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Abstract

Asynchronous iterations have long been studied from a convergence perspective, and
significant results have been obtained over the past fifty years, leading to the success-
ful exploitation of these iterations in the context of asynchronous distributed comput-
ing. More recently, many advances in the theoretical study of the randomness of such
asynchronous iterations have been achieved, and these results have been successfully
applied in various areas of IT security in the past decade. The objective of this article
is to review these various advances in the study of the disorder of asynchronous iter-
ations, both theoretically and practically, and to present new avenues of research and
the latest results. In detail, we will present the link between asynchronous iterations
and a certain category of related graphs, and we will deduce a characterization of the
chaos of such iterations, as mathematically defined by Devaney, for Lyapounov’s ex-
ponent, etc. These results will be put in perspective with those established long ago at
the level of the convergence of these asynchronous iterations. New results from mea-
surement theory will then be discussed, and we will then provide an overview of the
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applications of these results in computer science, focusing in particular on information
security and bioinformatics.

Keywords: distributed computing, asynchronous iterations, theoretical modelling,
chaos theory.

1 Introduction

Given f : (Z/2Z)N → (Z/2Z)N, the asynchronous iterations are defined as follow:
x0 ∈ (Z/2Z)N, and

∀n ∈ N,∀i ∈ J1,NK, xn+1
i

{
f(xn)i if i ∈ sn
xni else. (1)

where (sn)n∈N ∈ P (J1,NK) is a sequence of subsets of {1, 2, ...,N}: P(X) here refers
to all the parts of a set X , when Ja, bK is the set of integers ranging from a to b; fi-
nally, the n-th term of a sequence u is written in exponent notation un, as this is a
vector with N coordinates: un1 , . . . , u

n
N. Asynchronous iterations have provided, for

decades, a mathematical framework for finding advanced algorithm schemas in dis-
tributed computing: roughly speaking, the coordinates of the vector xn correspond
to the calculation units, the function f is the equivalent of the calculation to be dis-
tributed, and the sequence s is the way to distribute these calculations: the sequence
{1, 2, . . . ,N}, {1, 2, . . . ,N}, {1, 2, . . . ,N}, . . . corresponding to a parallel calculation,
when {1}, {2}, . . . {N}, {1}, {2}, . . . is a serial calculation, for example.

This mathematical formulation of asynchronous distributed algorithms has made it
possible to establish various theoretical frameworks, in which proof of convergence
and convergence rate calculations could be established. As an illustrative example,
three special cases of the Definition 1 will be recalled in this article, who have a
significant theoretical and practical interest. These are Chazan and Miranker’s histor-
ical approach, asynchronous memory iterations, and Bertsekas’ model. Situations for
which we can be sure of the convergence of these models will be presented, before dis-
cussing the problem of the termination of algorithms. Taking a direction diametrically
opposed to these convergence efforts, we will then discuss that the study of chaos of
such asynchronous iterations, described as discrete dynamic systems, has been initi-
ated this last decade, and studied in more depth in various publications that followed
the founding article of [1].

This topological behaviour, which had never been examined before, has led to in-
teresting applications of such complex dynamics in various domains of computer se-
curity like hash functions [2] and digital watermarking [3]. The dynamics studied in
this framework can also derive from computers (sensor networks, neural networks,
pseudo-random number generators, etc.) or biology (protein folding, genome evo-
lution, etc.). Taking into account these many possibilities, an original approach of
asynchronous iterations was to track, model and theoretically study these complex
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dynamics inherited from computer science or biology. The objective of this article is
precisely to take stock of recent advances made in the study of the disorder of asyn-
chronous iterations, and to put them in historical perspective with the results relating
to the order and convergence of such iterations.

This article is structured as follows. In the next section, various historical ap-
proaches, among the most significant in the theoretical study of the convergence of
asynchronous iterations, will be recalled. These theoretical frameworks and conver-
gence results will be put into perspective in Section 3, in which the opposite (disorder
and divergence of such iterations) will be followed. This article will conclude with a
discussion, in which the applications of such an approach to disorder will be discussed,
and avenues for theoretical exploration will be proposed.

2 An historical perspective of the convergence study

2.1 Three historical models

The iterations considered in this manuscript have been studied for more than fifty
years, both in terms of their convergence and their applications. In this section, rather
than being exhaustive, we have chosen to arbitrarily present three models that have
had a significant historical impact.

2.1.1 The Chazan and Miranker model

The first theoretical work on asynchronous algorithms dates back to 1969, it focused
on linear system resolutions.

The interest of asynchronism when resolving such systems, using several comput-
ers that can communicate with each other, is as follows. In an asynchronous iterative
algorithm, the components of the iterated vector are updated in parallel, without any a
priori order or synchronization between the machines. The asynchronous implementa-
tion allows a better recovery of communications by calculations (no downtime due to
synchronizations) and allows failures (temporary or permanent). Asynchronism also
has the advantage of better adaptability to changes in the computing infrastructure,
such as changes in topology: changes in the number of computers, or in the possible
communications between them.

This model, based on the work of Chazan and Miranker [4], Miellou [5], and
Baudet [6], has been formalized on the following manner:

Definition 1 (Chazan and Miranker model) Let X = Rn1 × . . . × Rnα . The asyn-
chronous iterations associated to F : X → X , with initial condition x0 ∈ X , corre-
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spond to the sequence x ∈ X N defined by:

xti =


Fi

(
x
It1
1 , . . . , x

Itα
α

)
si i ∈ St

xt−1i si i /∈ St

where xi is the sub-vector of x on Rni , Fi is the i−th block-component of F , and
∀t ∈ N∗, St ⊂ J1;αK and I t ∈ Nα.

In other words, at iteration t, the value of the i−th block-component xi is either the
value of xi at iteration t − 1, or the mapping Fi

(
x
It1
1 , . . . , x

Itα
α

)
, in which the current

component blocks xti are not taken into account, but one of their previous values xI
t
i
i ,

i.e., the component block that the system had at the time I ti . This approach allows for
very general transmission delays to be taken into account. Finally, the St sequence
indicates which cell blocks should be updated at time t. It can be seen that this model
of delay iterations is a special case of the Definition 1.

In addition, it is assumed in this model that the S and I sequences test the following
assumptions:

H1. The values of the iterated vector used in the calculations at the iteration t come
at best from the iteration t− 1 (notion of delay in transmission): ∀t ∈ N∗, I ti 6
t− 1,

H2. I ti → +∞, when t → +∞: the too old values of the components of the iterated
vector must be definitively discarded as the calculations progress.

H3. No subvector stops to be updated (so-called pseudo-periodic strategies). In other
words, t appears an infinite number of times in S.

This a specific framework of iterations, but the purpose remains relatively general:
blocks are considered rather than components; real numbers are manipulated; and
delays are taken into account, which depend on the blocks from which the information
comes. The only constraints are that no component of the iterated vector should cease
to be permanently updated, and that the values of the components associated with too
old iterations should cease to be used as the calculations progress. It should be noted,
to finish with the introduction of this model, that the above hypotheses H2 and H3 find
their natural justification in the fact that the initiators of this theory were exclusively
seeking the convergence of asynchronous iterations.

2.1.2 Asynchrones iterations with memory

Asynchronous iterations with memory use at each iteration several values of each
component of the iterated vector, which may be related to different iteration numbers.
This gives the following definition:
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Definition 2 (Asynchrones iterations with memory) Let n ∈ N, α ∈ J0;nK, and

the following decomposition of Rn: X = Rn1 × . . . × Rnα , where
α∑
i=1

ni = n.

Let F : Xm → X , where m ∈ N∗. One asynchronous iteration with m − 1
memories associated to the application F and to the subset Y of the m first vectors
{x0, x1, . . . , xm−1}, is a sequence (xj)j∈N of vectors of X such that, for i ∈ J1;αK and
j > m, we have: 

xji = Fi (z
1, . . . , zm) if i ∈ Sj

xji = xj−1i if i /∈ Sj

where ∀r ∈ J1;mK, zr is the vector constituted by the subvectors zrl = x
Irl (j)

l , (Sj)j>m
is a sequence of non-empty subsets of J1;αK, and
I =

{
I11 (j), . . . I1α(j), I21 (j), . . . I2α(j), Im1 (j), . . . Imα (j)

/
j > m

}
is a sequence of

[Nα]m.
In addition, S and I satisfy the following conditions:

• maxr∈J1;mK
{
Iri (j)

/
r ∈ J1;mK

}
6 j − 1, for all j > m;

• minr∈J1;mK
{
Iri (j)

/
r ∈ J1;mK

}
tends to infinity when j tends to infinity; and

• i appears an infinite number of times in S.

These iterations, which are also a special case of the Definition 1, have been studied
by Miellou [7], El Tarazi [8] and Baudet [6]. Asynchronous iterations with memory
have been proposed to deal with the case where an application, whose fixed point is
searched by a classical method, is not explicitly defined. They allow to assign some
processors to intermediate function calculations, while the others are in charge of
updating the components of the iterated vector [9].

2.1.3 Bertsekas model

The Bertsekas model of fully asynchronous iterations differs significantly from the
two models presented above. By introducing another formulation of these objects, it
makes it possible to better understand their nature, in particular by allowing them to
be categorized by classes.
Let:

• X1, . . . ,Xn some sets, and X = X1 × . . .×Xn.

• Fi : X → Xi some functions, and F (x) = (F1(x), . . . , Fn(x)) defined from X
to X .

The Bertsekas model of totally asynchronous algorithms, another special case of the
Definition 1, is the following [9].
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Definition 3 (Bertsekas model) We assume that there is a sequence of events T =
{0, 1, 2, . . .} for which one or more components xi of the iterative vector x are updated
by one of the processors of the parallel or distributed architecture.

Let be T i the sub-series of events for which xi is updated. We assume too that
the processor updating xi may not have access to the most recent values of the x
components, and for any t /∈ T i, xi remains unchanged.

An asynchronous iteration of the Bertsekas model is a xt sequence of vectors of Rn

such that for any i ∈ J1;nK:
xt+1
i = Fi (x1 (τ i1(t)) , . . . , xn (τ in(t))) if t ∈ T i

xt+1
i = xti if t /∈ T i

where τ il (t) ∈ J0; tK,∀l ∈ J1;nK,∀t ∈ T .

The T elements are the indices of the sequence of moments at which the updates are
delivered. The difference t−τ il (t), on the other hand, represents the delay in accessing
the i−th component of the iterated vector, when updating the i−th component at the
moment t [9].

For the model to be complete, one of the following two assumptions regarding
calculations and communications must be added to the above definition:

Hypothesis of total asynchronism. The T i sets are infinite. Moreover, if tk is a sub-
series of elements of T i that tends to infinity, then limk→+∞ τ

i
l (tk) = +∞, for

all l ∈ J1;nK.

Partial asynchronism hypothesis. There is a positive integer B, called asynchro-
nism character, such as:

1. For any i ∈ J1;nK, and for any t, at least one element of the set Jt; t+B−1K
belongs to T i: each component is refreshed at least once during an interval
containing B refreshes.

2. t − B < τ il (t) 6 t, ∀i, l ∈ J1;nK, and t ∈ T i: the information used to
update a component has a maximum delay of B.

3. τ ii (t) = t, ∀i ∈ J1;nK,∀t ∈ T i: when updating the component assigned to
it, each processor uses the last value of the same component.

Partially asynchronous iterations were introduced by Bertsekas and Tsitsiklis in
[10]. They are less general than totally asynchronous iterations: markers are placed
on the delays and the duration of the interval between two consecutive updates of the
same component. However, they may be of great interest when excessive asynchro-
nism leads to divergence, or does not guarantee convergence.

The use of asynchronous iterative algorithms raises two types of problems: estab-
lishing their convergence, and ensuring the termination of algorithms. These problems
are reviewed in the next two sections.
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2.2 On the usefulness of convergence situations

Convergence in the asynchronous model is more difficult to achieve than in the syn-
chronous model due to the lack of synchronization, and therefore the less regular
behaviour of iterative patterns. However, a number of general results could be es-
tablished. They are for various contexts: (non-linear) systems, fixed point problems,
etc.

2.2.1 Case of equation systems

The first convergence result, published by Chazan and Miranker in 1969 [4], is a
necessary and sufficient condition for the convergence of the asynchronous iterations,
as part of the resolution of linear systems. It requires the definition of H−matrices:

Definition 4 (H−matrices) A matrixN is aH−matrix if the Ñ matrix consisting of
diagonal elements ofN minus the absolute value of non-diagonal elements, is a matrix
such that its diagonal coefficients are strictly positive, its non-diagonal elements are
negative or null, and the opposite of Ñ exists, and has its positive coefficients.

The necessary and sufficient condition for convergence for linear systems can then
be stated [4]:

Proposition 1 Let’s say the system of equations Ax∗ = z, where x∗ and z are two
vectors of Rn. Then any asynchronous algorithm defined by the Chazan and Miranker
model, where F then corresponds to a Jacobi type matrix per point, converges towards
the solution of the problem if and only if A is a H−matrix.

Various sufficient conditions have since been set out in specific frameworks of
equation systems, both linear and non-linear [11], for the various asynchronous it-
eration models mentioned above. Such results can be found in [12], [13], or [9].

2.2.2 Fixed point problems

In the same vein, various convergence results for asynchronous iterations applied to
fixed point problem solving have been obtained [14]. One of the most remarkable
results is related to the contraction of the function, and is stated as follows [5]:

Proposition 2 Let be E a reflexive Banach space finished product of a family of Ba-
nach spaces (Ei, ||.||i), i ∈ J1;αK. Let us denote by ϕ(x) = (||x1||1, . . . , ||xα||α) the
canonical vectorial norm of E. Let F : D(F )→ D(F ) a function, where D(F ) ⊂ E
is non-empty. If

• F has a fixed point in x∗ ∈ D(F ),

• and F is contracting in x∗ for the vectorial norm ϕ,
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then the asynchronous iterative algorithm defined by the Chazan and Miranker model
belongs to D(F ), and converges to x∗.

This result has been extended to fixed point applications with relaxation parameter
[8], [15], asynchronous iterative algorithms with memory in a context of classical
contraction [15], and partial order [16]. Other classic results can be found in [7]
and [17].

2.2.3 Bertsekas’ asynchronous convergence theorem

Bertsekas’ theorem provides a set of sufficient conditions for the convergence of asyn-
chronous algorithms for fixed point problems. This result, which is based on Lya-
punov’s theory of stability, is based on the study of a series of sets to which the el-
ements of the iterated vector suite belong. Its advantage is that it provides a more
abstract framework for the analysis of the convergence of asynchronous iterations,
which includes in particular the contraction and partial order aspects.

Proposition 3 (Asynchronous convergence of Bertsekas [18]) Let X = X1 × . . .×
Xn a cartesian product of sets. Suppose there is a series of non-empty subsets Xj

of X , increasing for inclusion, such as ∀j, there are sets Xj
i ⊂ Xi checking Xj =

Xj
1 × . . .×Xj

n. Let us assume too that:

• F (x) ⊂ Xj+1,∀j,∀x ∈ Xj ,

• if x is a sequence of vectors such as xj ∈ Xj for all j, then x tends to a fixed
point of F .

Under these conditions, and if x0 ∈ X0, then any fully asynchronous iteration defined
according to the Bertsekas model converges to a fixed point of F .

Bertsekas and his team used this theorem to obtain convergence results for various
asynchronous algorithms applied to solving a wide variety of problems: dynamic pro-
gramming, search for minimum paths, optimization problems, network flow, optimal
routing... Other convergence results can be found in the literature. Thus, Lubachewski
and Mitra have established a sufficient convergence result for asynchronous iterations
with bounded delays applied to the resolution of singular Markovian systems [19].
Finally, Frommer and Szyld studied the so-called multisplitting and asynchronous de-
composition methods [20], [21].

2.3 The problem of algorithm termination

The final termination of the iterative algorithm must occur when the iterated vector
is sufficiently close to a solution of the problem, and a special procedure must be
designed to detect this termination. Since the number of iterations of the algorithm
can be infinite, the calculation processes can never be inactive. There are relatively
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few effective termination methods for asynchronous algorithms. Indeed, termination
presents many difficulties, especially in cases where processors do not share a global
clock, or where communication delays can be arbitrarily long.

The most frequently used termination methods are designed empirically. For exam-
ple, a particular processor can be assigned the task of observing the local termination
conditions in each processor: the algorithm terminates when all local conditions are
met. This approach is functional in the unique case where the degree of asynchronism
is very low. Other empirical methods are possible. For example, Bertsekas and Tsit-
siklis proposed in [18] that each processor send termination and restart messages to a
central processor in charge of these problems. The Chajakis and Zenios [22] method
does not require a central processor: a processor completes its calculations if its local
termination condition is satisfied, and if it has received termination messages from
other processors, and acknowledgements of all its termination messages. No termi-
nation method has been formally validated in the most general case, or almost in the
most general case: the Bertsekas and Tsitsiklis solution is one of the few with formal
validity. However, this method has a number of disadvantages: complex protocol,
many communications, restrictive convergence conditions, etc.

As we can see, the problems of convergence of asynchronous iterations and their
applications have been widely studied over the past fifty years. The inverse problem
of the divergence of these iterations has been studied more recently, over the past
decades, and has also proved to be rich in applications. The formal framework and
these applications are the subject of the remainder of this article.

3 Theoretical foundations of the divergence

3.1 Asynchronous iterations as a dynamical system

In the absence of ”delay”, asynchronous iterations can be rewritten as a recurring
sequence on the product space X = (Z/2Z)N × P(J1,NK)N, consisting of the cal-
culated vectors on the one hand, and the series of components to be updated on the
other hand. If you enter the functions i : P (J1,NK)N → P (J1,NK), (sn)n∈N 7−→ s0,
producing the first subset of the sequence s and σ : P (J1,NK)N → P (J1,NK)N,
(sn)n∈N 7−→ (sn+1)n∈N, performing a shift to head the list, then the asynchronous
iterations of the Equation (1) are rewritten as a discrete dynamical system Gf on X :
X0 ∈ X , et ∀n ∈ N,

Xn+1 = (Ff (X
n
1 , i(X

n
2 ));σ(Xn

2 ))
= Gf (X

n)
(2)

where

Ff : (Z/2Z)N × P (J1,NK) −→ (Z/2Z)N , (x, e) 7−→ (xiXe(i) + f(x)iXe(i))i∈J1,NK,

with XX as the characteristic function of the set X and x = x+ 1 (mod 2).
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Finally, a relevant distance can be introduced on X , as follows [23]:

d((S,E); (Š; Ě)) = de(E, Ě) + ds(S, Š)

where de(E, Ě) =
N∑
k=1

δ(Ek, Ěk), δ being the Hamming distance, and

ds(S, Š) =
9

N

∞∑
k=1

|Sk − Šk|
10k

.

With such a distance, we can state that [1]:

Proposition 4 Gf : (X , d)→ (X , d) is a continuous map.

Asynchronous iterations had until now been studied with discrete mathematics.
Such a rewrite therefore makes it possible to study them with the tools of mathemat-
ical analysis. This is all the more relevant since the results of distributed computa-
tion algorithms are usually fixed points, and mathematical analysis contains various
frameworks for studying fixed points of dynamical systems. Note that we iterate on a
topological space composed only of integers, when the associated algorithms manip-
ulate machine numbers: the theoretical framework of study is exactly that of practical
applications. We can also, through a topological semi-conjugation, reduce these asyn-
chronous iterations to a simple dynamic system over an interval of R, but the inherited
topology is not that of the order [1]. This rewriting of asynchronous iterations in the
form of discrete dynamic systems has allowed us to study their dynamics using mathe-
matical analysis tools: mathematical topology, and more recently measurement theory
for ergodicity concepts.

In what follows, we will first recall the key concepts of the study of the disorder
and randomness of discrete dynamic systems, and then we will see to what extent
asynchronous iterations can exhibit such dynamics.

3.2 The mathematical Theory of Chaos

3.2.1 Notations and terminologies

Let’s start by introducing the usual notations in discrete mathematics, which may dif-
fer from those found in the study of discrete dynamic systems. The n−th term of
the sequence s is denoted by sn, the i−th component of vector v is vi, and the k−th
composition of function f is denoted by fk. Thus fk = f ◦ f ◦ . . . ◦ f , k times.
The derivative of f is f ′, while P(X) is the set of subsets of X . B stands for the set
{0; 1} with its usual algebraic structure (Boolean addition, multiplication, and nega-
tion), while N and R are the notations of the natural numbers and real ones. X Y is
the set of applications from Y to X , and so X N means the set of sequences belonging
in X . bxc stands for the integral part of a real x (the greatest integer lower than x).
Finally, Ja; bK = {a, a+ 1, . . . , b} is the set of integers ranging from a to b.
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With these notations in place, we are now able to introduce various classical notions
of disorder or randomness for discrete dynamic systems.

3.2.2 Devaney-based approaches

In these approaches, three ingredients are necessary for unpredictability [24]. First, the
system must be inherently complicated, indecomposable: it cannot be simplified into
two systems. Subsystems that do not interact, allowing a divide and conquer strategy
to be adopted applied to the system is ineffective. In particular, many orbits must visit
the entire space. Second, an element of regularity is added, to offset the effects of
inflation. The effects of the first ingredient, leading to the fact that closed points can
behave in a completely different way, and this behavior can not be predicted. Finally,
system sensitivity is required as a third ingredient, so that close points can eventually
become distant during system iterations. This last requirement is often implied by the
first two ingredients. Having this understanding of an unpredictable dynamic system,
Devaney formalized in the following definition of chaos.

Definition 5 A discrete dynamical system x0 ∈ X , xn+1 = f(xn) on a metric space
(X , d) is chaotic according to Devaney if:

1. Transitivity: For each couple of open sets A,B ⊂ X , ∃k ∈ N s.t. fk(A) ∩B 6=
∅.

2. Regularity: Periodic points are dense in X .

3. Sensibility to the initial conditions: ∃ε > 0 s.t.

∀x ∈ X , ∀δ > 0,∃y ∈ X ,∃n ∈ N, d(x, y) < δ and d(fn(x), fn(y)) > ε.

With regard to the sensitivity ingredient, it can be reformulated as follows.

• (X , f) is unstable if all its points are unstable: ∀x ∈ X , ∃ε > 0, ∀δ > 0,
∃y ∈ X , ∃n ∈ N, d(x, y) < δ and d(fn(x), fn(y)) > ε.

• (X , f) is expansive if ∃ε > 0, ∀x 6= y, ∃n ∈ N, d(fn(x), fn(y)) > ε

The system can be intrinsically complicated too for various other understandings
of this desire, which are not equivalent to each other, such as:

• Topological mixing: for all pairs of open disjointed sets that are not empty U, V ,
∃n0 ∈ N s.t. ∀n > n0, f

n(U) ∩ V 6= ∅.

• Strong transitivity: ∀x, y ∈ X , ∀r > 0, ∃z ∈ B(x, r), ∃n ∈ N, fn(z) = y.

• Total transitivity: ∀n > 1, the composition fn is transitive.

• Undecomposable: it is not the union of two closed, non-empty subsets that are
positively invariant (f(A) ⊂ A).
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These various definitions lead to various notions of chaos. For example, a dynamic
system is chaotic according to Wiggins if it is transitive and sensitive to initial condi-
tions. It is said to be chaotic according to Knudsen if it has a dense orbit while being
sensitive. Finally, we speak of expansive chaos when the properties of transitivity,
regularity and expansiveness are satisfied.

3.2.3 Approach from Li and Yorke

The approach to chaos presented in the previous section, considering that a chaotic
system is an inherently complicated (non-decomposable) system, with possibly an ele-
ment of regularity and/or sensitivity, has been supplemented by another understanding
of chaos. Indeed, as ”randomness” or ”infiniteness”, it is impossible to find a single
universal definition of chaos. The types of behaviours we are trying to describe are
too complicated to fit into a single definition. Instead, a wide range of mathematical
descriptions have been proposed over the past decades, all of which are theoretically
justified. Each of these definitions illustrates specific aspects of chaotic behaviour.

The first of these parallel approaches can be found in the pioneering work of Li and
Yorke [25]. In their famous article entitled ”The Third Period Involves Chaos”, they
rediscovered a weaker formulation of Sarkovskii’s theorem, which means that when a
discrete dynamic system (f, [0.1]), with continuous f , has a cycle 3, then it also has a
cycle n, ∀n 6 2. The community has not adopted this definition of chaos, as several
degenerate systems satisfy this property. However, on their article [25], Li and Yorke
also studied another interesting property, which led to a notion of chaos ”according to
Li and Yorke” recalled below.

Definition 6 Let (X , d) a metric space and f : X −→ X a continuous map on this
space. (x, y) ∈ X 2 is a scrambled couple of points if lim infn→∞ d(fn(x), fn(y)) = 0
and lim supn→∞ d(fn(x), fn(y)) > 0 (in other words, the two orbits oscillate each-
other).

A scrambled set is a set in which any couple of points are a scrambled couple,
whereas a Li-Yorke chaotic system is a system possessing an uncountable scrambled
set.

3.2.4 Lyapunov exponent

The next measure of chaos that will be considered in this document is the Lyapunov
exponent. This quantity characterizes the rate of separation of the trajectories infinitely
close. Indeed, two trajectories in the phase space with initial separation δ diverge at a
rate approximately equal to δeλt, where λ is the exponent Lyapunov, which is defined
by:

Definition 7 Let x0 ∈ R and f : R −→ R be a differentiable function. The Lyapunov

exponent is defined by λ(x0) = lim
n→+∞

1

n

n∑
i=1

ln
∣∣ f ′ (xi−1)∣∣.
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Obviously, this exponent must be positive to have a multiplication of initial errors
by an exponentially increasing factor, and therefore be in a situation of chaos accord-
ing to this formulation.

3.2.5 Topological entropy

Let (X , d) a compact metric space and f : X −→ X a continuous map for this space.
∀n ∈ N, a new distance dn is defined on X by

dn(x, y) = max{d(f i(x), f i(y)) : 0 ≤ i < n}.

With ε > 0 and n > 1, two points of X are ε closed compared to this measure if
their first n iterates are ε closed. This measurement makes it possible to distinguish in
the vicinity of an orbit the points that move away from each other during the iteration
of the points that travel together. A subset E of X is said to be (n, ε)-separated if
each pair of distinct points of E is at least ε separated in the metric dn. Indicates
by N(n, ε) the maximum cardinality of a separate set (n, ε). N(n, ε) represents the
number of distinct orbit segments of length n, assuming that we cannot distinguish the
points in ε from each other.

Definition 8 The topological entropy of the map f is equal to

h(f) = lim
ε→0

(
lim sup
n→∞

1

n
logN(n, ε)

)
.

The limit defining h(f) can be interpreted as a measure of the average exponen-
tial growth of the number of distinct orbit segments. In this sense, it measures the
complexity of the dynamical system (X , f).

3.3 The disorder of asynchronous iterations

The topological space over which asynchronous iterations are defined was first stud-
ied, leading to the following result [23]:

Proposition 5 X is an infinitely countable metric space, being both compact, com-
plete, and perfect (each point is an accumulation point).

These properties are required in a specific topological formalisation of a chaotic dy-
namic system, justifying their proof. Concerning Gf0 , it was stated that [23].

Proposition 6 Gf0 is surjective, but not injective, and so the dynamical system (X , Gf0)
is not reversible.

It is now possible to recall the topological behaviour of asynchronous iterations.
We have firstly stated that [23]:
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Theorem 1 Gf0 is regular and transitive on (X , d), so it is chaotic as defined by
Devaney. In addition, its sensitivity constant is greater than N− 1.

Thus the set C of functions f : BN −→ BN making asynchronous iterations of
Definition 2 a case of chaos according to Devaney, is a not empty set. To characterize
the functions of C, we first stated that transitivity implies regularity for these particular
iterated systems [26].

To achieve characterization, the function Ff allows to define a graph Γf , where the
vertices are the vectors of Z/2Z, and there is a ridge labeled s ∈ P (J1,NK) from i
to j if, and only if Ff (i, s) = j. We have shown that the properties of the dynamic
system Gf are strongly related to those of the graph Gf . Thus, for example, if the
latter is strongly related, then the asynchronous iterations are highly transitive and
regular, and therefore chaos in Devaney’s mathematical sense. Other properties, such
as topological entropy, expansiveness, or sensitivity to initial conditions, defined in
topological terms, could also be studied. On the other hand, the subsets of J1,NK can
be drawn according to a certain probability distribution, which allows to study the
associated Markov chain (ergodicity, mixing time, etc.) These various disorder results
are presented below [26].

Theorem 2 Gf is transitive, and thus chaotic according to Devaney, if and only if
Γ(f) is strongly connected.

This characterization allows to quantify the number of functions in C: it is equal to(
2N
)2N . Then, the study of the topological properties of the disorder of these iterative

systems was the subject of a more detailed study which led to the following results.

Theorem 3 ∀f ∈ C, Per (Gf ) is infinitely countable, Gf is strongly transitive and is
chaotic according to Knudsen. It is thus undecomposable, unstable, and chaotic as
defined by Wiggins.

Theorem 4 (X , Gf0) is topologically mixing, expansive (with a constant equal to 1),
chaotic as defined by Li and Yorke, and has a topological entropy and an exponent of
Lyapunov both equal to ln(N).

At this stage, a new type of iterative systems that only handle integers has been
discovered, leading to the questioning of their computing for security applications.
The applications of these chaotic machines and avenues for theoretical exploration
will be proposed in the discussion section.

4 Discussion

The theoretical developments around the disorder of asynchronous iterations, pre-
sented above, have led to interesting and original advances in applications. In [1],
for instance, it is explained how to design finite state machines with truly chaotic
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behaviour. The idea is to decompartmentalize the machine, and to use at each iter-
ation the values provided to it at the input to calculate the value to be produced at
the output. By this process, even if the machine is finite state, it does not always
enter a loop, since the input is not necessarily periodic. Since then, we have contin-
ued to study these chaotic machines, proposing in particular applications concerning
steganography [27,28] and digital watermarking [3,29,30], hash functions [2,31], and
the generation of pseudo-random numbers [32, 33].

A second field of investigation seemed very interesting based on the modeling,
study and simulation of complex systems from disciplines other than computing, that
is, processes whose complex dynamics can take the following form: an operation
taken from a possible set of functions, and applied only to a variable subset of system
coordinates. Such complex dynamics occur naturally in molecular biology, and more
particularly in the spatial folding of proteins. This is why the model commonly used in
protein conformation prediction tools, known as the 2D/3D HP square lattice model,
has been rewritten using a discrete dynamic system in asynchronous iterations, and
we proved that this system had several chaos properties [34].

Until now, the rewriting of asynchronous iterations as discrete dynamical systems
has only been used to study the disorder, the maximum divergence that can be ob-
tained by such iterations, the application framework targeted being computer security:
the generation of pseudo-random numbers, hash functions, and symmetric encryption
operation modes. With these elements in mind, we plan to pursue this research in var-
ious directions, building on the work carried out over many years on the convergence
criteria for asynchronous iterative methods. This will make it possible to deepen the
knowledge of cases of divergence (and convergence, studied in particular with tools
of measurement theory) of such iterations, taking into account the delay.

Indeed, if the asynchronous iterations were initially studied for their convergence,
in particular within the framework of distributed digital algorithmics, their reformula-
tion in the form of a dynamic system, then a graph, was only studied for divergence
purposes. We would therefore like to study what these reforms can bring to the study
of the convergence of such asynchronous iterations. We also intend to bring con-
vergence results from the world of dynamic systems to that of discrete mathematics.
Finally, until now, the delay has not been taken into consideration: we consider that
the vector at time t is deduced from the vector at time t−1, and depends on a continu-
ous function and a sequence of coordinates to be updated. In other words, we assume
that the stochastic process associated with asynchronous iterations satisfies Markov’s
property, and we wish in further work to consider the case where this is no longer
true. This applies to both convergence and divergence. These results will be applied
to a better understanding of the spatial and temporal evolution dynamics of biological
sequences (genomes and proteins), and in particular will make it possible to increase
knowledge about the generation of pseudo-random numbers.

This study was financed in part by the EIPHI Graduate School (contract ”ANR-17-
EURE-0002”) and by the Interreg RESponSE project.
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