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2 FEMTO Engineering, 15b Avenue des Montboucons, 25030 Besançon - France
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We report results of two-photon quantum holography where spatial information stored in phase
holograms is retrieved by measuring quantum spatial correlations between two images formed by
spatially entangled twin photons with a dimensionality of 1790 in the two-dimensional transverse
space. In our experiments, the entire flux of spontaneous down converted photons illuminates the
phase holograms and the photons of pairs signal-idler transmitted by the holograms are detected
separately in far field on two electron-multiplying charge coupled device cameras.

High-dimensionality spatial entanglement allows access to large Hilbert spaces, with applications in numerous fields
of quantum optics, like quantum lithography [1], quantum computation [2] or quantum ghost imaging [3]. By itself,
a source of quantum light issued from spontaneous down conversion (SPDC) appears as incoherent, preventing the
formation of an image of the spatial spectrum of an object (a transparency) in the Fourier plane. However, coincidence
imaging of the pairs of twin photons allows this spatial spectrum to be retrieved, as demonstrated in experiments like
demonstration of spatial antibunching [4], observation of two-photon speckle patterns [5], or transfer of the angular
spectrum of the transparency modulating the pump beam [6]. All these experiments measured coincidences between
two single-photon counting modules scanned on the signal and idler images. These procedures are time-consuming,
even if improved by compressive-sensing [7], and use a very little part of the incident photons, leading to potential
loopholes [8] if applied to the demonstration of basics properties of entanglement like the Einstein-Podolsky-Rosen
(EPR) paradox [9].

Because of these drawbacks, imaging with single-photon sensitive cameras has became more and more popular
and allows massively parallel coincidence counting. Examples of experiments include sub-shot noise imaging [10, 11]
using a low noise CCD camera, demonstration of a high degree of EPR paradox [12] and of transmission of biphotons
through a non unitary object[13] using electron-multiplying CCD cameras (EMCCD), unity contrast EPR-based ghost
imaging with an intensified CCD camera [14], as well as holography of a single photon with an intensified CMOS
camera [15].

In this paper, we report coincidence imaging of bidimensional phase holograms using two EMCCD cameras. As
in ref. [4, 5], no single photon image is formed in the Fourier plane, while the cross correlation of the images allows
a coherent image to be retrieved in the far field, with an equivalent wavelength equal to half the signal or idler
wavelength, as in [16].

For a sufficiently thin crystal, it can be assumed that the two photons of a pair are created at the same random place.
This assumption is equivalent to neglecting the uncertainty in the image plane due to phase matching conditions.
Hence, the two-photon spectral wave function of SPDC emitted from a thin crystal pumped by a monochromatic
beam of angular frequency ωp and of amplitude Ep(r) is given by [17]:

ψ(r1, r2;ωs) ∝
∫
Ep(r)hs(r1, r;ωs)hi(r2, r;ωp − ωs)dr, (1)

where r1 and r2 are transverse positions in the plane of separate detectors (EMCCD1 for the signal and EMCCD2

for the idler) and r is a coordinate in the image plane of the crystal where the hologram lies. hs(r1, r;ωs) and
hi(r2, r;ωp−ωs) are the impulse response functions of the separate linear imaging systems for the signal and the idler
beams, respectively.

Now, let us name t(r) = eiϕ(r) the transmission of the phase hologram with a phase modulation ϕ(r) and let us
make some assumptions. First, we assume that the hologram is thin and planar. Secondly, the binary phase hologram
is designed in such a way that the ±1 diffraction orders are centered, in a far field, on ±6mm−1 spatial frequencies
which are much smaller than the 64mm−1 phase-matching bandwidth (FWHM) of the type-II BBO crystal (see the
paragraph dedicated to the experimental set-up), in agreement with the above assumption of neglecting the effect of
imperfect phase-matching. Moreover, because SPDC is detected in a narrow band around degeneracy, the biphoton
state is assumed to be monochromatic (ωi = ωp − ωs = ωs). Thirdly, in our experimental setup (Fig. 1a), as the
hologram is placed in the near field of the crystal and because all photons are collected by the 4− f imaging system,
in Eq. 1, we can consider that the separate optical systems are formed only by the hologram and the two identical
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Fourier transform optical systems (2− f systems). Then, the impulse responses are given by:

hs,i (r1,2, r;ω) = ts,i(r)
e−2ikf

iλf
e−

ik
f r1,2r, (2)

where k and λ are the signal or idler wave number and wavelength (at the degeneracy ks = ki = k, λs = λi = λ).
Then, Eq. 1 becomes:

ψ(r1, r2) ∝
∫
Ep(r)ts (r) ti (r) e−

ik
f (r1+r2)rdr =

∫
Ep(r)t2 (r) e−

ik
f (r1+r2)rdr (3)

Hence, the experimental two-photon coincidence rate at two positions in the separate detection planes is given by:

G(2) (r1, r2) = |ψ(r1, r2)|2 ∝
∣∣∣∣Ẽp(r1 + r2

λf

)
∗ t̃2

(
r1 + r2
λf

)∣∣∣∣2 . (4)

where ∗ denotes the convolution product and ˜ the bidimensional Fourier-transform operator. In this expression, the
transmission of the hologram is squared, unlike in classical coherent imaging. In consequence, while binary phase
holograms are usually designed with a (0− π) phase step for efficient restitution with coherent light, a

(
0− π

2

)
phase

step must be engraved when a biphoton source is used or, equivalently, the (0− π) phase step must be engraved by
considering a halved wavelength [16].
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FIG. 1: (a) Experimental setup : Twin photon pairs at 710nm are generated by SPDC in a type-II BBO crystal. The crystal
is imaged with a 4 − f optical system on a binary phase hologram engraved on a glass slide. The photons signal and ilder
transmitted by the hologram are then naturally separated by free space propagation thanks to the walk-off. They are then
detected and resolved spatially in the far field on two EMCCD cameras used in photon counting mode . (b) Pattern of the(
0 − π

2

)
binary phase hologram. The insert represents the pattern encoded in the hologram: an array of 9 Dirac peaks.

The experimental set-up is illustrated in Fig. 1a. Photon pairs are generated via SPDC in a type-II geometry in
a 0.8mm long β-barium borate (β-BBO) crystal pumped at 355nm. The pump pulses are provided by a passively
Q-switched Nd:YAG laser (330 ps pulse duration, 27 mW mean power, 1 kHz repetition rate and 1.6 mm FWHM
beam diameter). The crystal (i.e. near field of twin photons) is imaged with a 4−f imaging system on a binary phase
hologram with a transversal and an angular magnification of -1 and the entire flux of spontaneous down converted
light illuminates the hologram. Fig. 1b shows the binary pattern engraved on a glass slide to create the phase
hologram and the insert corresponds to the pattern encoded in the hologram : an array of 9 Dirac peaks. The phase
holograms are designed to produce off-axis patterns and the binary hologram, i.e. diffractive optical elements (DOE)
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[18], gives a restitution of the orignal pattern at ±1 diffraction orders. The engraving depth of the holograms is
adjusted to produce a

(
0− π

2

)
binary phase modulation at 710nm in order to optimize the diffraction efficiency of

the hologram with the biphotons source. The cross-polarized signal and ilder beams transmitted by the hologram are
then naturally separated by free space propagation thanks to the walk-off. Lastly, photons of pairs are detected and
resolved spatially in the far-field on two EMCCD cameras (Andor iXon3) used in photon counting mode [19]. Before
detection, photons pairs emitted around the degeneracy are selected by narrow-band interference filters centered at
710nm (∆λ w 4nm). The vertical and horizontal red arrows symbolize the polarization directions of the signal and
idler beams.

The protocol for measuring spatial momentum correlations between twin images is the same as the one we proposed
for measuring EPR paradox [12, 20] and temporal ghost imaging [21] with twin images. For a set of twin images, we
apply a thresholding procedure to convert the gray scales into binary values that correspond to 0 or 1 photon. Then, a
spatial coincidence correlation function is obtained by calculating the normalized cross-correlation of photodetection
images, after subtraction from these images of their deterministic part (i.e. the mean of the images).

First, the hologram is removed from the experimental setup. From the normalized cross-correlation in momentum
calculated with a set of 100 twin images (Fig. 2a), we measure the width of the correlation peak, expressed in standard
deviations, which gives, in spatial frequency units: σνx = 0.69mm−1, σνy = 0.59mm−1. With σφ = 27mm−1 the

standard deviation deduced from the 64mm−1 FWHM of the phase matching function (Fig. 2c), we can estimate
roughly the whole dimensionality V , i.e. the Schmidt number of the bi-photon wave function in the two-dimensional
transverse space :

V =
σ2
φ

σνxσνy
≈ 1790 (5)

This value has to be compared with the theoretical value given by [22]:

Vth =

(
2π0.69

1.89

)2 σ2
pump

λsL
(
n−1
s + n−1

i

) ≈ 3500, (6)

where L is the crystal thickness, σpump ≈ 0.68mm is the standard deviation deduced from the FWHM of the gaussian
pump beam and ns, ni the reffractive indices of the BBO crystal. These rough calculations give values of the same
order of magnitude and confirm the high dimensionality of the biphoton wavefunction. The discrepancy between
these values is probably due to the telescope’s geometric aberrations which are at the origin of a widening of the
correlation peak and thus to a reduction of the effective Schmidt number. We also calculate the integral of the
normalized correlation peak, i.e. the degree of correlation, that is equal to 0.25. This value represents the ratio
between the number of photons detected in pairs and the total number of photons. This result is also consistent with
the equivalent quantum efficiency of the entire detection system which includes the quantum efficiency of the cameras
and the transmission coefficients of the various optical components (filters, lenses, dichroic mirrors) [20]. Finally, we
verified that there is no deterministic correlations between images that do not share pump pulses (Fig. 2b).

We now put the phase hologram back into the experimental set-up. In Fig. 2c showing the far-field mean spatial
distribution of photons signal (or idler) transmitted by the hologram, we can observe that the spatial information
encoded in the hologram is not retrieved, because of the incoherent nature of SPDC [5, 6]. In contrast and in
good agreement with Eq. 4, when cross-corrrelation in momentum between twin images is calculated, the spatial
distribution of two-photon coincidence rate exhibits a pattern (Fig. 2d), where appears at the ±1 diffraction orders
the original pattern encoded in the hologram: an array of 9 Dirac peaks (in white dotted squares). Some additional
periodically distributed peaks are also visible due to the binary character of the hologram. In order to improve
the signal-to-noise ratio (SNR) of the retrieved pattern, this cross-corrrelation image is calculated over 80000 twin
images. Although the engraving depth of the hologram is adjusted with an accuracy of about 10% to give a

(
0− π

2

)
phase step, the correlation peak corresponding the 0-order diffraction of the hologram is much more intense than the
±1 diffraction orders, unlike in the perfect coherent image. From the integral of the whole normalized correlation
pattern, the degree of correlation of twin images is estimated to 0.20. It is smaller than the degree of correlation
measured without the hologram because the transverse momenta of some photon pairs transmitted by the hologram
are greater than the maximum sampling spatial frequency imposed by the sensor dimensions. The results presented
here correspond to the best position of the hologram, minimizing the level of the correlation peak at the 0-order
diffraction.

To explain the large amplitude of the 0-order correlation peak, we have assumed a slight defocusing (1.5mm) of
the image plane of the crystal with respect to the position of the hologram. This defocusing could be due in part to
the geometric aberrations of the 4 − f imaging system. Eq. 1 remains valid but the impulse-responses are no more
given by Eq. 2. A formalism involving for each beam two impulse-responses (one from the crystal to the object and



4

-30 -20 -10

30

20

10

0

-10

-20

-30

3020100

(c)

0.1

0.2

0.3

ν y
 (m

m
-1

)

νx (mm-1)

20

10

0

-10

-20

20100-10-20

(a)

-10

-8

-6

-4

-2

0

ν y
 (m

m
-1

)

νx (mm-1)

20

10

0

-10

-20

20100-10-20

(b)

-20

-16

-12

-8

-4

0

ν y
 (m

m
-1

)

νx (mm-1)

20

10

0

-10

-20

20100-10-20

(d)

-20

-16

-12

-8

-4

0

ν y
 (m

m
-1

)

νx (mm-1)

FIG. 2: Without the hologram : in dB, normalized cross-correlation in momentum between 100 twin images (a) and images
that do not share pump pulses (b). With the hologram: average photon number in single far-field images (signal or idler) of
SPDC (c) and restored hologram formed by the normalized cross-corrrelation in momentum, given in dB, calculated over 80000
twin images (d). The white dotted squares indicate the location of the original pattern encoded in the hologram.
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FIG. 3: Normalized averaged cross-corrrelation of images issued from stochastic simulations, sampled and scaled for direct
comparison with the experimental results of Fig. 2d. No defocusing (a), 1.5mm defocusing (b).

one from the object to the image) could be developed [23], leading to double integrals which must be calculated for
each couple of pixels (r1, r2). For a bidimensional image, the computation time would scale at the eighth power of
the number of pixels in one dimension, which is prohibitively long. Fortunately, stochastic simulations based on the
Wigner formalism [24] allow here accurate results when repeated several thousand times and averaged. Fig. 3a shows
the cross-correlation image for no defocusing, which appears quite different of the experimental image. On the other
hand, introducing 1.5mm of defocusing leads to a simulated image very close of the experimental one. Note that
these simulations also take into account the propagation in the crystal, resulting, for the mean one-photon image, in
a phase-matching cone in good agreement with Fig. 2c.

Finally, we used an another DOE (Fig. 4b) designed to produce a ”smiley face” of 10mm−1 diameter modulated
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FIG. 4: (a) Picture encoded in the DOE : a 10mm−1 diameter ”Smiley face” modulated by a deterministic speckle pattern.
(b) Binary pattern of the DOE. (c) Restored hologram formed by the normalized cross-corrrelation calculated over 270000 twin
images. (d) Normalized averaged cross-correlation of images issued from 10000 stochastic simulations where no defocusing is
considered.

by a deterministic speckle pattern (Fig. 4a). Figures 4c and 4d show for comparison the restored hologram formed by
the normalized cross-corrrelation calculated over 270000 twin images and the normalized averaged cross-correlation
of images issued from 10000 stochastic simulations where no defocusing is considered, respectively. Although spatial
coincidences reproduce the original pattern, we can observe that the resolution of the smiley face is strongly limited
by the size of the speckle grains that compose it. Indeed, according to Eq. 4, these grains are the result of the
convolution between the speckle grains of the initial pattern and the intercorrelation peak observed at the 0-order
diffraction, of width proportional to the inverse of the width of the pump beam in the near field. From the integral
of the whole normalized correlation pattern, the degree of correlation of twin images is estimated to 0.25. Because
coincidences between twin photons are spread over large areas, it is necessary to cumulate a much larger number of
realizations in order that the pattern formed by the coincidences emerges from the background noise. For the same
reason as with the previous hologram, we can observe that the 0-order diffraction peak concentrates a significative
part of the spatial coincidences between the twin images.

I. CONCLUSION

To summarize, we have shown that two photon imaging potentially allows coherent manipulation of light in complex
situations like holography. These results generalize previous demonstrations where the biphoton image was a one-
dimensional interference pattern created by a double-slit [4] or a one dimensional speckle scattered by a rough surface
[5]. Unlike these previous experiments, all the light is used, preventing loopholes due to the selection of a small part
of the photons and allowing full bi-dimensional manipulation of high dimensionality biphoton states, with potential
applications in present hot topics, like boson sampling.
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[4] W. A. T. Nogueira, S. P. Walborn, S. Pádua, and C. H. Monken, ”Experimental Observation of Spatial Antibunching of
Photons,” Phys. Rev. Lett., vol. 86, no. 18, pp. 4009–4012, Apr. 2001.

[5] W. H. Peeters, J. J. D. Moerman, and M. P. van Exter, ”Observation of Two-Photon Speckle Patterns,” Phys. Rev. Lett.,
vol. 104, no. 17, p. 173601, Apr. 2010.
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