
Damage identification in a tubular composite/metal joint through 

chronology-based robust clustering of acoustic emissions 

Neha Chandarana1, Emmanuel Ramasso2, Zijie Wu3, James Bernard4, Jon Pethick4, Panagiota Chatzi4, 

Constantinos Soutis5, Matthieu Gresil1,5 

 
1i-Composites Lab, School of Materials, The University of Manchester, Manchester, UK 

2Université Bourgogne Franche-Comté, FEMTO-ST Institute, Department of Applied Mechanics, 

Besançon, France 
3National Composites Certification and Evaluation Facility, The University of Manchester, 

Manchester, UK 
4UTC Aerospace Systems, Banbury, UK 

5Aerospace Research Institute, The University of Manchester, Manchester, UK 

 

Abstract 

The aim of this work is to determine the first failure mode of a tubular composite/metal joint, when 

tested in tension. PWAS are bonded to both the composite and metal parts of the joint for detection of 

acoustic emissions (AE) during the tensile test. The generation of AE hits is correlated with strain as 

measured by surface mounted strain gauges and digital image correlation (DIC) during the test. AE data 

analysis is completed using an unsupervised clustering approach applied to the AE streaming data in 

order to identify the damage mechanisms. The approach makes use of the Gustafson-Kessel clustering 

algorithm to identify the clusters with arbitrary shape in the feature space. In the proposed method, 

different subsets of features are considered, in place of a unique subset as in standard approaches. Each 

subset provides one clustering result (a partition). An unsupervised information fusion process is then 

performed to get a representative partition, taking multiple partitions into account. The approach makes 

use of bootstrapped ensembles to select the number of clusters which allows to both maximise 

robustness of the results according to the clustering parameterisation and evaluate the uncertainty on 

pattern recognition results. Subsets of features are optimised to emphasise the chronology about the 

onsets of AE sources and their evolution. Application of this pattern recognition chain on the AE 

streaming provides insights on the damage process involved in composite and metal parts of the joint. 

1. Introduction 

Damage in structural composites can be complex to analyse due to the inherent anisotropy of the 

material. It is challenging to detect and monitor early damage, particularly where the damage can be 

very small. The use of acoustic emission (AE) for damage monitoring is well established. Piezoelectric 

wafer active sensors (PWAS) can be permanently bonded to or embedded in a composite structure to 

enable detection and localisation of damage, as it occurs, by AE monitoring. It is possible to distinguish 

between different damage mechanisms including matrix cracks, interfacial debonding, fibre pull-out, 

and fibre breakage by analysis of AE signal features. Predicting and quantifying damage in composite 

materials is complex, so the addition of the metal/composite interface is understandably more 

challenging. 

The aim of this work is to distinguish between different damage mechanisms in the early stages of the 

occurrence of damage to identify the first failure mode. In particular, we focus on characterisation of 

matrix damage and slippage in the joint. We record strain data with electrical strain gauges and digital 

image correlation (DIC), and monitor acoustic emissions (AE) using piezoelectric sensors. Parametric 

analysis and clustering is completed on AE data to further our understanding on the damage process. 
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1.1 Use of acoustic emission in composites 

A rapid release of energy in a material caused by microstructural damage such as a matrix crack causes 

a transient elastic wave to be generated; this is known as an acoustic emission (AE). The use of AE 

monitoring for detection of early damage in composite materials is well established [1] and much of the 

literature available focuses on identifying different damage mechanisms by their AE “signature” [2–6]. 

Analysis of AE signals has been done by many researchers by isolating features in the time and 

frequency domains; amplitude, peak frequency, signal duration, and event energy are among the most 

commonly used [3–8]. Figure 1 shows some of these signal features in the time domain. 

 

Figure 1. Typical AE signal waveform with labelled features. 

Table I shows the general trend observed by researchers for different damage mechanisms in 

composites. A more detailed compilation of the classification of data points based on their amplitude, 

frequency, and duration is given in the authors’ previous work [7]. It is noteworthy that, although the 

trend observed by different researchers is similar, it is impossible to compare absolute feature values 

between specimens. Research has shown that the emission from damaged and undamaged specimens 

can vary greatly, even when the loading condition is the same [9], so it certainly would not be 

appropriate to rely on data in the literature if there are differences in the material, specimen geometry, 

sensor type, sensor coupling, acquisition set-up, environment, etc. 

Table I. Trend of selected signal features for damage mechanisms in composites. Summarised from [7]. 

Damage mechanism Peak amplitude Peak frequency Signal duration 

Matrix cracking (intralaminar) Low to medium Low Short to medium 

Fibre pull-out Medium to high High Short 

Delamination (interlaminar) High Medium Long 

Fibre breakage High High Short 

 

1.2 Clustering algorithms 

Data mining methods are generally used for analysis of acoustic emission data due to the sheer volume 

of data points. They can be supervised, unsupervised, or partially supervised, depending on the amount 

of prior information available for classification of data points. It is arguably most suitable to use 

unsupervised algorithms based on the fact that acoustic emission data can be affected by many factors 

relating to the specimen, loading condition, sensors and electromechanical noise in the environment.  

Traditional clustering algorithms tend to be reliant on a single set of parameters, or features, to separate 

AE data sets into clusters [10–13]. Standard algorithms, such as K-means, Fuzzy C-means, Gaussian 

mixture models, self-organising maps, and Gustafson-Kessel, cannot take into account the time or space 

element associated with data points which originate from acoustic emission. In other words, if the order 

of data points was changed in time, each of these algorithms would produce the same clustering result. 



Each of these algorithms relies on assumptions about clusters shapes, and few are actually able to cope 

with the variation of scattering in different features of AE signals [14].  

Damage in composites is often sequential: matrix cracking can lead to fracture of fibres, or failure at 

the matrix/fibre interface which can lead to delamination. In the literature, there is a limited number of 

papers where the temporal evolution of AE clusters [13–19] is considered. Though some of the proposed 

methods allow new clusters to be added dynamically based on the characteristic of acoustic emission 

hits [13,15,18], the challenge remains that AE hits do not arrive regularly in time; they are unevenly 

spaced. This adds some complexity to the clustering process. One of the primary aims when clustering 

AE signals is to get information about the evolution of damage; it is therefore common to represent 

cluster accumulation over time (or cycles). However, the criterion used to optimise the number of 

clusters, and to select the unique subset of features, is generally based on a cluster’s shape, independent 

of time. It accounts for the fact that, whatever the order of AE signals, the sequence of clusters will be 

the same. In this paper, the method optimises the parametrisation according to the way clusters occur 

during each cycle, so accounting for the order of AE signals is significant. 

2. Experimental method 

2.1 Tensile loading 

The composite pipe used in this work was manufactured by UTC Aerospace Systems. Three 

composite/metal joint specimens were tested in a quasi-static tensile loading configuration on an Instron 

machine equipped with a 600 kN load cell. The tests were performed as described in Table II. The 

sample was loaded at 0.5 mm/min crosshead speed. The maximum displacement of the crosshead was 

increased incrementally in successive cycles in order to encourage the progression of damage through 

multiple loadings. 

Table II. Loading information for the composite/metal joint specimens 

Specimen Loading sequence Breaking load 

1 Single cycle to failure 250 kN 

2 Single cycle to failure 268 kN 

3 

Progressive loading cycles to maximum load: 

(1) 60 kN; (2) 100 kN; (3) 150 kN;  

(4) 175 kN; (5) 200 kN; (6) To failure 

270 kN 

 

2.2 Acoustic emission monitoring 

For AE monitoring, piezoelectric wafer active sensors (PWAS) – PIC255 with 10 mm diameter and 0.5 

mm thickness – are used [20]. The positioning of PWAS on each of the specimens is shown in Figure 

2. Table III describes which data was collected from the sensors on each specimen. AE data was 

recorded by the software ‘AEWin’ from Mistras with a sampling rate of 5 or 10 MHz and 20 dB of pre-

amplification per sensor. The mismatch of sampling rate is due to a limitation on the acquisition board 

for recording data streams of 2 channels at 5 MHz per channel. 



   

 

(a) (b) (c) (d) 

    

Figure 2. Photographs showing: (a) DIC surface of specimen 1; (b) Sensor arrangement on specimen 2; (c) Sensor 

arrangement on specimen 3 (replicated on bottom joint); (d) Strain gauge positioning on specimen 3. 

Table III. Acoustic emission data collected from each specimen 

Specimen 
Sensors on top 

joint 

Sensors on 

bottom joint 

Joint that 

failed 
Data type recorded 

1 
Metal: 1, 2 

Composite: 3, 4 
- Bottom Hit data (all sensors) 

2 
Metal: 1, 2 

Composite: 3, 4 
- Top Hit data (all sensors) 

3 
Metal: 1, 3 

Composite: 2, 4 

Metal: 5, 7 

Composite: 6, 8 
Top 

Streaming data (1, 2) 

Hit data (all sensors) 

 

2.3 Clustering of acoustic emission data 

The clustering method proposed here can be broken down into a number of phases, the last of which 

delivers the final clustering result (Figure 3). Previous work by the authors [14] has shown that use of 

the Gustafson-Kessel (GK) algorithm in this scheme provides a more accurate clustering result which 

is robust to parameterisation. The method was able to cope with the feature-sensitivity of different 

damage mechanisms while capturing the kinetics of damage. Initially, the method in [14] optimised the 

selection of the number of clusters and of multiple subsets of features according to proportions of 

clusters. The authors observed that clusters with different onsets generally lead to clusters with different 

proportions. This heuristic may not always hold true. Here, we go one step further by constraining the 

occurrence of clusters chronologically, in place of proportions. 

3. Results and discussion 

3.1 Mechanical test 

The load-displacement curves for specimens 1 and 2, and the failure cycle of specimen 3, are shown in 

Figure 4. In Figure 5 the total number of AE hits received during the tensile tests of specimens 1 and 2, 

respectively, is plotted against the load. The progressive loading cycles used for testing specimen 3 

were identified following mechanical tests on specimens 1 and 2. 

 



 
Figure 3. Decomposition of the proposed algorithm into phases. 

 

Figure 4. Load-displacement curves for tensile tests on the three specimens. 

  

Figure 5. Cumulated acoustic emission hits against load for specimens 1 and 2. 

 

Phase 0

•Specify the number of clusters, K

•Specify a number of features per subset, n

Phase 1

•Compute clusters for each subset of features (form partitions)

•Remove partitions which are outliers by selecting a reduced number of partitions based 
on entropy of a quantity derived from onsets

•Fuse partitions after reordering clusters by their time of occurrence

Phase 2

•Optimise the number of clusters

•Determine uncertainty of clusters

•Evaluate robustness of the results

•Chronology-based identification of partitions



3.2 Clustering of acoustic emission data 

The clustering algorithm was run by seaming together the six cycles of loading on specimen 3, as if 

they had run one after another. In this way, it is possible to identify the load at which clusters initiate, 

and to analyse the recurrence of signals within a particular cluster, during successive loading cycles. 

Figure 6 shows the final clustering result obtained after running all phases of the algorithm. The optimal 

number of clusters was found to be 5 – this was determined by maximising the median values of 

normalised mutual information (NMI). Though the data has been split into clusters, it is challenging to 

identify whether a cluster corresponds directly to a damage mode in the specimen. We can say with 

confidence that cluster 1 is likely not related to damage, since it is activated at the start of the first 

loading cycle – where no damage is expected to occur – and is active during each of the successive 

loading cycles, in regions where the cumulated energy of signals does not increase. 

  
Figure 6. Final clustering partition for all loading cycles of specimen 3: log (number of hits received) curves for each cluster. 

4. Concluding remarks 

Distinguishing different damage mechanisms in simple composite materials remains a challenge, so a 

complex structure like the joint studied in this work makes signal interpretation increasingly difficult. 

It is necessary to consider that signals received by sensors placed on the metal will differ from signals 

received by sensors placed on the composite; sensors on the metal may record more extraneous noise 

signals since acoustic waves can travel with lower attenuation over longer durations. Unsupervised 

clustering algorithms give us the opportunity to analyse data sets from different specimens, made of 

different materials, without any prior information about the material or about the evolution of damage. 

Our work has shown that clustering may allow us to separate non-damage-related data points from data 

which is more likely to be damage-related. In doing so, the size of data to be analysed is reduced. Further 

work will involve distinction between signals recorded by sensors on the composite and metal, at the 

top or bottom joint of the specimen, and during individual cycles of loading. 
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