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Abstract— Among the diversity of the existing modular
robotic systems, we consider in this paper the subset of
distributed modular robotic ensembles composed of resource-
constrained identical modules that are organized in a lattice
structure and which can only communicate with neighboring
modules. These modular robotic ensembles that we name LMRs
form asynchronous distributed embedded systems. In many
algorithms dedicated to distributed system coordination, a
specific role has to be played by a leader, i.e., a single node
in the system. This leader can be elected using various criteria.
A possible strategy is to elect a center node, i.e., a node that has
the minimum distance to all the other nodes. Indeed, this node is
ideally located to communicate with all the others and this leads
to better performance in many algorithms. The contribution
of this paper is to propose the k-BFS SumSweep algorithm
designed to elect an approximate-center node. We evaluated our
algorithm both on hardware modular robots and in a simulator
for large ensemble of robots. Results show our algorithm is a
good trade-off if accuracy is the main concern. Indeed, it is
the most precise approximation algorithm for systems with less
than 7,000 modules. In these systems, our algorithm exhibits a
relative accuracy between 92% to 100%. Moreover the k-BFS
SumSweep algorithm is reasonably efficient in terms of time
and communication, and has a limited memory footprint.

Index Terms— Distributed algorithm, Modular robotic, Cen-
ter election

I. INTRODUCTION

Modular robots have been a rich and productive area of
research in the last decades. Many hardware prototypes have
been proposed as well as software for managing these new
kinds of robots.

In this work, we focus on a specific class of modular
robotic systems, namely distributed modular robotic ensem-
bles composed of resource-constrained identical modules that
are organized in a lattice structure and which can only
communicate with neighboring modules. We name this class
of robots LMRs. To be more specific, we are interested in
LMRs composed of a large number of modules like it is, for
instance, the case in programmable matter [1] and distributed
MEMS [2].

These LMRs form distributed embedded systems. Many
algorithms for distributed coordination require a specific role
to be played by a leader, a single node in the system.
Leaders are often used to provide such varied services as
time synchronization [3] or general control [4]. The choice
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of the leader often has a direct impact on the performance.
As the LMRs we target exhibit large-average-distance and
large-diameter networks [29], a possible strategy is to select
a center node, i.e., a node that has the minimum distance
to all the other nodes. Indeed, this node is ideally located
to communicate with all the others and this leads to better
performance in many algorithms. For instance, in [3], we
show that, in centralized time synchronization protocols,
electing a central leader rather than selecting a random
one increases the overall synchronization precision in these
systems.

This work is an extension of our previous work on
approximate-center node election [5]. In this paper, we
propose the k-BFS SumSweep algorithm for approximate-
center election.

The main idea behind our algorithm is that central nodes
are first and foremost central to the most external nodes. In
k-BFS SumSweep, the nodes compute their partial centrality
value to a subset of root nodes composed of a random
initial node and k − 1 nodes among the most external ones.
Root nodes are consecutively selected using the SumSweep
approach that was originally proposed in the sequential
algorithm for the exact radius and diameter computation
of external graphs [7]. Distributed Breadth-First Searches
(BFSes) are used for distributed Single-Source Shortest Paths
(SSSP) computations.

The k-BFS SumSweep algorithm runs in O(kd) time using
O(mn2) messages and O(∆) memory space per module,
where k is an input parameter, d the diameter of the system,
n the number of nodes, m the number of links, and ∆ the
maximum node degree.

To evaluate our algorithm, we applied it to the Blinky
Blocks modular robotic systems [8] using both experiments
on hardware12 (with up to 63 modules) and simulations3

(with up to 25,000 modules). Experimental results show our
algorithm is a good trade-off if accuracy is the main concern.
Indeed, it is the most precise approximation algorithm for
systems with less than 7,000 modules. In these systems, our
algorithm exhibits a relative accuracy between 92% to 100%.
Moreover the k-BFS SumSweep algorithm is reasonably
efficient in terms of time and communication, and has a

1A video showing executions of the k-BFS SumSweep algorithm on
hardware Blinky Blocks is available online at https://youtu.be/
qaIL85TPZQY

2Official Blinky Blocks firmware repository that hosts our al-
gorithm code for hardware experiments: https://github.com/
claytronics/oldbb

3GitHub repository that hosts our algorithm codes for simulations:
https://github.com/nazandre/thesis
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limited memory footprint.
The rest of this paper is organized as follows: Section II

defines the concepts and notation used in this paper. Then,
Section III discusses the existing methods designed to elect a
center node. Afterwards, Section IV presents our algorithm,
provides its distributed implementation and gives a complex-
ity analysis of it. Section V reports experiment results that are
subsequently discussed in Section VI. Finally, Section VII
concludes this paper and proposes some future works.

II. SYSTEM MODEL AND DEFINITIONS

We consider distributed embedded systems forming asyn-
chronous non-anonymous point-to-point unweighted and
undirected networks. Nodes can only communicate with their
immediate neighbors (neighbor-to-neighbor communication
model). Furthermore, we assume every node has a unique
identifier and maintains a list of its immediate neighbors.
We also assume there are no changes to topology nor any
node or edge failures during the election process. A solution
to manage network dynamics during an election can be found
in [9].

We use the general concepts of graph theory to model our
system which is represented as an undirected and unweighted
graph of inter-connected modules G = (V,E), with V a
set of vertices (representing the nodes), E a set of edges
(representing the links), |V | = n the number of vertices,
|E| = m the number of edges. The distance between two
nodes vi and vj is d(vi, vj), the diameter of the graph is d.
∆ represents the graph maximum degree.

Many definitions and metrics for graph centrality have
been proposed in the literature. In this paper, we focus on the
center [10], i.e., the set of all nodes of minimum eccentricity
where the eccentricity of a node is the maximum distance
from this node to any other.

For complexity calculations, we consider that a variable
of a primitive data type (integer, boolean, etc.) uses O(1)
memory space. The number of values that can be coded using
the algorithm variables may induce limitations on the system
size.

III. RELATED WORK

Existing algorithms for center computation can be cate-
gorized into four major families, namely exhaustive, graph-
specific, sampling-based and probabilistic-counter-based.

a) Exhaustive Methods: Exhaustive methods are exact
and involve a distributed All-Pair Shortest Paths (APSP)
computation.

APSP can be computed using the distributed Floyd–
Warshall’s shortest path algorithm [11] which runs in O(n2)
time using O(n3) messages with O(n) messages that carry
O(n) distances [12]. APSP can also be computed using BF-
Ses. Performing a single BFS using Cheung’s algorithm [13]
takes O(d) time, if we ignore message pileups, and uses
O(nm) messages [12]. All nodes can initiate a BFS traversal
in parallel. However, the network may get congested, since
messages will pileup, thus incurring a large time and memory
overhead. On the other hand, BFSes can be performed one

by one but it is expensive in terms of time. It uses in total
O(nd) time and O(∆) space per node if message pileups are
ignored. Also note that computing all the distances in parallel
require the storage of O(n) distances per node while, in
sequential approaches, only the distance to the current-BFS
root along with the partial eccentricity are stored per node
and progressively updated.

As a consequence, existing distributed algorithms [15],
[16], [17], which are designed to elect a node belonging
to the exact center of arbitrary networks are not scalable.
They involve a distributed APSP computation which has
either a large time complexity or/and a large storage cost
in asynchronous systems composed of thousands of nodes
with constrained computational power and restricted memory
resources.

b) Graph-Specific Methods: Efficient heuristics have,
for instance, been proposed to compute the center of tree
graphs (e.g., [18], [19], [20]). However these algorithms do
not fir our system model. Although these approaches are
efficient for the graphs they target, they are not directly
generalizable to arbitrary graphs.

c) Sampling-based Methods: Some input-graph analy-
sis approaches have recently been proposed in order to find
a center vertex of arbitrary graphs using a sampling of SSSP
computations. Most of them use (BFS) computations.

Existing approaches based on shortest paths computation
from a sampling of nodes like [21], [22], [23], [7], [24],
[25], [26], [27] are promising but they do not fit our system
model. They have been designed for input-graph analysis or
target synchronous distributed systems.

d) Probabilistic-Counter-based Methods: Algorithms
based on low-memory-footprint probabilistic counters to es-
timate node centrality measures have recently been proposed
in [30], [31], [32]. These algorithms are approximately equiv-
alent to running a BFS from every node but at less expense
in terms of computations and communications. These three
algorithms are efficient but they do not fit our assumptions
for the same reasons as for sampling-based methods.

e) Summary: Computing exact center nodes in asyn-
chronous distributed systems is an expensive operation in
terms of messages and in terms of storage requirement
and/or time. Algorithms designed for a specific class of
graphs (e.g., tree graphs) are not generalizable to arbitrary
graphs. Efficient sampling-based and probabilistic-counter-
based methods have been proposed but they have not been
applied to distributed asynchronous systems so far. In this
paper, we propose k-BFS SumSweep a sampling-based al-
gorithm to overcome the limits of current algorithms in the
context of LMRs.

IV. THE k-BFS SUMSWEEP ALGORITHM

A. Description

The k-BFS SumSweep algorithm, which selects the center
node, is based on the SumSweep heuristic proposed as a
starting point of the sequential algorithm in [7] to compute
the exact graph diameter and radius. SumSweep aims at
consecutively selecting the most external vertices of a graph.



Our distributed implementation of k-BFS SumSweep uses
distributed BFSes to compute SSSP.

The main idea behind our algorithm is that central nodes
are first and foremost central to the most external nodes. In
our algorithm, a partial eccentricity value is computed for
every node using distances to {uλ}1≤λ≤k ⊆ V , a subset
of k nodes, with k ≤ n. This subset is formed from a
random initial vertex and k − 1 external nodes selected in a
consecutive manner using the SumSweep heuristic, i.e., the
next node to be selected is the node of maximum partial
farness that has not been previously selected, where the
partial farness of a node is the sum of its distance to all
the previously selected nodes.
k is a user parameter that has to be provided as input.

In the evaluation section, we show that k = 10 provides
accurate results even with large-scale systems of 104 nodes.

Figure 1 depicts an execution of the k-BFS SumSweep
framework on a 200-node Blinky Blocks system with k =
10. The elected node matches the theoretical node.

Fig. 1: The k-BFS SumSweep algorithm running on a 2D
Blinky Blocks system composed of 200 modules, with k =
10. The initial module from which is performed the first
distance computation is in brown. The other k − 1 external
nodes selected are in yellow and the order of selection is
written on them. The module elected is in red and it matches
the theoretical center.

B. Distributed Implementation

Algorithm 1 provides the pseudo-code of our distributed
implementation of the k-BFS SumSweep algorithm.

a) Primitives and Message Types: Our implementa-
tion uses two BFS-based algorithmic primitives, namely
INITIATOR ELECTION ALG and BFS ALG, that have
been defined in described in [9], under the names
LE CHEUNG-BFS-ST-CB STB-STC and CHEUNG-BFS-
ST-CB-AGG, respectively. These two algorithms are based
on Cheung’s algorithm for BFS computation [13]. INI-
TIATOR ELECTION ALG enables to elect the minimum-
identifier node as initiator and to build a path to a farthest
node to it. BFS ALG allows to perform a BFS and to com-
putes network-wide aggregates. Moreover, our implementa-
tion uses also two specific types of messages (NEXT BFS
and ELECTED).

b) Pseudo-Code: During each iteration λ, a node uλ

is selected and the partial eccentricity value of every node
is updated using the distance to uλ. u1 is elected using
INITIATOR ELECTION ALG (lines 5 and 6). If both k > 1
and n > 1, then a NEXT BFS message is sent toward u2,
a farthest node from that initiator (lines 9-10 and 22-34).
Otherwise, u1 is elected as the approximate center and k-
BFS SumSweep terminates (line 12).

Every iteration λ > 1 starts when uλ receives a
NEXT BFS message. Upon reception of that message, uλ

initiates a BFS ALG (lines 9-10). BFS ALG is used to
compute the node distance to uλ and to construct both a
path to a candidate node of maximum partial farness and
a path to a node of minimum partial eccentricity (lines 54-
53. Upon termination of BFS ALG, uλ sends a NEXT BFS
message toward uλ+1 in order to trigger a next iteration if
k > λ and λ > n (line 21). Otherwise, uλ elects the node of
minimum partial centrality value. If uλ has the minimum
centrality value, k-BFS SumSweep terminates and uλ is
elected as the central node (line 17). Otherwise, uλ sends an
ELECTED messsage toward the node of minimum centrality
value (lines 19 and 35-39). Upon reception of that message
by the node of minimum eccentricity value, our algorithm
terminates and this node is elected as the approximate-center
node (line 37).

C. Termination Proof and Complexity Analysis

The k-BFS SumSweep algorithm sequentially runs 1×
INITIATOR ELECTION ALG, then (k−1)× BFS ALG and
finally forwards an ELECTED message toward the node
of minimum centrality value through the last constructed
spanning-tree. This message reaches its final destination us-
ing O(d) time and O(n) messages. All these steps terminate,
thus our algorithm terminates. Moreover, we have k ≤ n.
Using the primitive complexity given in [9], the k-BFS
SumSweep algorithm runs in O(kd) time using O(mn2)
messages and O(∆) memory space per module.

V. EVALUATION

This section presents our experimental evaluation per-
formed both on hardware Blinky Blocks and in the Visi-
bleSim simulator [33]. Through our experiments, we show
the effectiveness, the efficiency and the scalability of our
algorithms.

More precisely, we first show that k-BFS SumSweep
works well on hardware through some examples. Then, we
use VisibleSim to evaluate the performance of our algo-
rithm in large-scale systems and to compare it to existing
algorithms in terms of accuracy, execution time, number of
messages and memory usage. As shown in [9], VisibleSim
can be used to accurately benchmark the performance of
algorithms on much bigger configurations.

A. Evaluation on Hardware

Figure 2 shows k-BFS SumSweep results on a line and
a random configuration respectively composed of 50 and
63 hardware Blinky Blocks. For the two configurations,



Input : k // Number of BFSes to perform
Output : a single approximate-center node is elected
Primitive(s) : INITIATOR ELECTION ALG

BFS ALG(handlers : handleBFSData, updateBFSAggs, getBFSAggs,
resetBFSAggs)

// Initialization and start handlers:
1 Initialization of vi:
2 candidate← true; iteration← 0; far ← 0 ecc← 0;

branchEcc← {}; branchFarCandidate← {};
nextHopToMinEcc←⊥; nextHopToMaxFarCandidate←⊥;

3 start k-BFS SumSweep;

4 When k-BFS SumSweep starts at node vi do:
5 start INITIATOR ELECTION ALG;

// Primitive termination handlers:
6 When INITIATOR ELECTION ALG terminates

at root node vi do:
7 candidate← false;
8 size← INITIATOR ELECTION ALG.size;
9 if size > 1 AND k > 1 then

10 send NEXT BFS<size> to
INITIATOR ELECTION ALG.nextHopToFarthest;

11 else
12 k-BFS SumSweep terminates; // vi is elected

13 When BFS ALG terminates at root node vi do:
14 size← BFS ALG.size;
15 if iteration+ 1 = k OR iteration+ 1 = size then
16 if nextHopToMinEcc =⊥ then
17 k-BFS SumSweep terminates; // vi is elected
18 else
19 send ELECTED<> to nextHopToMinEcc;

20 else
21 send NEXT BFS<size> to nextHopToMaxFarCandidate;

// k-BFS SumSweep message handlers:
22 When NEXT BFS<size> message is received by the node vi do:
23 pathNextBFS = nextHopToMaxFarCandidate;
24 if iteration = 0 then //
25 pathNextBFS ←

INITIATOR ELECTION ALG.nextHopToFarthest;
26 if pathNextBFS =⊥ then
27 iteration← iteration+ 1;
28 candidate← false; updateLocalValues();

// Start a new BFS as root:
29 re-initialize BFS ALG;
30 BFS ALG.size← size;
31 BFS ALG.data[0]← iteration;
32 start BFS ALG;
33 else
34 send NEXT BFS<size> to pathNextBFS;

35 When ELECTED<> message is received by node vi do:
36 if nextHopMinEcc =⊥ then
37 k-BFS SumSweep terminates; // vi is elected

38 else
39 send ELECTED<> to nextHopMinEcc;

// Helper functions:
40 Function updateLocalValues() :
41 dist← BFS ALG.distance;
42 if iteration = 1 then
43 dist← INITIATOR ELECTION ALG.distance;

44 far ← far + dist;
45 ecc← max{ecc, dist};

// Primitive handlers for aggregate
// computation and data propagation:

46 Function handleBFSData():
47 iter ← BFS ALG.data[0];
48 if iter > iteration then
49 iteration← iter;
50 updateLocalValues() ;

// Take part in this BFS as non-root:
51 re-initialize BFS ALG;

52 Function resetBFSAggs():
53 branchEcc← {}; branchFarCandidate← {};
54 Function updateBFSAggs(vj , child, aggs) :
55 if child = true then
56 branchEcc[vj ] = aggs[1];
57 branchFarCandidate[vj ] = aggs[2];
58 else
59 remove branchFarCandidate[vj ];
60 remove branchEcc[vj ];

61 Function getBFSAggs():
62 dist← BFS ALG.distance;
63 maxCandidateFar ← 0;
64 nextHopToMaxFarCandidate←⊥;
65 if candidate = true then
66 maxFar ← far + dist;

67 vf ← argmaxvk∈N1
vi

branchFarCandidate[vk];

68 if vf 6=⊥ AND branchFarCandidate[vf ] > maxFar then
69 maxCandidateFar ← branchFarCandidate[vf ];

nextHopToMaxFarCandidate← vf ;

70 minEcc← max{minEcc, dist};
71 nextHopToMinEcc←⊥;
72 vf ← argmaxvk∈N1

vi
branchMinEcc[vk];

73 if vf 6=⊥ AND branchMinEcc[vf ] < minEcc then
74 minEcc← branchMinEcc[vf ];

nextHopToMinEcc← vf ;

75 return <maxFar,minEcc>;

Algorithm 1: Distributed implementation of the k-BFS SumSweep algorithm detailed for any node vi.

the elected module belongs to the theoretical center of the
network. Some other examples of execution of our algorithm
can be seen online4. This video also shows that our algo-
rithm is able to react to topology changes by reelecting an
approximate-center module.

Table I gives the execution time of our algorithm on differ-

4https://youtu.be/qaIL85TPZQY

ent configurations. This table shows that, in our experiments,
the execution time of our algorithm is approximately linear
in kd as announced in Section IV-C. The values for k were
selected arbitrarily in order to provide a satisfactory accuracy
at a reasonable cost. In line configurations, only 3 BFSes are
necessary to find the theoretical center.

https://youtu.be/qaIL85TPZQY


Shape Size (module) Diameter (hop) k
(BFSes)

Average execution time ±
standard deviation (ms)

average execution time
k×diameter

Line
5 4

3
267± 1 22

10 9 650± 4 24
50 49 3123± 2 21

Square
9 4

5
454± 8 23

25 8 850± 19 21
49 12 1237± 7 21

Cube 27 6 7 952± 21 23
Dumbbell 59 15 5 1513± 40 20
Random 63 19 10 3574± 26 19

TABLE I: Average execution time of k-BFS SumSweep on hardware Blinky Blocks. Statistics on the execution time were
computed over 10 runs for every configuration.

a) Line (50 modules). b) Random (63 modules).
k = 3 k = 10

Fig. 2: k-BFS SumSweep on hardware Blinky Blocks. We
use the same color code as in Figure 1. The module elected
(in red) matches the theoretical center.

B. Large-scale Evaluation and Comparison to Existing Al-
gorithms

We use VisibleSim to execute an implementation of k-
BFS SumSweep in a simulated physical environment and to
compare it in terms of accuracy, execution time, number of
messages and memory usage, on random large-scale Blinky
Block systems, with existing solutions. Random systems
were generated by connecting the modules one by one to
the system at random, starting from a single node. Unless
explicitly mentioned, every single point on the result plots
represents 50 independent executions.

1) Compared Algorithms and Parameters: For the k-BFS
SumSweep, we arbitrarily choose k = 10.

Our former algorithms: We consider ABC-Center [5] and
PC2LE [9]. In our implementation of PC2LE, we use the
same parameters as presented in [9].
n-BFS: We consider the exhaustive n-BFS algorithm

presented under the name of BARYCENTER in [34]. This
algorithm aims at electing a centroid node. It computes an
APSP using n simultaneous asynchronous BFSes without
acknowledgment. Even though this algorithm does not elect
the center but the centroid, we decided to use it for cost
comparisons because it is a simple method that shows the
minimum cost induced by parallel asynchronous exhaustive
methods. We use our own implementation of this approach.
In our implementation, modules wait for 500 milliseconds

after the reception of the last distance update triggered by a
BFS message to check for convergence.
k-BFS-RAND: In [24], the author proposes to estimate

node centrality using a partial value computed using dis-
tances to a random sample of nodes. We call k-BFS-RAND
the algorithm to elect an approximate-center node using
BFSes computation from a random sample of k nodes. We fix
k = 10. In the k-BFS-RAND-SEQ, the BFSes are performed
sequentially, while they are performed in parallel in k-BFS-
RAND-PAR (more details on the implementation of these
algorithms can be found in [9]).

2) Effectiveness Evaluation: In order to exhibit the ac-
curacy of an algorithm, we use the relative center accuracy.
We compute the exact center and node eccentricity using our
tool5 for external graph analysis.

Figure 3 shows the relative center accuracy of the different
algorithms considered.
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Fig. 3: Effectiveness of center leader algorithms : relative
center accuracy versus the number of modules in the system.

We observe that ABC-Center and k-BFS SumSweep are
more accurate than the other approximation algorithms. For
systems, below 7,000 modules, k-BFS SumSweep is the
most accurate method with an accuracy between 92% to
100%. However, for systems larger than 10,000, ABC-Center
is slightly more precise than k-BFS SumSweep with an
accuracy of 93% compared to 91%.

5GraphAnalyzer. Tool available online at: https://github.com/
nazandre/GraphAnalyzer

https://github.com/nazandre/GraphAnalyzer
https://github.com/nazandre/GraphAnalyzer


Furthermore, we observe that performing BFSes from
external nodes using the SumSweep heuristic (10-BFS-
SUMSWEEP) leads to more accurate results than performing
the BFSes from a random sample of nodes (10-BFS-RAND-
CENTER). This is because the center is first and foremost
central to most external nodes. When selecting random node,
10-BFS-RAND-CENTER may perform BFSes from nodes
close to the center which does not improve the precision of
the current eccentricity estimation.

3) Efficiency Evaluation: In this section, we study the
time efficiency, the communication efficiency and the mem-
ory usage of the different algorithms.

a) Simulated Execution Time: To measure the execu-
tion time, we consider that an algorithm terminates when
the node to be elected considers itself elected.

Figure 4 shows that the simulated average execution time
of the considered algorithms. All the algorithms, except for
n-BFS, seem to increase linearly with the diameter of the
system. The average execution time of n-BFS explodes in
systems with more than 1,000 modules which is due to
network congestion.
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ABC-Center and k-BFS SumSweep are longer to converge
than the other algorithms, except for n-BFS. Nevertheless,
as previously shown, these algorithms are definitely more
precise than all the other approximation algorithms.

PC2LE and k-BFS-RAND-PAR scale well in terms of
execution time. For Blinky Blocks systems with a diameter
of more than 65 hops and a size of approximately 25,000
modules, PC2LE elects an approximate-center module in less
than 4 seconds.

b) Number of Messages: Figure 5 shows the average
number of messages per module during the execution of the
algorithms according to the size of the system. The number
of messages used by an algorithm includes all the messages
that it generates, even those sent after the final node has been
elected. The number of messages sent reflects the energy
consumption of the modules.

We observe that n-BFS uses a lot more messages than the
other algorithms. For large-scale systems with 25,000 Blinky
Blocks, PC2LE uses about 700 messages per module while
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10-BFS-SumSweep and 10-BFS-RAND-SEQ use about 250
messages per node.

c) Memory Usage: Figure 6 shows the maximum mem-
ory usage of the different algorithms. The memory usage of
an algorithm is composed of its memory footprint, both at
the application level and in the different message queues.
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Fig. 6: Above, the maximum memory usage (considering
both the local algorithm variables and the message queue
usage) according to the size of the system. Below, the
maximum message queue per module (considering both the
incoming and outgoing queues).

We recall that, in n-BFS, every node locally stores O(n)
information at the application level and PC2LE stores O(c+
∆), where c is the cost of the probabilistic counter used [9].
The other algorithms store O(∆) information.

PC2LE, k-BFS-SumSweep and k-BFS-SEQ scale well
in terms of memory usage. In systems with 25,000 nodes,
they use less than 500 bytes of memory, among which 380



bytes6 are due to message queue occupancy. ABC-Center
and 10-BFS-RAND use up to 10 kbytes in systems with
25,000 modules because of the memory overhead due to
message pileups. 10-BFS-RAND perform BFSes in parallel,
thus being faster but requiring much more memory. n-BFS
uses 600 kbytes in systems with 5,000 modules.

VI. DISCUSSION

Electing a central node involves a trade-off between the
cost that can be afforded in terms of resources (time, mem-
ory, computation, energy) and the desired level of accuracy.
Thus the algorithm to be used in order to elect a central node
depends on the application, i.e., the role that this central node
will play, the stability of the network, the scarcest resource,
etc.

Exact approaches (e.g., n-BFS) are exhaustive and tend
to overwhelm the network. They are definitely not suitable
for large-scale systems since they are slow to converge,
they generate a significant number of messages and may
have a large memory footprint. It is paradoxical, since the
importance of central nodes increases with the system size.
In 5,000 node systems, n-BFS requires nearly 45 seconds to
converge and uses more than 500 kbytes per node.
k-BFS-SumSweep is the most accurate center approxima-

tion algorithms for system smaller than 7,000 modules. It
performs BFSes from k ≤ n nodes, which uses less resources
than performing n-BFS. Moreover, k-BFS-SumSweep uses
external roots and thus is more accurate than k-BFS-RAND
in which BFSes are run from random nodes.
k-BFS-SumSweep and ABC-Center are, however, slower

to converge as the BFSes are performed consecutively. In
25,000-module systems, they run in almost 13 seconds.
BFSes cannot be parallelized in these two algorithms, but
if it was possible, naively performing BFSes in parallel
would overwhelm the network and may incur a large memory
overhead. PC2LE is the fastest algorithm but it is less precise
and uses more messages.
k-BFS SumSweep and PC2LE have a limited memory

cost. They use between 400 and 480 bytes per node max
whereas n-BFS, 10-BFS-RAND-PAR and ABC-Center use
between 8 kbytes and almost 600 kbytes which is definitely
not suitable for modular robotic systems with scarce memory
resources.

VII. CONCLUSIONS

In this paper, we proposed the k-BFS SumSweep algo-
rithm to elect an approximate-center node in LMRs. Our
algorithm runs in O(kd) time using O(mn2) messages and
O(∆) memory space per module.

We evaluated our algorithm both on hardware modular
robots and in a simulator for large ensemble of robots.
Results show our algorithm is a good trade-off if accuracy
is the main concern. k-BFS SumSweep is the most precise
approximation algorithm for systems composed of less than
7,000 modules. In these systems, our algorithm exhibits a

620× 19 = 380 bytes

relative accuracy between 92% to 100%. Moreover the k-
BFS SumSweep algorithm is reasonably efficient in terms
of time and communication, and has a limited memory
footprint.

In future work, it will be interesting to carry out a formal
analysis of the accuracy of our algorithm in order to derive
bounds. Moreover, we want to find a way to dynamically
infer a good value for k in a given system. In addition,
we plan to study the problems of approximate-center node
election in networks that exhibit a high degree of dynamics
due to nodes failure and/or mobility. Currently, our algorithm
restarts computations from scratch upon neighbor change
detection. This mechanism will be too expensive in terms
of resource usage in highly dynamic networks.
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