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Abstract

Most often, image segmentation is not fully automated and a user is required

to lead the process in order to obtain correct results. In a medical context, seg-

mentation can furnish a lot of information to surgeons, but this task is rarely

executed. Artificial Intelligence (AI) is a powerful approach for devising a vi-

able solution to fully automated treatment. In this paper, we have focused on

kidneys deformed by nephroblastoma. Yet, a frequent medical constraint is en-

countered which is a lack of data with which to train our system. In function

of this constraint, two AI approaches were used to segment these structures.

First, a Case Based Reasoning (CBR) approach was defined which can enhance

the growth of regions for segmentation of deformed kidneys with an adapta-

tion phase to modify coordinates of recovered seeds. This CBR approach was

confronted with manual region growing and a Convolutional Neural Network

(CNN). The CBR system succeeded in performing the best segmentation for

the kidney with a mean Dice of 0.83. Deep Learning was then examined as

a possible solution, using the latest performing networks for image segmenta-
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tion. However, for relevant efficiency, this method requires a large data set. An

option would be to manually segment only certain representative slices from a

patient and, using them, to train a Convolutional Neural Network how to seg-

ment. In this article the authors propose an evaluation of a CNN for medical

image segmentation following different training sets with avariable number of

manual segmentations. To choose slices to train the CNN, an Overlearning Vec-

tor for Valid Sparsed SegmentatIONs (OV
2

ASSION) was used, with the notion

of gap between two slices from the training set. This protocol made it possible

to obtain reliable segmentations of tumor per patient with a low data set and

to determine that only 26% of initial segmented slices are required to obtain a

complete segmentation of a patient with a mean Dice of 0.897.

Keywords: Case-Based Reasoning, Convolutional Neural Network,

Segmentation, Tumor, Healthcare imaging, Artificial Intelligence

1. Introduction

Nephroblastoma, also called Wilms tumor, is one of the most frequent ab-

dominal tumors observed in children (generally in both boys and girls, 1 to 5

years of age), representing 5 to 14% of malignant pedriatric tumors. As indi-

cated by its name, this type of tumor is situated in the kidney. Most often, its5

initial diagnosis is based on imaging. Generally, ultrasound observations are first

planned in order to confirm the tumor’s existence and to approximate its posi-

tion. A medical scan then locates it with greater accuracy, along with affected

organs and healthy tissues. Radiologists and surgeons need 3-Dimensional (3D)

representations of the tumor and the border organs in order to establish the10

diagnosis, to plan the surgery (estimated quantity of blood, specialized equip-

ment needed, estimation of the duration of the surgery, etc.) and also in order

to lead the surgeon’s actions during surgery.

Segmentation is one of the key steps in the construction of such a 3D rep-

resentation. During this process, each pixel of all scans has to be affected to15

one and only one region. Each region represents a given structure (right or left
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kidney, medulas, tumors, muscles, veins, cavities, etc.). The problem resides in

the unforeseeable nature of the situation of the kidneys, their shapes and areas

since the area covered by the tumor is totally unpredictable and may differ from

one patient to another. Consequently, radiologists and surgeons must lead and20

verify the segmentations of more than 200 scans manually, which, in practice,

is out of the question. Artificial Intelligence (AI) is a powerful tool that may

provide a viable solution for a fully automated treatment.

Our ambition is double. First, we want to introduce a process based on

expert knowledge and experience in order to lead the segmentation process. We25

have thus considered the Case-Based Reasoning (CBR) approach to be suited

to this particular type of problem. This paper presents a CBR system which

can enhance segmentation of kidneys deformed by nephroblastoma. Second,

Deep Learning would be also an interesting solution with the latest performing

networks for image segmentation, but only if the difficulties of data lacking are30

overcome. We also discuss a method used to train CNNs from a small training

set (samples) in order to segment the totality of a patient’s abdomen.

The originality of our CBR approach resides in the way our CBR system

adapts solutions from past situations. The principle of the region-growing seg-

mentation consists in placing seeds at different points of the image to be seg-35

mented, and then to verify whether the pixels around these seeds have grey

levels close enough to be integrated into the same region following a local thresh-

old (difference between the candidate pixel and its neighborhood) and a global

threshold (difference between the candidate pixel and the regional mean). This

algorithm allows each region to grow until each pixel of the picture in question40

belongs to one and only one region. The main problem with the region-growing

method is that a user needs to manually place the seeds in the image. Auto-

mated methods exist but are not efficient enought every time and often produce

an over-segmentation. Our idea consists of using a CBR system which places the

seeds in the right places, and to then perform a region-growing segmentation.45

In addition, our system can modify the position of a seed during the adaptation

phase in order to choose a pixel which is a better match for the expected grey

3



level of a kidney.

The main limitation of Deep Learning is the size of data for the training in

order to keep a good generalization capacity. In a medical context, this limita-50

tion represents one of the main obstacles to overcome. Rather than trying to

train the network on a representative training set, the idea is to perform an over-

learning with somes slices, manually segmented by a surgeon, from a patient we

want to segment. Yet, we need to determine the number and position of required

manual segmentations for relevant results. We introduce notions of vector and55

gap to select slices, perform the training and evaluate computed outputs thanks

to a protocol called Overlearning Vector for Valid Sparsed SegmentatIONs (OV
2

ASSION).

Following this introduction, a brief related work section is realized about

images segmentation with AI approaches. In the third part, the CBR system60

we have designed is presented in order to compensate for the unpredictability of

kidney tumor shapes: its case representation and all the phases of the system,

accentuating the adaptation phase. This paper also presents our gap CNN

training method. In the fourth part, the performances and evaluations of our

methods are presented (CBR and gap approach); these results are then discussed65

regarding our general purpose.

2. Related work

Many research studies relative to segmentation enhanced by AI are found

in the literature. Indeed, current segmentation methods are enhanced by CBR

(Perner (1999, 2001); Frucci et al. (2008)), genetic algorithms (Golobardes et al.70

(2002)), knowledge stored in ontologies (Colliot et al. (2006); Hudelot et al.

(2008); Trzupek et al. (2011); Burgos-Artizzu et al. (2009)), Markov random

fields (Kato et al. (2012)) and with Deep learning (Litjens et al. (2017)).

Deep learning (like Convolutional Neural Network (CNN)) is one of the

most widely experimented, efficient and promising tools. The term is actually75

a generic name which refers to a set of tools that come from Artificial Neural
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Networks (ANN). The first Fully Convolutional Network (FCN) was designed in

2015 by Long et al. (2015) and gives impressive performances. E-Net (Efficient

Neural Network) in Paszke et al. (2016) and SegNet in Badrinarayanan et al.

(2015) are convolutional networks developed in order to perform segmentation of80

indoor scenes and road scenes in real-time. DeconvNet (Deconvolution Network)

is a CNN whose principle consists of aggregating a convolutional network to a

deconvolutional network (Noh et al. (2015)), while DecoupledNet (Hong et al.

(2015)) is similar but with bridging layers serving as intermediaries between the

two networks. Thong et al. (2016) used CNN in order to perform segmentation of85

healthy kidneys. Their network is not fully convolutional and classifies each pixel

separately via a window. They moved this window along the image to segment

all parts of the kidney. Zhou et al. (2017) suggest a 3D segmentation of CT-

scans from 2D slices in three directions by means of a fuzzy localization of organs

(bounding box), a segmentation of each 2D slice and a majority voting. The90

results were good, but no attempt was made to segment a tumoral kidney, thus

presenting a difficulty. Actually, convolutional networks must first be trained to

recognize the shapes of these organs. Since this study was focused on healthy

organs, their shapes and areas are more or less the same from one subject to

another. In contrast, our study aims at performing segmentation of tumoral95

kidneys with unpredictable shapes and situations, with very different forms

from one patient to another. In the biology field, the most widely used FCN

for these purposes is U-Net by Ronneberger et al. (2015). A 3D variation of U-

Net was proposed in 2016 Çiçek et al. (2016) and evaluated on Xenopus kidney

embryos from confocal microscopy images. The Originality of this paper resides100

in the training method used, with a few slices annotated by the user, prior to a

complete segmentation calculation with a CNN during the second phase.

Brain tumor images from the 2015 Brain Tumor Segmentation Challenge

(BRATS) were segmented by DeepMedic network, obtaining a mean Dice of

0.898 with Conditional Random Field (CRF) post-processing Kamnitsas et al.105

(2017). More recently, Xia & Kulis (2017) designed W-Net, an unsupervised

CNN based on U-Net, inside an encoder-decoder network, with CRF post-

5



processing. An unsupervised method would be a great advantage for medi-

cal applications, where image labeling is a critical issue. Results are positive

but the images used were much simpler than medical images. Panigrahi et al.110

(2018) used in 2018 a fuzzy c-means clustering combined with multi-scale vec-

tor field convolution in order to segment breast tumors in ultrasound images.

Lim & Mandava (2018) suggested a semi-automatic approach for segmentation

of BRATS images but only with an average Dice accuracy of 0.7. Consider-

ing MRI brain images have more contrasts and less noise than CT-Scans, this115

approach does not seem relevant in our context.

Though, in recent studies, Deep learning appears to give the most accurate

results, this technique requires a lot of data in order to be trained. We can

also find some studies with an unsupervied learning. In contrast, CBR gives an

advantage to knowledge and enriches itself following its experiments (Kolodner120

(2014)). A large number of CBR systems designed for Health Science (CBR-HS)

can also be found in Diaz et al. (2006); Montani (2009); Marling et al. (2014);

Perner & Attig (2011); Attig & Perner (2012); Henriet et al. (2014b); Henriet &

Lang (2014). In particular, Perner (1999) designed a system for segmentation

of brain images with a cut histogram method. Frucci et al. (2008) adapted125

and improved this system with a watershed method. We chose to implement a

CBR system with a region-growing method but, in order to place seeds in the

optimum position, we needed an adaptation phase.

Many adaptation strategies can be found in the literature. Adaptation by

generalization/specialization requires a hierarchical organization of the CBR130

source cases according to generalization/specialization relations. Some charac-

teristics are hidden in the generalization process whereas special ones are added

to the general case during the specialization process. Adaptation using Adapta-

tion Rules (Melis et al. (1998)) consists of computing a solution for a target case

by applying a function which takes as parameters the target case, a source case135

that presents some similarities and its solution. Differential Adaptation (Fuchs

et al. (2000)) is based on the evaluation of the variations between the source

and target cases: an approximate solution to the target case is computed by
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applying the variations between the two cases to the solution for the source case

under consideration. Conservative Adaptation (Lieber (2007)) is based on the140

Revision Theory which considers knowledge updates. This kind of adaptation

consists of minimizing the modifications to be applied to the knowledge and

has been applied to the resolution of spatial and temporal problems in Dufour-

Lussier et al. (2012) and also to oncology in d’Aquin et al. (2006). Cordier et al.

(2006) used Influence functions that link variations in problem descriptors to145

those in solution descriptors. In the CBR-HS EquiVox, an adaptation based on

rules defined by experts’ experiences and Artificial Neural Networks (ANN) has

been implemented and enhanced by a precision combination vector (Henriet &

Chatonnay (2013); Henriet et al. (2014a)). In the present study, the neighbor-

hoods of the seeds are explored in order to match the desired grey levels as much150

as possible. Consequently, our adaptation is a kind of Conservative Adaptation

led by rules.

3. Materials and Methods

Two methods are presented in this section. First, the CBR system associated

with a region growing process is explained. The CNN training method from a155

small data set for tumor segmentation (OV
2

ASSION) is then presented.

3.1. CBR system

This part of the paper presents the CBR system defined for image segmenta-

tion with the region-growing method, as summarized in Figure 1. All the CBR

phases are explained below. Our system comes from a CT-scan and seeks the160

closest stored image already segmented in the case base. It calculates a similar-

ity value for each stored case and, during a retrieval phase, extracts the source

case with the highest similarity. Then, extracted parameters of segmentation

are adapted to the current case via an adaptation phase. These adapted param-

eters are used to perform a new segmentation. Finally, the result is evaluated by165

an expert and stored in the case base as a new source case if the segmentation

is relevant.
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Figure 1: Overview of our CBR system

3.1.1. Case model approach

A case is composed of two parts: the Problem and the Solution. The Problem

part describes the characteristics of the problem to be solved, and the Solution170

part provides the way to solve it. The case model of CBR is described in Figure

2, with the left side representing the Problem and the right side representing

the Solution.

In our study, the Problem part has to describe the CT-images, i.e. descrip-175

tors that provide information about the structure or the statistics of the image.

The Solution part should give the seed locations and the thresholds for the

region-growing algorithm.

As in Attig and Perner’s approach (Perner & Attig (2011); Attig & Perner180

(2012, 2009)), the Problem part of our cases is composed of:

• meta-data representing the information of the patient: sex, age, height

and weight;
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• statistical image information: mean, kurtosis, skewness and variance;

The Solution part of our cases contains the values of the thresholds (local and185

global) for each structure to segment, a list of positions for the seeds and a list

of pretreatments (giving the order of the filters to apply and their parameters).

We use three different pretreatments in order to enhance the contrast of the

images: histogram equalization, median filter and unsharp mask. Each image

has its own characteristics, thus it is necessary to add the preprocessing to the190

Solution part, in order to fit each case.

Case =



patient sex

patient age

patient height

patient weight

image mean

image kurtosis

image skewness

image variance



+


thresholds for each structure

list of pretreatments

2D coordinates of kidney seeds



Description of problem part Description of solution part

Figure 2: The CBR case model: problem part and solution part

3.1.2. Retrieval phase

This section describes how the retrieval phase is performed using a similarity

calculation between the stored cases.

As explained in the previous section, our case base is composed of two types195

of data: meta-data and image characteristics (see section 3.1.1). We tested

two variants of similarity formula between two images x and y. First, we

used Perner’s formula as in Perner (1999), called s1(x, y) with a component

SMd(x, y) for meta-data (a derivation of Tversky index) and another SI(x, y)

for image information. The second is a hybrid formula called s2(x, y). It takes200

back the meta-data formula of Perner SMd(x, y) but uses MSSIM (Mean Struc-
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tural SIMilarity) from Wang et al. (2004) criteria (MSSIM(x, y)) for the image

characteristics. The MSSIM criteria is an improvement of the SSIM (Structural

Similarity) criteria that is commonly used in image compression. MSSIM uses

an iterative windowing to increase the capacity of structural comparison on im-205

ages (i.e. each window describes an ROI (Region Of Interest) which is compared

independently). The following formulas show the construction of both of the

similarity calculations between two images x and y (s1(x, y) and s2(x, y)):

s1(x, y) =
1

2
(SMd(x, y) + SI(x, y)) (1)

s2(x, y) =
1

2
(SMd(x, y) +MSSIM(x, y)) (2)

The meta-data component is computed as follows:

SMd(x, y) =
|Ai|

α|Ai|+ β|Di|+ γ|Ei|
(3)

where Ai is the number of common features between x and y, Di the features210

only in x and Ei the features only in y.α, β and γ are weight factors such as

α = β = 1 and γ = 0.5. Weight values come from Perner (1999).

The image component in s1(x, y) is:

SI(x, y) =
1

K

K∑
i=1

wi|
Cix − Cimin

Cimax − Cimin
− Ciy − Cimin

Cimax − Cimin
| (4)

Cix and Ciy are the ith feature of both of the images x and y. Cimin and

Cimax are the minimum and the maximum of the ith feature in the case base,215

respectively. wi is a weight factor which allows to ponder each image features.

In our study, all weight factors are set to 1.

The image component in s2(x, y) is:

MSSIM(x, y) =
1

M

M∑
i=1

SSIM(xi, yi) (5)
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where M is the number of windows and SSIM is

SSIM(x, y) =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(6)

µ is the mean, σ is the standard deviation and C1 = 0.01∗L and C2 = 0.03∗L220

with L = 255.

3.1.3. Adaptation phase

In our system, adaptation consists of correctly positioning the seeds. Since

the tumor form and position are unpredictable, kidney position is vulnerable to

errors. Moreover, the kidney may be a small region, especially when the tumor225

crushes it. Consequently, the retrieved case is not always exactly the same as

the new case we want to solve. So, seed position has to be adapted, especially

for small regions..

We assumed that after the retrieval phase, the position of a seed is inside

or close to its dedicated region. After applying the pretreatments, we figured230

out that the grey-level intensity of an object to segment is almost the same.

Therefore, we can automatically infer the correct position of seeds considering

the grey-level intensity of the pixel. We defined a coherence interval for each

small object to segment, corresponding to an interval of grey-level intensity in

which a seed must be situated. With the following test we can define a procedure235

to verify whether or not a seed belongs to its dedicated region:

∀seed, isCorrectlyP laced(seed) = true

if I(seed) ∈ CIkidney/CIkidney = [220, 255]
(7)

From this test, we defined an algorithm that can place the seed in the cor-

rect position on the image (i.e. in a pixel belonging to the kidney). Figure 3

illustrates the iterative extending of the neighbors from the initial seed position.

The main idea is to evaluate the seed’s neighbors (8-connected), and check their240

coherence using the test presented above. If no candidate satisfies the test, we

iteratively expand the neighbors’ scope until we find a coherent pixel. In Figure
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3, each square represents a pixel of the image: in the first iteration we evaluate

the white seed’s direct neighbors, in the second one we increase the scope to the

pixels at a distance of two from the seed, and so on.245

Figure 3: Overview of the evaluated neighbours during the execution of the adaptation algo-

rithm (for the position of the seeds) on 3 iterations

Algorithm 1 presented below gives the details of this process. Giving a seed

S and a coherence interval CI, iit returns the 2D coordinate representing the

seed’s adapted position. For each evaluated neighbor, the test presented above

is performed to check whether or not the pixel is coherent, and, at each iteration,

the scope (α) is increased.250

Figure 4 shows an example of execution of the algorithm. From the initial

seed (in white), we expand twice until we reach a coherent candidate (the black

pixel), which is part of the kidney region according to its grey-level intensity

(> 220).

3.1.4. Revision and Capitalization phases255

As presented in Figure 1, all these phases are conducted by an expert. The

expert evaluates the segmentation results, visually, and decides whether or not

to do it again with a region growing process manually guided. The capitalisation

phase is systematic, we enrich the case base after every segmentation obtained.

Ideally, a satisfaction measure would determine if a resolved case could be added260

to the base.
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Algorithm 1: Adaptation algorithm for seed position

inputs : a seed S (with its 2D coordinates in the image S.x et S.y) and

the intensity coherence interval for dedicated region of S : CI

output: a 2D Point describing the new position of the seed S

α← 1;

while intensity(S.x, S.y) /∈ CI do

for i from −α to α step of 2α do

for j from −α to α step of 2α do

if intensity(S.x+ i, S.y + j) ∈ CI then

return the point of coordinates (S.x+ i, S.y + j);

end

end

end

α+ +;

end

return error ”no candidate satisfies the coherence interval”;

Figure 4: Execution example of the adaptation algorithm to find a new correct seed
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3.2. Overlearning Vector for Valid Sparsed SegmentatIONs (OV
2

ASSION) method

for CNN

The problem with CNN resides in the necessity to train them over large

data sets. Nevertheless, this is not possible in our case since each tumor is265

unique and we have a limited number of tumor segmentations from different

patients. However in a given patient, the tumor has the same texture and is

generally homogenous. We thus explore the possibility of establishing a deep

neural network dedicated to and trained for each patient that will be able to

carry out the automatic tumor segmentations without human intervention.270

As we perform a single segmentation per patient, some initial segmentations

of this patient must be integrated into the learning set. The aim is to minimize

the number of data in the learning set while optimizing the results of the tu-

mor segmentation so that a maximum of segmentations are calculated from a

minimum of initial segmentations. Those initial segmentations may be obtained275

manually or may be the most accurate segmentation performed using classical

segmentation methods. So, this method consists of an overlearning on initial

slices before a complete segmentation with a CNN.

We observed only a slight difference in the tumor segmentation from the

same patient from one neighboring slice to another. As shown in Figure 5,280

the quantity of data can be minimized by taking into account only certain

manual segmentations at different levels and which will be representative of the

neighboring segmentations.

The problem is to determine how many slices, between two chosen slices,

can be ignored during training while maintaining correct learning. In other285

words, what is the optimal gap between two chosen slices ? As shown in Figure

5, we propose to optimize tumor segmentation results for a given patient by

minimizing the number of data in the learning set, while maximizing the gap

between each chosen slice.
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Figure 5: Notion of slice and gap in 3D tumoral segmentation

3.2.1. Vector optimization290

To explore the possibility of ignoring certain slices, we thus introduced the

notion of vector to express the data for the learning set LS. This allowed us

to reduce our dataset. For each element of this vector, there are two possible

values: 1 if the slice is used for training, 0 otherwise. The gap between each

chosen slice is the same so as to recover information homogeneously at different295

levels and to succeed in segmenting all of the patient’s other tumor slices with

sufficient accuracy. For example, a gap of 2 means we take only 1 slice for the

LS from every 3 slices, as shown in Table 1. Each gap produces several possible

vectors (with a shift from one to other).

300

To do this, we use i vectors Vg, with a gap g, to feed the learning set LS.

Vg is a part of V , the set of all possible combinations as:

Vg ∈ V = {({0, 1}n)} (8)

with n the number of slices to segment.
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The learning set LS of the CNN contains all slices used to train the network305

and is defined as:

LS = {Sj , ..., Sk} (9)

where [Sj , Sk] are the slices of the tumor selected by the vector Vg.

With each gap producing several possible vectors, Vg is,in fact, a set of

vectors. The following notation, Vg.h, is used for vector number h with a gap g310

such as:

Vg =

h⋃
i=1

Vg.i (10)

An example of the three possible vectors with a gap of 2 is presented in

Table 1. Testing all these vectors for a given gap allows evaluation not only of

the gap in the results, but also the impact of the slice positions.

S1 S2 S3 S4 S5 S6 ... S60 S61

V2.1 1 0 0 1 0 0 ... 0 1

V2.2 0 1 0 0 1 0 ... 0 0

V2.3 0 0 1 0 0 1 ... 1 0

Table 1: Example of V2 for n = 61

According to Vg.h, LS contains a restrained set of slices. We can build LS315

by applying a simple mathematical function f which selects the relevant slices

following the values in Vg.h:

f : LS × {0, 1} → LS|∀i ∈ {1, ..., n}

f(Si, 0) = Ø

f(Si, 1) = Si

(11)

We also introduced a function F , using f and defining our final LS according

to our vector:

F : V → LS|F (Vg.h) =

n⋃
i=1

{f(Si, Vg.hi−1)} (12)
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3.2.2. Cardinality320

The cardinality of the vectors set is CardV = 2n but as we introduce the

notion of gap, not all combinations are tested. The cardinality is then related

to the chosen gap. The cardinality for a gap CardVg
is then:

∀g ∈ {0, ..., n− 2} CardVg = g + 1 (13)

since we have a gap of g between two included data, the set of possible vectors

with this gap is g plus the first vector.325

The cardinality for all the gaps we test CardVtest is :

CardVtest
=

p∑
g=0

(CardVg
) (14)

4. Results

4.1. Coefficients for evaluation of results

We used two scientific indicators in order to compare the results. The Dice

and the IU. The Dice is commonly used by experts in medical imaging, and the330

IU is an index commonly used by the Imaging community.

The Dice coefficient, also known as the Sorensen coefficient, gives a similarity

value (on [0, 1]) between two sets X and Y . In our case, X represents the pixels

of the ground truth (i.e. the desired segmentation) and Y represents the pixels

of the calculated segmentation given by our system. The above formula gives335

the details to calculate the value of the coefficient’s value :

Dice =
2 ∗ |X ∩ Y |
|X|+ |Y |

The IU (Intersection over Union, also called Jaccard’s index) is the mean of

the IUi of all the regions; the IUi of region i is given by the above equation:

IUi =
|X ∩ Y |
|X ∪ Y |

=
nii

nii + nji + nij
, where:
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• nii is the number of pixels correctly placed in region i,

• nji is the number of pixels that should have been in region i but are not,340

• nij is the number of pixels that are in region i but should not be.

4.1.1. Training

The CNN we use for segmentation is the FCN-8s, for its effectiveness and

smaller number of layers compared to other CNNs. We also use the same learn-

ing rate (1−12), momentum (0.99) and weight decay (0.0005) as well as these345

pre-trained parameters of the conv1 to fc7 layer of the base PASCAL VOC 2012

Everingham et al. (2015). The last convolution is modified with two channel

dimensions to predict two scores, the background and the tumor. The network

is then trained with pre-trained parameters on a maximum training set of 61

slices, according to the chosen gap, from a single patient. To evaluate CNN350

performance, we used as a test set only slices which are not part of the training

set, except for the particular case of g = 0. For this case, all slices were included

in the training set so all of them had to be used.

We trained the networks using a Tesla Kepler K40 GPUs from Mésocentre

at the University of Franche-Comté. Several vectors were tested with different355

gaps, from 0 to 10, and for each gap, we checked all possibilities according to

CardVtest . We thus had 65 possibilities of vectors, each vector having a size of

61 elements determining the slices to be used for training. For the vector with

a gap of 0, all sets of slices were chosen for training.

360

4.2. Kidney and tumor segmentation

First, we need to evaluate results from our CBR and CNN systems in order

to determine what approach is the best to segment both structures: kidney and

tumor. The CBR system has been evaluated with a case base of 10 images from

a single patient and a cross validation process versus FCN-8s with a training365

set of 12 random slices and a test set of 6 random slices from a single patient.
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CBR-RG FCN-8s

Mean Mean IU Mean Mean IU

Tumor 0.92 0.86 0.94 0.89

Kidney 0.83 0.71 0.36 0.23

Table 2: Dice and IU for kidney and tumor segmentation with CBR-region growing and

CNN

Table 2 shows our preliminary results with a Dice and IU calculation. FCN-

8s has the best scores for tumor segmentation with a mean DICE of 0.94, whereas

the Region-Growing method enhanced with CBR (CBR-RG) was better for

kidney segmentation. CNN is a very powerful technique but needs a large data370

set to express its potential. Moreover, neural networks can more easily segment

objects with a regular and simple form. In our application, a kidney is a smaller

structure than a tumor and may be badly deformed due to nephroplastoma.

IThis explains the poor values for kidney segmentation obtained with FCN-8s.

Concerning the tumor, both approaches have a close performance with a Dice375

of 0.92 for CBR and of 0.94 for FCN, so CNN has a small advantage. Another

benefit is that CNN training is easier than building the Case Base. Moreover,

CBR-RG is a sensitive method to leak phenomena which can lead to difficult

segmentations. From these results, we can conclude CNN appears to be the

best solution for tumor segmentation while CBR (with RG) is clearly more apt380

for the kidney.

4.3. Evaluation of the CBR system with adaptation phase

4.3.1. Evaluation of similarity metrics

Table 3 shows the different similarity values according to the formulas mainly

used in image processing with each source case. The last column shows the385

retrieved case for each target case and each similarity measure. The retrieved

case is the one with the higher similarity value, excluding the target case (a case

cannot retrieve itself). Results are equivalent for both and, for each case the

retrieved case is the same. There are only two differences. On the one hand,
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Perner’s formula appears more discriminative, with a higher difference between390

the similarities from one image to another. On the other hand, MSSIM appears

globally more accurate because the similarity of two identical cases is equal to

1. Consequently, the MSSIM similarity was chosen.

4.3.2. System adaptation

In order to illustrate the effects of this adaptation algorithm, Figure 6 shows395

a comparison between an execution of our program, with and without including

the adaptation phase. The kidney has a light grey label and the tumor a dark

grey one. From left to right we have a CT-image, segmentation without an

adaptation phase and finally segmentation with an adaptation phase. For the

segmentation without an adaptation process, the seed was placed outside the400

top part of the kidney. Consequently, the top part was not correctly segmented

and the result became irrelevant. Our adaptation phase avoids this situation

and improves segmentation precision.

Figure 6: Comparison between an execution of our system with and without the adapta-

tion phase: (a) CT-Scan, (b) segmentation without adaptation and (c) segmentation with

adaptation

Without adaptation, the seed is only placed in the right position in 60%

of our tested cases. Thanks to the adaptation process, seed placement was405

improved, attaining 100% in the right position.

Table 4 shows the results for kidney segmentation with DICE and IU. Using

cross validation, the number corresponds to the tested scan as a target case,
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Case 1 2 3 4 5 6

CBR RG
Dice 0.998 0.559 0.843 0.894 0.997 0.000

IU 0.995 0.388 0.728 0.809 0.995 0.000

CBR RG +

adaptation

Dice 0.998 0.999 0.993 0.894 0.997 0.998

IU 0.995 0.999 0.987 0.809 0.995 0.997

Case 7 8 9 10 Mean Median

CBR RG
Dice 0.927 1.000 0.936 0.998 0.815 0.931

IU 0.865 1.000 0.879 0.996 0.765 0.872

CBR RG +

adaptation

Dice 0.927 1.000 0.973 0.998 0.978 0.997

IU 0.865 1.000 0.948 0.996 0.959 0.995

Table 4: Dice and IU for kidney segmentation with CBR region growing with manual region

growing as ground truth.

with the 9 others as source cases. Highlighted in grey are the cases presenting

an improvement after the adaptation process. To check the efficiency of the410

adaptation process only, we compared it with the ground truth result of manual

region growing. We highlighted in grey the cases presenting an improvement

after the adaptation process. Most of the time, the CBR process succeeded in

recovering the right coordinates to place the seed in the kidney. For these cases,

adaptation did not improve the results because CBR did not need it. However,415

some segmentations (2, 3, 6 and 9) did not work well with the CBR process

and seeds were placed at the wrong coordinates (outside the kidney). With the

adaptation step, a clear improvement in results was observed (up to 99.8% for

Case 6).

Table 5 the error rates for each segmented case during the retrieval phase.420

Errors were computed with respect to the threshold determined during manual

region-growing segmentation and are a mean of all the seeds of the kidney (each

seed has its own threshold and error rate). For most of them, we have a null error

rate since the similarity between problem case and retrieved case is very high,

therefore the thresholds are the same. For some cases, however, a higher error425
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Retrived Case Global error (%) Local error (%)

Case 1 6 0.0 0.0

Case 2 7 0.0 0.0

Case 3 8 0.0 0.0

Case 4 9 20.9 17.5

Case 5 10 3.6 0.0

Case 6 1 0.0 0.0

Case 7 2 0.0 0.0

Case 8 3 0.0 0.0

Case 9 4 29.7 14.5

Case 10 5 0.0 0.0

Table 5: Mean errors for retrieved thresholds: local and global

rate is observed (cases 4 and 9), from 14.5 to 29.7%, which may explain why

cases 4 and 9 don’t have a high score in Table 4. This shows the main limitation

of our CBR system without an adaptation phase for thresholds. This adaptation

process represents an important perspective for improving its robustness. Case 7

has the lower result in spite of an error rate of 0%. This is because the thresholds430

used are closely related to the seed position. As the retrieved position is not

the same as the seed position during manual region growing, it is logical for

the scores to be different. Furthermore, the best parameters are not always

determined manually. Thus, by coincidence, a CBR solution can be better and

has a score lower than 1 due to differences.435

4.3.3. Comparison with other approaches

In order to compare our CBR system with other classical approaches, we

undertook a segmentation with a manual level set using Image J software and

a CNN. For the CNN, we implemented FCN-8s architecture from Long et al.,

2015 Long et al. (2015), trained with a training set of 10 slices (CT-Scans) cor-440

responding to our case base and according to a cross validation strategy so as

to have the same conditions as in CBR. Table 6 shows our results from these
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CBR RG Level Set FCN-8s

Dice IU Dice IU Dice IU Dice IU

Case 1 0.92 0.85 0.92 0.85 0.93 0.87 0.73 0.58

Case 2 0.89 0.80 0.88 0.79 0.88 0.79 0.78 0.64

Case 3 0.74 0.59 0.75 0.60 0.73 0.58 0.65 0.48

Case 4 0.74 0.59 0.79 0.65 0.75 0.60 0.52 0.35

Case 5 0.84 0.72 0.84 0.72 0.83 0.71 0.53 0.36

Case 6 0.95 0.90 0.95 0.90 0.90 0.83 0.47 0.31

Case 7 0.82 0.70 0.82 0.69 0.76 0.62 0.59 0.42

Case 8 0.76 0.62 0.76 0.62 0.18 0.10 0.60 0.42

Case 9 0.86 0.76 0.86 0.76 0.84 0.73 0.73 0.57

Case 10 0.76 0.61 0.77 0.63 0.73 0.58 0.35 0.21

Mean 0.83 0.71 0.83 0.72 0.75 0.64 0.59 0.43

Median 0.83 0.71 0.83 0.70 0.79 0.66 0.59 0.42

Table 6: Comparison of our CBR system and some other approaches. Dice and IU were

calculated for segmentation of deformed kidney

different methods. The evaluated CBR system version is the one with Region

Growing (RG) and an adaptation phase. As previously, evaluation is with a

Dice and IU computation, but this time we computed them from true ground445

truth realized manually by pediatric surgeons.

The best results, presented in Table 6, were obtained with our CBR system.

Indeed, we succeeded in obtaining results very close to manual RG with a mean

Dice of 0.83. The Level Set technique shows good results for most of the cases,450

but it failed to segment Case 8 correctly. Overall, RG (manual or with CBR),

performs more pertinent segmentations. CNN has the worst scores with a mean

Dice of only 0.59, a logical result since CNNs are based on experiences and

require a large database to yield interesting segmentations. CBR is also based

on knowledge, but it requires much less data in order to work well.455
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4.4. Evaluation of the CNN trained following the OV
2

ASSION method

Tumor segmentation results are presented in Table 7. We evaluated the per-

formance of our approach using segmentation accuracy, with Dice and Intersec-

tion over Union (IU) scores, between ground truth and predicted segmentation.

The impact of gap and position were determined simultaneously. For each gap,460

we trained the network with slices not included in the training set only, except

for the gap of 0 that we used as a reference and where both training and test

sets are the same (all slices have been used to train it). The second column

corresponds to subvectors which are all possible vectors with a gap g (gap is the

same but there are different offsets). The first sub-vector begins with a value of465

1 in the first position, the second with an offset of one and so forth. We com-

puted a mean/median Dice and IU for each subvector as well as global scores for

each gap. The last column shows whether the corresponding subvector contains

both of the extremities (if the top slice and the last slice are in the training set).

470

4.4.1. Influence of gap

Table 7 shows values for gaps from 0 to 6, with the different vectors, but we

evaluated as far as a gap of 10. As expected, the best results are obtained with

a complete training set (g = 0) which corresponds to an overlearned situation,

with a Dice of 0.926. After introduction of a variable gap, we see a decrease in475

scores as shown in Figure 7. To draw this mathematical curve, we computed

mean Dice and mean IU given a particular gap value g (each gap having several

possible vectors). We observed no clear distinction with a particular gap value.

The decrease is gradual but we observe only a small difference between a gap

of 2 and a gap of 3 (a Dice of approximately 0.90), whereas it corresponds to a480

15% reduction in the training set. An optimal gap would thus be g = 3 which

produces a mean Dice of 0.897 with only 26% of initial segmented slices. Yet,

to determine the best gap value, we need to know what error rate is acceptable

in our medical context with a computation of intersurgeon and intra-surgeon

variance. Even with a gap of 10 (that is, with only 10% of slices from the patient485
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segmented manually), we obtained a Dice of 0.83.
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Figure 7: Evolution of mean Dice and mean IU following used gap

4.4.2. Influence of position

The different subvectors in Table 7 allow to determine the influence of slice

position in the training set. For each gap value, we highlighted in gray the best

subvectors (with higher values of Dice and IU). The last column shows that the490

best results are obtained once both extremities are included in the training set.

These cases can be identified when both these conditions are validated:

 Vg.h0
= 1

n mod (g + 1) = 1
(15)

These results can be explained as tumor shape is more unpredictable at the

extremities. From one slice to the next and looking back to previous ones, the

shape may be very different, whereas the center of the tumor is more regular.495

Thus, inclusion of extremities increases scores. It also means we can include

more slices in LS when we use extremities.
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5. Discussion

Our results prove that our CBR system can enhance and lead segmenta-

tions of organs and structures deformed by a singularity (the tumor). Indeed,500

using this technique, the deformed tumoral kidneys of our scans were widely re-

trieved and better segmented than with all the other tested methods. It mainly

comes from our adaptation phase, to be sure that seeds are placed in the right

position. Yet, this adaptation is based on a coherence of pixel intensity and,

unfortunately, different structures can have close grey levels. Thus, it is possible505

for the adaptation to select the wrong pixel and to place seeds, for example, in

the spine or ribs. Most of the time, the kidney is close enough to avoid this

situation but it could theoretically occur. In this respect, it would be interesting

to enhance our adaptation phase to prevent this possibility. One way of doing

it would be to drive the pixel research in direction of the kidney, rather than510

visit all the neighbors around the initial seed. Another improvement would be

to design another adaptation phase to adjust the thresholds recovered from the

source case.

The OV
2

ASSION method enables enhancement of CNN performance via an

adaptation for a specific patient with a limited training set. We showed we can515

have efficient results with an overlearning on only 26% of slices from a single

patient. In a medical context, where we can not have a large data set, it is an

exciting way to improve segmentations. A surgeon could just segment 26% of the

slices (according to a particular gap), feed the CNN and have a complete result.

Ideally, we can imagine an automatic system which performs segmentation with520

an other approach, selects the best slices and feeds a CNN to have a complete

segmented tumor. The main limitation is this reduced training set needs to be

representative. That’s why we did our experiments with a constant gap. In a

real situation, an automatic system would select the best segmented slices but

can not ensure this training set is really representative of the tumor.525

Globally, RG produced better segmentations than the Level Set (LS) tech-

nique, though results are closed for most cases. Yet, for some cases, it is easier
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and faster to parameter LS. This could lead to designing a CBR system using

both approaches: a case might also include the segmentation technique (RG

or LS), following the best way determined during the manual step. The CBR530

system could thus retrieve the segmentation approach used to solve a case and

not only the parameters of a particular technique. In our approach, CNNs have

poor results because of the lack of data (only 10 images). The main advantage

of CBR with respect to CNN is that CBR is simultaneously an experience and a

knowledge approach where CNN is just based on experience. This is why CBR535

can perform interesting results even with a small data set. We realize that we

are in a particular situation where CNNs cannot give relevant results and it is

sure that we could have better results with a larger training set, but it was our

working conditions. CNNs are known as the better process for segmentation

image in state of art. In consequences, we had to compare our system with540

this process in the same conditions. Moreover, CNNs have great difficulty seg-

menting such small structures as deformed kidneys without a large training set,

but with larger structures such as tumors they can provide sufficiently accurate

results. We can thus envisage a hybrid system with a CBR system for kidney

segmentation and a CNN to segment tumors. Otherwise, CNN could be fed545

by a CBR system with a tumor segmentation on certain slices from the patient

before complete segmentation by the neural network with OV
2

ASSION.

In addition, for surgeons, kidney and tumor segmentation is insufficient.

They also need to vizualize other structures such as blood vessels (arteries,

veins, etc.) in order to evaluate the difficulty of the surgery. Yet, segmentation550

of these structures can be very difficult due to a lack of visibility. In some

cases, vessels are not visible on CT-images. Because of their small size, placing

a seed inside these objects is arduous. Only with a surgeon’s experience can

one draw vessels. Deep learning may be an attractive option. We can imagine

overlearning on a particular slice and use CNN to segment the next slice before555

new training on both slices and so on. Furthermore, CBR can also theoretically

integrate knowledge of the domain and thus be a good option in order to lead

the search for such small structures.
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6. Conclusion

We have designed a system based on CBR which can conduct the segmenta-560

tion of tumoral kidneys and a method based on Deep learning which can perform

accurate segmentation of nephroblastoma.

We have compared our CBR system to others approaches, both classical

(commonly used in hospitals) and very recent (Deep learning). These highly

promising results proved that we must look further into these approaches and565

that we are well on the way towards automatic segmentation of all organs. How-

ever, the small data set drives severe limitations for a generalization of these

methods. A larger evaluation is needed to have a robsut system for image seg-

mentation. The difficulty of our problem resides in the fact that tumoral kidneys

are deformed by a totally unpredictable structure (the tumor). Nevertheless,570

our system can retrieve the positions of these organs.

Our method base on Deep Learning (OV
2

ASSION) consists of overlearning on

a limited number of slices from a given patient to do a total segmentation during

a second step. The notion of gap was introduced to retrieve the global tumor

shape using a small training set. Results proved that segmentations performed575

following OV
2

ASSION are accurate. A gap of 3 allows a mean Dice very close to

that with a gap of 0 despite that it represents a 74% reduction in training set

size.

As regards these results, we hope to go further, both on CBR and Deep

Learning. In a CBR-RG system, an adaptation phase for thresholds would be580

essential to improve its robustness and represents the next step. An upgrade

of OV
2

ASSION is also an exciting perspective to allow better precision and its

incorporation in a fully automatic system.
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