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Abstract—Green data and computing centers, centers using
renewable energy sources, can be a valid solution to the over
growing energy consumption of data or computing centers and
their corresponding carbon foot print. Powering these centers
with energy solely provided by renewable energy sources is
however a challenge because renewable sources (like solar panels
and wind turbines) cannot guarantee a continuous feeding due
to their intermittent energy production. The high computation
demand of HPC applications requires high power levels to
be provided from the power supply. On the other hand, one
advantage is that unlike online applications, HPC applications
can tolerate delaying the execution of some tasks. Since the
users however want their results as early as possible, minimum
makespan is usually the main objective when scheduling this
kind of jobs. The optimization problem of scheduling a set of
tasks under power constraints is however proven to be NP-
Complete. Designing and assessing heuristics is hence the only
way to propose efficient solutions. In this paper, we present
genetic algorithms for scheduling sets of independent tasks in
parallel, with the objective of minimizing the makespan under
power availability constraints. Extensive simulations show that
genetic algorithms can compute good schedules for this problem.

Index Terms—Energy efficiency, computing center, scheduling,
genetic algorithm

I. INTRODUCTION

Big data center operators are cutting the costs of the energy
consumed by their centers by locating them in cold areas,
taking advantage of cold air to lower the cooling expenses
and thereby achieving a better PUE1. This is, for instance, the
case of HP’s Wynyard data center in the United Kingdom or
Facebook’s in Lulea, Sweden. By building green data centers
solely powered by green energy sources, data center operators
do not only reduce the electricity bill, but also provide a
lower carbon footprint. Verne Global’s datacenter, located in
Keflavik, Iceland operates with 100% sustainable green power
using geothermal and hydro-electric sources. Such structures
make an ecological platform for green computing, which has
become an inevitable necessity in High Performance Computing
(HPC) as it heads towards exascale computing. Low cost
renewable energy sources, as wind turbines and solar panels,
however produce intermittent energy and this implies to adapt
the computation schedule to the available power.

1PUE: Power Usage Effectiveness = total facility power delivered/IT
equipment power usage

HPC applications are usually tolerant to delay, unlike online
applications such as web services, which demand instant
response. HPC applications are generally batch applications,
submitted via a script and put in a job queue until the scheduler
finds available computing resources to execute them. This
makes running HPC applications on a platform powered by
green energy sources possible, as the users do not expect instant
response, but not necessary easy. The challenge here is not
to reduce the energy consumption but rather to schedule a set
of jobs under the constraint of the power availability, as the
power varies over time, and to finish their execution as early
as possible. The scheduling algorithm must hence take the best
of the available power to decide which task to run when the
power is low, and which tasks to delay until more power is
available, in a way to minimize the makespan.

Finding the optimal makespan, the shortest possible time to
execute a set of tasks under power constraints, is proven to be
NP-Complete in [12] and, by assessing classic list algorithms
on this problem, it is shown that the algorithm performance
depends on the problem characteristics as mean task duration or
power consumption. In this article, we assess the use of genetic
algorithms on the problem of scheduling a set of tasks under
power constraints to minimize the makespan. The contributions
of the paper are the following:
• The proposition of a genetic representation of a schedule,

mutation and crossover operators that allow to explore
the space of possible solutions;

• An extensive performance study of several genetic algo-
rithms;

The remainder of the paper is organized as follows. In
Section II we present research works related to this problem.
In Section III we formally define the model of the problem. In
Section IV we propose a genetic based scheduling algorithm,
mutation and crossover operators. In Section V we detail the
performance results of the different versions of the genetic
algorithm before concluding in Section VI.

II. RELATED WORK

a) Energy efficient infrastructures: Energy efficiency has
risen as a global concern for HPC applications so that many
works tackle this problem, most of them focus on reducing the
energy consumption of the facility’s components (IT [11],



2

cooling system [15], power transportation or delivery [2],
[8]), either by addressing the energy consumption of its IT
components, or by considering the whole facility [15].

Another approach is to add renewable energy sources to the
power supply. Goiri et al. [8] propose GreenSlot, a scheduler
that matches the workload with a predicted green energy level
by scheduling more jobs at times where the green energy
production level is high. They still have recourse to brown
energy in case of need. The Datazero research project [3]
aims at proposing robust solutions for datacenters that are
solely powered by renewable energy sources. They focus on a
negotiation tool that links the IT parts of a datacenter to the
electrical parts and which allows to adapt the power supply to
the computing demand and vice versa.

Since green energy production highly depends on weather
conditions, a possible solution to cope with the intermittent
production is virtual machine migration between geographically
distributed platforms. Zhang et al. [20] propose such heuristic
algorithms for multi-site datacenters. The idea is to relocate
computations to sites where the actual energy production is high.
The authors show that despite of migration costs, their approach
allows to save up to 31% of brown energy consumption.

b) Energy Aware Scheduling: A lot of effort has been
made in the domain of energy aware scheduling, where people
try to find solutions to reduce the energy consumption while
computing [17]. Dorronsoro et al. [4] propose energy and
completion time estimators used in their two-level strategy for
scheduling large workloads in multicore distributed systems. A
higher level scheduler dispatches requests among available
clusters where a local scheduler schedules them on the
multicore servers. They achieve up to 46.8% improvements
regarding the makespan of their solution and up to 29%
regarding energy consumption.

Commonly used on the IT level, Dynamic Voltage and
Frequency Scaling (DVFS) slows down the processors in
order to reduce the power consumption for the price of
longer execution times [19]. A variant of DVFS, Dynamic
Voltage Scaling (DVS) is used by Garg et al. [6]. Their
scheduling solution for HPC applications on Cloud oriented
data centers allows to reduce the energy consumption up to
25% in comparison to profit based approaches. The trade-off
between task execution time and energy consumption in DVFS
systems is evaluated in the work of Wang et al. [18]. The
authors take advantage of slack times in order to increase task
execution times with lower energy consumption. An increase of
task execution times of 30% allows to achieve energy savings
up to 70%. In recent CPU generations, DVFS is integrated in
the design of the processor (e.g., Intel HASWELL) [10], [11]
and thus less easily usable by external schedulers.

In [16] Tchernykh et al. evaluates online scheduling al-
gorithms for IaaS clouds with the objectives of increasing
provider income and reducing power consumption, taking the
quality of service into account. The authors conclude that the
strategy which allocates jobs to processors with minimum total
power consumption is a stable solution which outperforms
other strategies in almost all test cases.

Similarly to our time interval decomposition of the available
energy Dutot et al. [5] reduce energy consumption by schedul-

ing parallel jobs of a HPC cluster queue under energy budget
constraints in a given time duration.

All these works however differ from our approach in that
they try to reduce the energy consumption whereas we aim
at optimizing the amount of computations within a power
envelope, composed of time intervals where the available power
is capped. Hence we are concerned by instant power while
works on energy are interested in power consummed over time.

c) Genetic Algorithms: Genetic algorithms (GA) are
widely used in NP-complete optimization problems, as they
allow to generate high quality-solutions. In these algorithms,
a population of candidate solutions evolves through nature
inspired operations of crossover, mutation and selection towards
better solutions. The crucial point for the success of GA is the
modeling of problem properties via chromosomes. [1] is an
example of early work on using GA for parallel scheduling.
The authors combine GA with a list scheduling approach in
order to schedule DAGs on multi-processor systems. Each
chromosome represents a different configuration of the priority
assignment for each node of the DAG. Therefore, the real
numbers in the i-th gene represent the priority of the i-th node.

A parallel bi-objective hybrid genetic algorithm for reducing
energy consumption and makespan in computing systems is
presented in [13]. Each chromosome represents a possible
solution, and each gene assigns one task to a processor and
sets its voltage. The GA shuffles the tasks through the genes
of a solution by a series of mutations and crossovers, while
the processor and voltage parts of the genes are formed by an
energy-conscious scheduling heuristic (ECS). The algorithm is
evaluated by running a DAG parallel application on a grid of
three clusters. Their results show that using this hybrid approach
reduces the energy consumption by 47.49% and the makespan
by 12.05% comparing to using only ECS. This work aims at
reducing the power consumption using DVS scheduling DAG-
like applications, whereas we focus on scheduling independent
tasks under power constraints.

Lei et al. [14] propose a multi-objective co-evolutionary
algorithm for scheduling tasks on data centers partially powered
by renewable energy. The chromosome encoding is similar to
the one in [13]. The processor and voltage parts of genes are
the ones who change through a chromosome by mutation and
crossover, while the order of tasks remains fixed according
to their index. They evaluate scheduling tasks with different
lengths and deadline on homogeneous computing nodes.

Both works ( [13] and [14]) use DVFS to set the voltage
of a processor, while the model considered here assumes that
different tasks have different fixed power consumptions. Also
they only partially supply the data center with renewable energy
and have recourse to brown energy sources.

III. MODEL

As previously stated, we tackle the problem of statically
scheduling a set of independent sequential tasks in parallel on
a set of machines under power constraints. In this optimization
problem we seek finishing the tasks as soon as possible,
the objective function is hence the makespan or Cmax, the
completion time of the last finishing task. Tackling this problem
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requires to first formally define how the set of tasks, the
machines and the power are considered. In this section we thus
give a formal definition of the model used in the remaining of
the paper. Note that we use the same model as in [12]. Table I
summarizes the notations.

Table I: Summary of the notations.

var. definition var. definition

T set of tasks M set of machines
n number of tasks m number of machines
Ti task i Mj jth machine of M
pi processing time of Ti
ϕi power needed by Ti

∆x interval with constant power δx length of ∆x

X number of intervals ∆x Φx useful power of ∆x

We consider a setM = {M1,M2, . . . ,Mm} of m execution
units Mj on which to execute the tasks. The energy consumed
by a computer is usually decomposed into static and dynamic
energy, where the static energy is the energy needed to power
the machine when its cores are idle and the dynamic energy is
the extra energy used to run the tasks. The general model thus
includes these values plus switch on/off times for the machines.
In the current work, to reduce the complexity of the problem,
we consider execution units as cores. The platform used to
asses our algorithms rather models a multi-core machine than
independent machines. In that case m, the number of execution
units, corresponds to the number of cores of the machine.

The energy used to power these execution units comes from
renewable sources, such as wind turbines, photo-voltaic panels
(PVs) and so on. We are therefore not sure to be able to always
run the machine at full speed. On a cloudy day, the energy
produced by PVs could drop and become too low to run all
the cores of the machine. On the other hand, the energy has no
cost and unused energy is lost which means that our objective
is to use as much energy as possible to finish the tasks the
soonest. As the energy varies over time, we discretize it in a
set of ∆x intervals of length δx and of available power Φx.

Given this platform and energy we want to schedule a set
T of tasks, composed of n sequential independent tasks Ti,
T = {T1, T2, . . . , Tn}, whose processing time is pi. In this
paper we consider the power consumed by a task, its instant
consumption, rather than its energy need. In [7] Glesser et
al. show that running a task results in an energy consumption
that depends on the task type, either intensive or not. Based
on that we define ϕi as the power consumption ϕi of task Ti.
This value can be the peak consumption of the task during its
execution duration. Once started the tasks are uninterruptible.

As illustrated on Figure 1, our problem consists in scheduling
the set of tasks, gray rectangles, in the time intervals, red
lines, provided that the number of tasks scheduled at the same
time does not exceed the number of cores of the machine.
This optimization problem can be formally defined, using
the Graham notation for scheduling problems [9] completed
by [12], as P |ϕi ≤ Φx|Cmax which means that we have
identical processors, that the power consumed by a tasks (ϕi)
is lower than the power provided to the machines (Φx) and
our objective function is the makespan.

T1 T2 T3 T4 T5

T6 T7 T8

∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8

t

Φ(t)

Figure 1: Illustrating example for the optimization problem
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Figure 2: Example of a schedule

Note that using the power approach, instead of the energy one
often used in the literature, allows to turn the problem into a one
criterion classical optimization problem, the makespan, rather
than a multi-criteria problem which only leads to compromises
and no optimal solution.

IV. GENETIC ALGORITHMS FOR POWER CONSTRAINT

In a previous work [12] we have tested several classical list
algorithms to solve this problem. We have shown that the best
algorithm depends on parameters as mean task size or mean
task power need. As shown in Section II, genetic algorithms
often give interesting results in scheduling problems provided
that a correct genetic representation of the schedule is found.
In this paper we assess the use of genetic algorithms on this
power constraint scheduling problem.

a) Chromosome representation of a schedule: The first
issues to be solved when designing a genetic algorithm are
to code the solutions under gene shapes and to measure to
corresponding fitness. The fitness choice is rather easy as it
usually corresponds to the optimization objective, the makespan
here. There are however numerous ways to code a solution
and the representation choices highly impact the results so that
several solutions must be explored.

As a first try, each chromosome represents a possible
schedule. A chromosome is made of n genes with the i-th
gene being the time interval where task Ti is scheduled for
execution. The time interval selected for each task is chosen
from a list of all possible time intervals in the time interval
list with enough available power. This list is calculated for all
tasks once before generating the initial population. Since tasks
are scheduled in parallel, several genes can have the same time
interval, i.e., several tasks can be scheduled in the same time
interval. The algorithm tries to schedule the task list according
to the schedule presented by a chromosome, i.e., each task is
executed at the time interval defined in its corresponding gene.
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The fitness of the chromosome is then set to the makespan of
the schedule if the latter is feasible or to infinity if not.

This approach has several drawbacks. The process of
calculating the time interval possibility lists for each task is
time consuming and the generation of non-feasible schedules
when applying the mutation and cross-over operators leads to
time losses when generating and evaluating the chromosome.

In [12] we established, on the one hand, that the order in
which a list of tasks is passed to a list scheduling algorithm
makes a big difference in the resulting makespan, and on the
other hand, that, depending on the characteristics of a set of
tasks, using the priority criteria of the task list impacts the
performance of the resulting schedule. Therefore, an other GA
was developed where each chromosome represents an ordered
list of chromosomes that is then passed to a list algorithm
that computes the corresponding schedule. The first obvious
advantage is that all combinations of the task list order are
valid if the available power constrains of the time slot list
allows it. The coding and implementation is also simpler and
faster than in the preceding proposition and thus solutions can
be found in reasonable computation time.

T15

0

T32

1

T63

2

T2

3

T95

4

T1

5

T73

6

T7

7

.. .. .. .. .. T40

9

Ci

To second step, list scheduling

T32 T15

T2

T63

T95

T40

∆1 ∆2 ∆3 ∆4 ∆5

t

Φ(t)

fitness = Cmax

Figure 3: Illustrating example of a chromosome and the
corresponding schedule

Figure 3 illustrates this approach. The chromosome repre-
sentation is a simple ordered list of the tasks. To be valid it
must contain all the tasks of the list and not twice the same
task. The chromosome list is then passed to a list scheduling
algorithm which schedules the tasks depending on the time
interval constraints to compute the fitness, i.e. the makespan.
Here T15 is the first task to be scheduled, the second task is
T32, and T40 is the last task to be scheduled. Due to power
constraints task T15 cannot be scheduled first although it is
the first in the list. Then, with respect of the power availability
constraint, task T32 is executed in the first interval ∆1 while
task T15 is delayed until the second interval ∆2 as there is
enough power available at ∆2.

This chromosome representation makes generating a new
individual faster than in the previous one. The GA only needs
to shuffle a list of integers [1→ n] that represents the indexes
of all n tasks. This does not limit us to small population sizes.

b) Genetic algorithm: Algorithm 1 gives the main genetic
algorithm used to manage the chromosomes and generate the
schedules. In this GA the population size is set to 50. And by
setting the number of intervals X high enough, it is valid to

Algorithm 1: geneticAlgorithm(T , ∆,
nbI)

Data: T , ∆: set of tasks, set of intervals
nbI: number of iterations without enhancement

Result: task list order
1 stopCounter ← 0
2 currentGeneration[0] ← LPT(T , ∆)
3 currentGeneration[1] ← LPTPN(T , ∆)
4 currentGeneration[2] ← 2Qs(T , ∆)
5 currentGeneration[3] ← LPN(T , ∆)
6 currentGeneration[4:50] ← 46 random solutions
7 calculateFitnessOfPopulation(currentGeneration)
8 currentGeneration.sort()/* fitness: in increasing order

*/
9 while stopCounter ≤ nbI do

10 oldBest ← currentGeneration[0]
11 nextGeneration ← []
12 nextGeneration[0:10] ← currentGeneration[0:10]
13 for i=1 to 15 do
14 mutant ← mutation(selection(currentGeneration))
15 nextGeneration.append(mutant)

16 for i=1 to 15 do
17 mutant ← chunckMutation(selection(currentGeneration))
18 nextGeneration.append(mutant)

19 for i=1 to 10 do
20 C1, C2 ← selection(currentGeneration)
21 newC1, newC2 ← crossOver(C1, C2)
22 nextGeneration.append(newC1, newC2)

23 calculateFitnessOfPopulation(nextGeneration)
24 nextGeneration.sort()
25 currentBest ← nextGeneration[0]
26 currentGeneration ← nextGeneration
27 if oldBest − currentBest = 0 then
28 stopCounter++
29 else
30 stopCounter← 0

31 return currentBest

assume that all initial chromosomes give a feasible order of
the task list.

Four individuals of the initial population are the priority
queues of four list scheduling algorithms: LPT, LPN, LPTPN
and 2Qs. The LPT algorithm is the classical Largest Processing
Time list algorithm that sorts the tasks with the largest pi first.
The LPN algorithm does the same but using the power need
ϕi of the tasks as priority. The LPTPN algorithm uses the
product of processing time and power need, pi × ϕi, to take
both properties into account. Finally the 2Qs algorithm creates
two lists, one sorted by pi and the other by ϕi, and takes in turn
one task in each list. Once a task is scheduled, it is removed
from both lists. Note that the three scheduling algorithms LPT,
LPN and LPTPN have already been assessed in a previous
work. We however do not know their distance to the optimal,
so we do not know the optimization potential that they leave
to other algorithms. The other 46 individuals are randomly
generated by shuffling a list of integers [1→ n] that represents
the indexes of all n tasks as mentioned above.

Another important point in a genetic algorithm is the
individual selection. We have implemented both wheel selection
and random selection when choosing which individuals to apply
the genetic operators on.

In Algorithm 1, first, the best ten individuals are copied to
the next generation (elitism). Then, based on the used selection
(wheel or random), 15 chromosomes are selected for 1-gene
mutation (see [l13 → l15]] in Algorithm 1) and another 15
chromosomes are selected for chunk mutation ([l16→ l18]]).
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C
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mutation(C)

Figure 4: mutation(C)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C

1 2 3 4 17 18 19 8 9 18 11 12 13 14 15 16 5 6 7 20

chunkMutation(C)

Figure 5: chunkMutation(C)

As for the rest of the evaluated GAs, 20 additional chro-
mosomes are selected to perform 10 crossovers. In this study,
we evaluate three crossover techniques. For each evaluation,
one of these three crossovers is applied at l21 in Algorithm 1.
Finally, the fitness of the new off-springs is calculated, and
the entire process is repeated for the next generation while we
run nbI steps without improvement.

The mutation and crossover operators are explained in the
following.

c) Mutation: As presented previously two different mu-
tation operators are used in the GA algorithm. In the 1-gene
mutation operator, two points on the chromosome are randomly
picked, and the values of the two corresponding genes are
interchanged as illustrated in Figure 4. The chunk mutation
operator uses the same concept as 1-gene mutation, only except
swapping two ”1-gene”s, it swaps 2 ”chunk”s of random size
between 1→ 10 of the chromosome at two randomly selected
points (Figure 5).

Due to the characteristics of our problem, it is interesting
to study the effect of small modifications on a given solution.
Applying too many modifications might eventually be as
arbitrary as a random solution. Hence, the first GA we evaluate
applies only 1-gene or chunk mutation genetic operators (it
skips lines [l19 → l22]] in Algorithm 1). This algorithm is
named noX, for no crossover, algorithm. With the two different
selections, random (R) and wheel based (W), we define the
algorithms: two noX-R and noX-W.

d) One point crossover: Crossover is one of the funda-
mental operators of GA and many crossovers mechanisms are
described in the literature. In this paper we evaluate the affect
of using three different crossovers. First, we evaluate the most
common one point crossover. A randomly selected crossover
point splits both parents into two parts. We cannot however
directly exchange the chromosome parts as it is usually done
because, doing this, the same task could appear twice in one
chromosome, which would be a non-sense for a schedule.
In our crossover we generate two new chromosomes, each
one keeping its parent’s head, while the genes of its tail (the
remaining tasks) are ordered according to the order of the other
parent. Algorithm 2 details the 1-point crossover operator.

Figure 6 illustrates this crossover operator. The crossover

Algorithm 2: onePointCrossOver(C1, C2)

Data: C1 /* chromosome 1 with n tasks */
1 C2 /* chromosome 2 with n tasks */

Result: newC1, newC2: 2 new chromosomes each with n tasks
2 n← length(C1)
3 p ← intRand(0, n)/* integer random value: 0 ≤p< n */
4 newC1 ← C1[0:p]/* p values between 0 and p-1 */
5 newC2 ← C2[0:p]
6 newC1 ← newC1 + C2 r newC1
7 newC2 ← newC2 + C1 r newC2
8 return newC1 , newC2

C1

C2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 18 4 8 14 7 17 12 15 11 1 9 20 16 19 6 13 3 10 2

p

C2rC1[0:p]
18 14 17 12 15 11 20 16 19 13

newC1 = C1[0:p] + C2rC1[0:p]

1 2 3 4 5 6 7 8 9 10 18 14 17 12 15 11 20 16 19 13

Figure 6: OnePointCrossOver(C1, C2)

point is set to p. Chromosome newC1 takes the head of C1
and orders the remaining tasks according to the task order of
C2. For instance, task 5 that is already present in the head of
C1 is not duplicated in the tail of newC1 and thus task 18
appears first in the second part of the chromosome.

The 1-point crossover algorithms are named 1pX. With the
two selection operators we have 1pX-R, for random selection,
and 1pX-W, for wheel selection.

e) Two point crossovers: Considering that the 1-point
crossover generates large changes in the chromosomes we
have also implemented two other crossover operators that use
two points.

The first operator is a two point crossover called Or-
der Crossover (OX). Two crossover points are randomly
drawn.Each parent keeps its middle part Ci[p1 : p2]. Then,
the genes of its edges starting from Ci[p2 + 1], circling back
to Ci[p1 − 1] are ordered according to their order in the other
parent starting from p2 + 1. The Order Crossover operator is
given by Algorithm 3.

For example in Figure 7, the first new off-spring cC1 is
composed of the middle part of the first parent C1[p1 : p2]. The
subset of the rest of the genes of C1 starting from C1[p2 + 1]:
[18,19,20,1,2,3] is reordered as these genes appear in C2[p2 +
1]→ C2[p2]: [3,2,18,1,20,19]. The ordered subset is then added
to the first off-spring cC1 in the same circular manner.

The algorithms that use this crossover operator are named
OX. We thus have OX-R and OX-W depending on the
associated selection operator.

The second 2-point crossover operator is a classical two
point crossover. Each off-spring has the same edges as its
parent Ci[0 : p1 − 1] and Ci[p2 + 1 : n]. The genes in the
middle of each parent Ci[p1 : p2] are reordered in the off-spring
according to their order in the other parent. This operator is
detailed in Algorithm 4. Figure 8 illustrates an example of this
operator. The operator is named Middle Cross Over and the
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Algorithm 3: orderCrossOver(C1, C2)

Data: C1 /* chromosome 1 with n tasks */
1 C2 /* chromosome 2 with n tasks */

Result: newC1, newC2: 2 new chromosomes each with n tasks
2 n← length(C1)
3 p1 ← bn× rand(0, 1)× 0.15c
4 p2 ← bn× (rand(0, 1)× 0.15 + 0.85)c
5 newC1 ← C1[p1:p2]
6 newC2 ← C2[p1:p2]
7 temp1, temp2 ← [], []
8 for i = 0 to n− 1 do
9 if C2[(i + p2)%n] 6∈ newC1 then

10 temp1.append(C2[(i + p2)%n])

11 if C1[(i + p2)%n] 6∈ newC2 then
12 temp2.append(C1[(i + p2)%n])

13 newC1 ← temp1[n−p2:n−p2+p1] + newC1 + temp1[0:n−p2]
14 newC2 ← temp2[n−p2:n−p2+p1] + newC2 + temp2[0:n−p2]
15 return newC1 , newC2

C1

C2

temp1
temp1[*] ∈ (C1[p2:p1]∩ C2[p2:p2])

newC1 = temp1[n−p2:n−p2+p1] + C1[p1:p2] + temp1[0:n−p2]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

p1 p2

5 18 4 8 14 7 17 12 15 11 1 9 20 16 19 6 13 3 10 2

3 2 18 1 20 19

1 20 19 4 5 6 7 8 9 10 11 12 13 14 15 16 17 3 2 18

Figure 7: orderCrossOver(C1, C2)

corresponding algorithm identified as MX (MX-R and MX-W
with their selection operators) in the following.

V. EXPERIMENT AND RESULTS

To assess the performance of the presented algorithms we
have implemented them and we have run simulations with
varying parameters. The algorithms and the simulation testbed
have been developed in python2.

The experimental settings are the following. The number
of available cores is set to 8, which means that we cannot
run more than 8 tasks in parallel even if there is still unused
power. The performance of the algorithms is computed with
different values of mean task length, from 10 to 100 with a
step of 10, and mean task power need, from 4 to 40 with a

2The source code is available on GitHub at
http://github.com/laurentphilippe/greenpower

C1

C2

temp = C1[p2:p1] in order of C2[0:n]

newC1 = C1[0:p2] + temp + C1[p1:n]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 18 4 8 14 7 17 12 15 11 1 9 20 16 19 6 13 3 10 2

p2 p1

8 14 12 15 11 9 13 10

1 2 3 4 5 6 7 8 14 12 15 11 9 13 10 16 17 18 19 20

Figure 8: middleCrossOver(C1, C2)

Algorithm 4: middleCrossOver(C1, C2)

Data: C1 /* chromosome 1 with n tasks */
1 C2 /* chromosome 2 with n tasks */

Result: newC1, newC2: 2 new chromosomes each with n tasks
2 n← length(C1)
3 p1 ← intRand(0, n)/* integer random value: 0 ≤p1< n */
4 p2 ← intRand(0, n)
5 if p1 < p2 then
6 newC1, newC2 ← orderCrossOver(C1, C2)
7 else
8 if p1 = p2 then
9 newC1 ← mutation(C1)

10 newC2 ← mutation(C2)
11 else
12 newC1 ← C1[0:p2] /* p2 task indices */
13 newC2 ← C2[0:p2]
14 for i = 0 to n− 1 do
15 if C2[i] ∈ C1[p2:p1] then
16 newC1.append(C2[i])

17 if C1[i] ∈ C2[p2:p1] then
18 newC2.append(C1[i])

19 newC1 ← newC1+C1[p1:n]
20 newC2 ← newC2+C2[p1:n]

21 return newChromo1 , newChromo2

step of 4. For each couple of values we run 200 simulations
with different sets of 100 tasks and sets of 1000 intervals
where Φmax = 80. Note that our tests show that the results
become stable starting from 150 executions, thus, we chose
200 to be sure of having reliable results. For the tasks, the
pi and φ values are randomly chosen with, respectively, an
exponential law and an uniform law. The performance of the
algorithms depends on their obtained makespans. An algorithm
may however not always get the best result, depending on the
experimental parameters. Algorithms are hence rather compared
based on their mean makespan. However a simulation with
larger task is hardly comparable with another using small tasks.
For these reasons we measure the algorithm’s performance with
their Permake, where Permake = (makespan−useless)/

∑
pi,

which normalizes the raw makespan value, where useless is
the sum of intervals with Φx < mini(ϕi), the available power
is less than the minimum task power.

We evaluate the GAs with different types of crossovers,
without cross over, and evaluate the effect of wheel vs
random selection. For each GA the stopping condition (nbI in
Algorithm 1, number of generations without any improvement)
is set to 50. Note that other computations have shown that a
value of 10 gives poorer results.

Figure 9 shows the best algorithm, the one with the lowest
mean Permake, with each pimax and φimax values presented
as a square on the heat map. From the figure we can say that
in general, wheel selection gives better results than random
selection. This probably means that better solutions are rather
found by slightly modifying initially good solutions than
searching at a wider distance from these initial solutions. The
only cases where random selection gives better results is when
the power demand of tasks is high, 36 or higher. From this
figure we can also notice that the 1-point crossover does not
show any best result in the heat map. This is because changing a
big chunk (90%) of a solution, has almost the same probability
of producing a good solution as generating a completely random
solution, even if the parent is a good solution. In the same way
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Figure 9: Best algorithm, Permake, 200 executions

Table II: Computation time

Algo noX-W OX-W MX-W 1pX-W LPT
Time (s) 239.34 301.83 300.11 128.6725 0.02
Algo noX-R OX-R MX-R 1pX-R 2Qs
Time (s) 287.28 356.08 339.58 334.93 0.04

we can state that limiting the size of the chunk to be changed
in the crossover leads to better solutions.

Figure 9 also shows that the characteristics of the tasks play
a rule in determining which GA configuration is the best. Since
the heat map is relatively split diagonally between two GA
configurations, we can conclude that GA with no crossover
performs better for small tasks (the rectangle area = pi × φi is
small), while it is better to use OX for big tasks.

Figure 10 shows the distance in percent of the performance of
the four algorithms using wheel selection to the best algorithm
for each square in the heat map. We can see that the algorithms
are never more than 2% worse than the best solution and that,
except for the 1-point crossover, the algorithms are generally
less than 0.5% worse than the best one, even for the noX-W
algorithm. The same analysis on random selection shows that
it does not provide as good results as the wheel one. Note
that, even in the cases where random selection provides the
best result, OX-W is not farther than 0.3%. We conclude that
OX-W may be used in almost all cases.

Figure 11 presents the distance of the list algorithms, used
as initial population of the different GAs, to the best Permake
value. The figure shows how far the GAs are able to improve
these initial schedules. Preceding results showed that 2Qs and
LPT were the best solutions of the list algorithms which is
confirmed here as we observe less red squares on their heat
maps. Note that the black squares on the LPN heat map mean
that the distance exceed the upper value of 20 %, reaching up
to 40 % in some cases. Generally the best improvement of the
GAs from those two solutions is around 5% and never better
than 10%. This means that all GAs improve the good initial
schedules but the improvement is not that significant.

Table II answers the question of the cost of the improvement.
It gives mean computation times for each algorithm. Note

that the computation times stay almost constant whatever
the value of pi and ϕi. There is a huge difference in the
computation times between list algorithms and GAs. If nbI ,
the number of iterations without improvement is set only to 10,
the mean computation time falls to around 25%. The results also
show that using random selection leads to bigger computation
times, especially for 1-point crossover, where big changes
are applied on the chromosomes, and randomly selecting
bad individuals for crossover would delay the convergence
comparing to selecting good individuals by the wheel selection,
and improving them through next generations. Given these
results we can see that the list algorithms provide pretty good
results for the time used and the improvements are costly. So
the question is how many times can we wait for a schedule?
Note that the algorithms are implemented in python and run
faster in a compiled language.

Further analysis of the results also shows that all tested GAs
have a relatively stable standard Permake deviation to each
other, around 0.31, with ranging between a minimum around
0.18 and maximum around 0.45. This means that the Permake
measure is stable for the GAs. On the other hand list based
algorithms have bigger variations and higher standard deviation
up to around 0.36.
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Figure 10: Distance of 1pX-W, OX-W, MX-W, and noX-W
from the best algorithm

VI. CONCLUSION

In this work we evaluated the interest of using a genetic
algorithm (GA) to find a solution to the optimization problem
of scheduling a set of independent tasks on a parallel platform
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Figure 11: Distance of list algorithms from the best algorithm

powered solely by renewable energy sources. We examine the
effect of applying different types of crossover operators on the
performance of GA. We compare the performance of these
four GA configurations to previously tested list algorithms. We
also investigate the impact of applying the wheel selection in
comparison with random selection. Extensive simulations show
that implementing any tested GA configuration outperforms
all tested list algorithms, by improving known good solutions
through small size genetic modifications. Even though the
superiority in the performance of GA is not proportional
to the time loss compared to list scheduling algorithms, the
computation time of GA is still within acceptably limits.

In future works we intend to explore GA configurations,
to reduce the computation time cost and to investigate other
strategies than GA. Meanwhile, we are developing experimental
settings that will allow us to measure the distance of our
solutions to the optimal solution. We also plan to assess the GA
for other optimization objectives. For instance the flowtime, i.e.,
the job slowdown time, is an important user oriented objective
that we will study. It however requires the design of specific
genetic operators to match the objective.
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[4] Bernabé Dorronsoro, Sergio Nesmachnow, Javid Taheri, Albert Y

Zomaya, El-Ghazali Talbi, and Pascal Bouvry. A hierarchical approach
for energy-efficient scheduling of large workloads in multicore distributed
systems. Sust. Computing: Informatics and Systems, 4(4):252–261, 2014.

[5] Pierre-François Dutot, Yiannis Georgiou, David Glesser, Laurent Lefevre,
Millian Poquet, and Issam Rais. Towards energy budget control in hpc. In
Proceedings of the 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, pages 381–390. IEEE Press, 2017.

[6] Saurabh Kumar Garg, Chee Shin Yeo, Arun Anandasivam, and Rajkumar
Buyya. Environment-conscious scheduling of HPC applications on dis-
tributed cloud-oriented data centers. Journal of Parallel and Distributed
Computing, 71(6):732 – 749, 2011.

[7] Y. Georgiou, D. Glesser, and D. Trystram. Adaptive resource and job
management for limited power consumption. In 2015 IEEE International
Parallel and Distributed Processing Symposium Workshop, pages 863–
870, May 2015.
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