of the asymptotically stable, SISO, linear,
time-invariant, discrete-time system G. This approach has
been used in different studies to model the dynamics of
smart material-based actuators, see for example [3], [5], [9].



It is important to mention that the time-invariant discrete-
time system G represents the linear dynamics of the actuator,
and vibrations [21]. The creep can be as well approximated
by a linear behavior enclosed in G, though it is initially a
nonlinear phenomenon [22].

B. The hysteresis model

The GPI hysteresis model has been used to model nonlin-
earties in the output displacement of piezoelectric and mag-
netostrictive actuators [7], [23]. This model is constructed
based on a linear combination of play hysteresis operators.
For all k ≥ 0, the output v of the GPI model is

v(k)
4
= PD[u](k) = P ◦ D[u](k), (1)

where D[u](k) is a memoryless model constructed with
deadzone operators Zηi as

D[u](k)
4
=

m∑
i=1

giZηi [u](k), (2)

where m is the number of deadzone operators, g1, . . . , gm are
positive weights, η1, . . . , ηm are positive constants represent
thresholds of the deadzone operators. For convenience, we
define z(k)

4
= D[u](k) and zi(k)

4
= Zηi [u](k). Then,

zi(k) =


u(k)− ηi, u(k) > u(k − 1) andu(k) > ηi,

u(k) + ηi, u(k) < u(k − 1) andu(k) < −ηi,
0, otherwise,

(3)

which can be written as

zi(k) = u(k) +Rηi(k), (4)

where

Rηi(k)
4
=


−ηi, u(k) > u(k − 1) andu(k) > ηi,

ηi, u(k) < u(k − 1) andu(k) < −ηi
−u(k), otherwise.

(5)

Therefore,

z(k) =

m∑
i=1

gizi(k)

=

m∑
i=1

gi(u(k) +Rηi(k))

=

m∑
i=1

giu(k) +

m∑
i=1

giRηi(k). (6)

PD G
u y0v

Fig. 1. Hammerstein System with the GPI hysteresis model and the linear
time-invariant discrete-time system G. In this systems, u is the input, PD
is the hysteresis nonlinearity, v is the unknown intermediate signal, and y
is the output.

For all i = 1, . . . , n, let Fri denote a hysteresis play
operator with threshold ri > 0. Then, Fri can be expressed
as

Fri [z](k) = max{z(k)− ri,min{z(k) + ri,Fri [z](k − 1)}},
(7)

which is also equivalent to

Fri [z](k) = (8)
z(k) + ri, z(k) < z(k − 1) and z(k) + ri < Fri [z](k − 1),

z(k)− ri, z(k) > z(k − 1) and z(k)− ri > Fri [z](k − 1),

Fri [z](k − 1), otherwise.

Note that (8) can be written as

Fri [z](k) = z(k) + qi[z](k), (9)

where

qi[z](k)
4
= (10)

ri, z(k) < z(k − 1) and z(k) + ri < Γri [z](k − 1),

−ri, z(k) > z(k − 1) and z(k)− ri > Γri [z](k − 1),

Fri [z](k − 1)− z(k), otherwise.

The output v of the GPI model can be written as

v(k)
4
=

n∑
i=1

piFri [z](k), (11)

where for all i = 1, . . . , n, pi are positive weights. Then,
using (6) and (9), (11) becomes

v(k) =

n∑
i=1

pi(z(k) + qi[z](k))

=

n∑
i=1

piz(k) +

n∑
i=1

piqi[z](k)

=

n∑
i=1

pi

m∑
j=1

gju(k)+

n∑
i=1

pi

m∑
j=1

gjRηj (k)+

n∑
i=1

piqi[z](k)

=

 n∑
i=1

pi

m∑
j=1

gj

u(k) + ρ(k)

= αu(k) + ρ(k), (12)

where

α
4
=

n∑
i=1

pi

m∑
j=1

gj ∈ R, (13)

ρ(k)
4
=

n∑
i=1

pi

m∑
j=1

gjRηj (k) +

n∑
i=1

piqi[z](k). (14)

For all j ≥ 0, let Hj denote the jth Markov (impulse
response) parameter of G. Then, y0 can be written as [24]

y0(k) =

∞∑
j=0

Hjv(k − j). (15)



Moreover, using (12), (15) can be written as

y0(k) =

∞∑
j=0

Hj(αu(k − j) + ρ(k − j))

= α

∞∑
j=0

Hju(k − j) +

∞∑
j=0

Hjρ(k − j). (16)

III. IDENTIFICATION OF THE LINEAR PART OF THE
HAMMERSTEIN SYSTEM

Consider the FIR model of G given by [24]

Gµ(q)
4
=

µ∑
i=0

Hiq
−i, (17)

where µ ≥ 0 is the order of Ĝµ, q−1 is the backward shift
operator, and for all i = 0, . . . , µ, Hi is the ith Markov
parameter of G.

For all k ≥ 0, (15) can be written as

y0(k) = y0,µ(k) + eµ(k), (18)

where

y0,µ(k)
4
=

min{µ,k}∑
j=0

Hjv(k − j), (19)

eµ(k)
4
= y0(k)− y0,µ(k) (20)

are the output of the FIR model (17) of G, and the error
in the output of the FIR model at time k. Taking the limit
of (19) as µ tends to infinity, and using (16) yields, for all
k ≥ 0,

lim
µ→∞

y0,µ(k) =

k∑
j=0

Hjv(k − j) = y0(k). (21)

Therefore, for all k ≥ 0,

lim
µ→∞

eµ(k) = y0(k)− lim
µ→∞

y0,µ(k) = 0. (22)

Consider the identification problem shown in Figure 2,
where u is a deterministic signal that is persistently exciting
of a sufficient order, w is a realization of a zero-mean,
stationary, white, ergodic, Gaussian random process W , and
the intermediate signal v is unknown.

Note that (18) can be expressed as

y0(k) = θµφv(k) + eµ(k), (23)

PD G

ID

u v y0

v wy

Fig. 2. Identification of the Hammerstein system, where PD is the GPI
hysteresis nonlinearity, G is a linear system, u is the applied input, y is
the measured output, w is the output sensor noise, and v is the unknown
intermediate signal.

where

θµ
4
=
[
H0 · · · Hµ

]
,

φv(k)
4
=
[
v(k) · · · v(k − µ)

]T
.

Moreover, for all k ≥ 0

y(k) = θµφv(k) + w(k) + eµ(k). (24)

The least squares estimate θ̂µ,` of θµ is given by

θ̂µ,` = arg min
θ̄µ

∥∥Ψy,` − θ̄µΦµ,`
∥∥

F
, (25)

where θ̄µ ∈ R1×(µ+1),

Ψy,`
4
=
[
y(µ) · · · y(`)

]
,

Φµ,`
4
=
[
φµ(µ) · · · φµ(`)

]
,

φµ(k)
4
=
[
u(k) · · · u(k − µ)

]T
,

and ` is the number of samples.
The eigensystem realization algorithm (ERA), which is

based on the Ho-Kalman realization theory, can be used to
construct a transfer function estimate of G from the estimated
Markov parameters θ̂µ,` [25], [26].

IV. CONSISTENCY ANALYSIS

It follows from (25) that the least squares estimate θ̂µ,` of
θµ satisfies

Ψy,`Φ
T
µ,` = θ̂µ,`Φµ,`Φ

T
µ,`. (26)

Moreover, it follows from (24) that

Ψy,` = θµΦv,` + Ψw,` + Ψeµ,`, (27)

where

Φv,`
4
=
[
φv(µ) · · · φv(`)

]
, (28)

Ψw,`
4
=
[
w(µ) · · · w(`)

]
, (29)

Ψeµ,`
4
=
[
eµ(µ) · · · eµ(`)

]
. (30)

Using (27), (26) becomes

(θµΦv,` + Ψw,` + Ψeµ,`)Φ
T
µ,` = θ̂µ,`Φµ,`Φ

T
µ,`. (31)

Using (12), note that for all k ≥ 0,

φv(k) = αφµ(k) + φρ(k), (32)

where

φρ(k)
4
=
[
ρ(k) · · · ρ(k − µ)

]T
. (33)

Therefore, using (32) we can write

Φv,` = αΦµ,` + Φρ,`, (34)

where

Φρ,`
4
=
[
φρ(µ) · · · φρ(`)

]
. (35)

Then, using (34), (31) can be written as

αθµΦµ,`Φ
T
µ,` + θµΦρ,`Φ

T
µ,` + Ψw,`Φ

T
µ,` + Ψeµ,`Φ

T
µ,`

= θ̂µ,`Φµ,`Φ
T
µ,`. (36)



Since w is a realization of a stationary ergodic random
process, then dividing (36) by ` and taking the limit as `
tends to infinity yields

αθµ lim
`→∞

1

`
Φµ,`Φ

T
µ,` + θµ lim

`→∞

1

`
Φρ,`Φ

T
µ,` + lim

`→∞

1

`
Ψw,`Φ

T
µ,`

+ lim
`→∞

1

`
Ψeµ,`Φ

T
µ,` = lim

`→∞
θ̂µ,` lim

`→∞

1

`
Φµ,`Φ

T
µ,`. (37)

Since w is a realization of a white, zero-mean random
processes and u is deterministic, then lim`→∞

1
`Ψw,`Φ

T
µ,` =

01×µ. Therefore, (37) becomes

αθµ lim
`→∞

1

`
Φµ,`Φ

T
µ,` + θµ lim

`→∞

1

`
Φρ,`Φ

T
µ,`

+ lim
`→∞

1

`
Ψeµ,`Φ

T
µ,` = lim

`→∞
θ̂µ,` lim

`→∞

1

`
Φµ,`Φ

T
µ,`. (38)

Since u is a persistently exciting signal of sufficient order,
then Q

4
= lim`→∞

1
`Φµ,`Φ

T
µ,` has full rank. Therefore,

multiplying (38) by Q−1 from the right yields

αθµ + θµRQ
−1 + lim

`→∞

1

`
Ψeµ,`Φ

T
µ,`Q

−1 = lim
`→∞

θ̂µ,`, (39)

where R
4
= lim`→∞

1
`Φρ,`Φ

T
µ,`.

Note that

R = lim
`→∞

1

`
Φρ,`Φ

T
µ,`

= lim
`→∞

1

`

 ρ(µ) · · · ρ(`)
...

. . .
...

ρ(0) · · · ρ(`− µ)


 u(µ) · · · u(0)

... · · ·
...

u(`) · · · u(`− µ)



= lim
`→∞

1

`



∑̀
j=µ

ρ(i)u(i) · · ·
∑̀
j=µ

ρ(i)u(i− µ)

...
. . .

...∑̀
j=µ

ρ(i− µ)u(i) · · ·
`−µ∑
j=0

ρ(i)u(i)


.

(40)

Moreover, note that

Q = lim
`→∞

1

`
Φµ,`Φ

T
µ,`

= lim
`→∞

1

`

 u(µ) · · · u(`)
...

. . .
...

u(0) · · · u(`− µ)


 u(µ) · · · u(0)

... · · ·
...

u(`) · · · u(`− µ)



= lim
`→∞

1

`



∑̀
j=µ

u(i)2 · · ·
∑̀
j=µ

u(i)u(i− µ)

...
. . .

...∑̀
j=µ

u(i)u(i− µ) · · ·
`−µ∑
j=0

u(i)2


.

(41)

Note from (40) and (41) that if the entries of R are much
smaller than the entries of Q, then RQ−1 can be neglected.
Therefore, we choose the amplitude of the input signal u

to be as large as possible. Assuming that RQ−1 can be
neglected, (39) becomes

αθµ + lim
`→∞

1

`
Ψeµ,`Φ

T
µ,`Q

−1 ≈ lim
`→∞

θ̂µ,`. (42)

Note from (22) and (30) that, as µ increases, the entries of
Ψeµ,` become smaller. Therefore, we choose µ to be large
enough such that

lim
`→∞

1

`
Ψeµ,`,µΦT

u,`,µ ≈ 01×(µ+1). (43)

Therefore, (42) becomes

lim
`→∞

θ̂µ,` ≈ αθµ. (44)

It follows from (44) that θ̂µ,` is approximately a semiconsis-
tent estimate of θµ, that is, lim`→∞ θ̂µ,` is a correct estimate
of θµ up to an unknown scalar factor.

V. IDENTIFICATION OF THE HYSTERESIS NONLINEARITY

Identification of the hysteresis nonlinearity is performed
by first estimating the unknown intermediate signal v, and
then using the input u and the estimated intermediate signal
to construct an estimate of the hysteresis nonlinearity.

Note that, if we use y as an input to the transfer function
G−1 = 1/G, then the output of G−1 is the unknown
intermediate signal v. Assuming that Ĝ is an estimate of the
transfer function G, then using y as an input to the transfer
function Ĝ−1 = 1/Ĝ, the output of Ĝ−1 is an estimate v̂ of
the unknown intermediate signal v. However, if Ĝ is strictly
proper, then Ĝ−1 is improper, that is, noncausal. Moreover,
if Ĝ has a nonminimum-phase zero, that is, a zero that is
outside the closed unit disk, then Ĝ−1 is unstable. In order
to simulate Ĝ−1 with y as an input, we need to circumvent
these two problems.

Noncausal FIR models have been used to obtain asymp-
totically stable approximations of unstable and noncausal
systems [24]. A noncausal FIR model of a transfer function
H is a truncation of the Laurent expansion of H in an
annulus that contains the unit circle [24].

A. Asymptotically Stable Inversion of G

Let A(ρ1, ρ2)
4
= {z ∈ C : |z| > ρ1 and |z| < ρ2} denote

an open annulus in the complex plane centered at the origin
with inner radius ρ1 and outer radius ρ2, where ρ1 < 1 < ρ2.
Then, the Laurent expansion of Ĝ−1 in A(ρ1, ρ2) can be
written as

Ĝ−1(z) =

∞∑
i=−∞

ĥiz
−i, (45)

where ĥi is the ith coefficient of the Laurent expansion of
Ĝ−1 in A(ρ1, ρ2). Truncating the sum in (45) yields the
truncated model

Ĝinv,r,d(q)
4
=

r∑
i=−d

ĥiq
−i, (46)

where r is the order of the causal part of Ĝinv,r,d and d
is the order of the noncausal part of Ĝinv,r,d. Note that all



poles of Ĝinv,r,d are located at zero, and thus Ĝinv,r,d is an
asymptotically stable approximation of Ĝ−1. Assuming that
Ĝ−1 has no poles on the unit circle, then we can find finite
r and d such that the ‖Ĝ−1 − Ĝinv,r,d‖ is negligible [24,
Theorem 4.1], [27].

Using y as an input to Ĝinv,r,d, and using (46), yields, for
all k ≥ r,

v̂(k) = Ĝinv,r,d(q)y(k) =

r∑
i=−d

ĥiy(k − i). (47)

Note from (47) that computing v̂(k) requires knowledge of
y(k + d), . . . , y(k − r), which makes Ĝinv,r,d noncausal.

B. Identification of the Hysteresis Nonlinearity

To obtain the shape of the hysteresis loop, we run the
Hammerstein system with a new input signal, u, which is
a single sinusoidal signal with a specific frequency. Then,
we use the output of the Hammerstein system due to u
and Ĝinv,r,d obtained from the previous subsection to con-
struct an estimate v̂ of the intermediate signal v. Then, we
plot v̂ versus u to obtain a nonparametric model of the
hysteresis nonlinearity. If the hysteresis nonlinearity is rate
independent, then the estimated hysteresis nonlinearity is
independent of the frequency of the single sinusoidal input.

C. Numerical Example

Consider the piezoceramic actuator described in [28],
which is characterized by the transfer function

G(s) =
3.391× 1010

s3 + 3759s2 + 2.063× 107s+ 7.514× 1010
(48)

and the GPI hysteresis model described by r1 = 0.0769,
r2 = 0.1538, r3 = 0.2307, r4 = 0.3076, r5 = 0.3845,
r6 = 0.4614, r7 = 0.5383, r8 = 0.6152, p1 = 3.6590,
p2 = 2.8098, p3 = 2.1577, p4 = 1.6569, p5 = 1.2724, p6 =
0.9771, p7 = 0.7503, p8 = 0.5762., η1 = −6.4, η2 = −5.6,
η3 = −4.8, η4 = −4.0 η5 = −3.2, η6 = −2.4, η7 = −1.6,
η8 = −0.8, η9 = 0, η10 = 0.8, η11 = 1.6, η12 = 2.4,
η13 = 3.2, η14 = 4.0, η15 = 4.8, η16 = 5.6, η17 = 6.4,
g1 = −0.198, g2 = −0.057, g3 = −0.1669, g4 = −0.13,
g5 = −0.15, g6 = −0.037, g7 = 0.02, g8 = 0.23, g9 =
0, g10 = −0.249 , g11 = −0.004, g12 = −0. − 0.2176,
g13 = −0.0734, g14 = 0.0568, g15 = −0.058, g16 = −0.13,
g17 = −2.479.

For all k ≥ 0, let u(k) =
∑1000
i=1 5 sin(ωiTsk), where for

all i = 1, . . . , 1000, ωi = i. We consider the sampling time
of Ts = 1× 10−5 sec. Then

G(z) =
0.256z2 + 0.02439z + 0.1349

z3 − 0.5746z2 + 0.4949z − 9.137× 10−17
. (49)

To identify G, we consider u and y with least squares and
an FIR model with order µ = 30 and ` = 100, 000 data
samples. Figure 3 shows the Markov parameters of G and
the estimated Markov parameters of G after scaling. Then,
we construct an IIR model Ĝ of G using ERA and the
estimated Markov parameters of G after scaling. Figure 4
shows the Bode plot of G and Ĝ. We apply y as an input
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Fig. 3. Markov parameters of G and the estimated Markov parameters of
G after scaling.
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Fig. 4. Bode plot of G and the identified model Ĝ after scaling.

to the noncausal FIR approximation Ĝinv,r,d of Ĝ−1. Figure
5 shows the intermediate signal v and the estimate v̂ of v,
obtained by applying y as an input to the noncausal FIR
approximation Ĝinv,r,d of Ĝ−1. Next, suppose that for all
k ≥ 0, u(k) = 10 sin(Tsk). We use the output y due to the
sinusoidal input u and the noncausal FIR approximation of
Ĝ−1 to estimate the unknown intermediate signal v̂ due to
the sinusoidal input u. Figure 6(top) shows the intermediate
signal v and the estimate v̂ of v, obtained by applying y
as an input to the noncausal FIR approximation Ĝinv,r,d of
Ĝ−1. Moreover, Figure 6(bottom) shows the hysteresis loop
obtained using u and v and the estimated hysteresis loop
obtained using u and v̂.

VI. CONCLUSIONS

In this paper, we presented an algorithm to identify non-
linear dynamics in piezomicropositioning actuators, which
are modeled as Hammerstein systems, i.e. a cascade of a
GPI hysteresis nonlinearity and a linear dynamic system.
Least squares with an FIR model were used to identify the
linear plant using the input and output of the Hammerstein
system. The ERA algorithm was used to construct a transfer
function model from the estimated FIR model. A noncausal
FIR model was used to obtain an asymptotically stable
approximation of the inverse of the estimated linear part,
which was used along with the output of the Hammerstein
system to obtain an estimate of the unknown intermediate
signal. Finally, the input to the Hammerstein system and the
estimate of the intermediate signal were used to obtain an
estimate of the hysteresis nonlinearity.
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Fig. 5. Plot of the intermediate signal v and the estimate v̂ obtained by
applying y as an input to the noncausal FIR approximation Ĝinv,r,d of
Ĝ−1.
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Fig. 6. (Top) Intermediate signal v and estimated intermediate signal v̂
obtained by applying y as an input to the noncausal FIR approximation
Ĝinv,r,d of Ĝ−1, where for all k ≥ 0, u(k) = sin(Tsk). (Bottom)
Hysteresis loop obtained by plotting v versus u and estimated hysteresis
loop obtained by plotting v̂ versus u.
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