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The archetypal quantum interferometry experiment yields an interference pattern that results from
the indistinguishability of two spatiotemporal paths available to a photon or to a pair of entangled
photons. A fundamental challenge in quantum interferometry is to perform such experiments with
a higher number of paths, and over large distances. We demonstrate that using indistinguishable
frequency paths instead of spatiotemporal ones allows for robust, high-dimensional quantum inter-
ferometry in optical fibers. In our system, twin-photons from an Einstein-Podolsky-Rosen (EPR)
pair are offered up to 9 frequency paths after propagation in long-haul optical fibers, and we show
that the multi-path quantum interference patterns can be faithfully restored after the photons travel
a total distance of up to 60 km.

I. INTRODUCTION

Quantum information networks require the manipu-
lation and transportation of entangled photons in long-
haul optical fiber networks without destroying their non-
classical correlations. The relevance and viability of any
prospective quantum network also critically depends on
a strong hardware overlap with off-the-shelf components,
readily available in the technologically mature sector of
optical fiber telecommunications. Fulfilling these con-
straints while preserving the non-classical correlations of
entangled photons when launched in long-haul optical
fibers arises as particularly difficult task, and even more
so if the entanglement is high-dimensional.

We present here a proof-of-concept quantum inter-
ferometry experiment in which high-dimensional quan-
tum entanglement is preserved even after the photons
have propagated in long-haul optical fibers. We report a
long-distance nonlocal interference experiment based on
frequency domain interferometric scheme using electro-
optic phase modulators, in which nonlocal dispersion
cancellation is performed. The electro-optic phase mod-
ulators leading to N frequency paths instead of the t-
wo temporal in the typical Franson interferometer. As
N -frequency paths are involved, the dispersion strong-
ly affects the interference pattern and leads to radically
different observations. We show that the dispersion not
only alters the visibility but also disturbs the shape of the
interference pattern and we demonstrate how the effect
of the dispersion can be cancelled non-locally. This pre-
liminary results confirm also that the high-dimensional
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quantum entanglement is preserved even after the pho-
tons have propagated in long-haul optical fibers.

The paper is divided into three main parts. We first
describe our experiment and we present the effects of the
dispersion on the N -frequency path interferences. In the
second part, we propose a theoretical analysis of the sys-
tem, and outline the formalism use to quantify the quan-
tum correlations. The last part presents our main exper-
imental result, in which multi-path quantum interference
patterns can be faithfully restored after the photons trav-
el a total distance of up to 60 km, in good agreement with
the theoretical predictions.
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FIG. 1: Principle of multiple frequency paths using a phase
modulator seeded with a photon of frequency ω0. The mod-
ulator is driven by a sinusoidal RF signal of amplitude sVπ,
frequency Ω and phase φ. This modulation creates the eigen-
states |n〉 ≡ |ω0 + nΩ〉 with n ∈ Z, which are new frequency
paths available with probability J2

n(s) to any incoming photon
in the eigenstate |0〉. Only 5 eigenstates are represented here
for clarity, but the entangled photons explore up to 9 frequen-
cy paths in our experimental transmission system. Along with
robustness, this high dimensionality is a distinctive advantage
of frequency path quantum interferometry in comparison to
spatiotemporal schemes.
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FIG. 2: Schematic representation of the experimental setup.
(1) Broadband twin-photon source. (2) 3 dB splitter towards
arms [A] and [B]. (3) Phase modulators providing the fre-
quency paths. (4) Bragg filters to select the output photon
pairs. (5) Detection and correlation. (6) Dispersion compen-
sation system.

II. EXPERIMENTAL SYSTEM

Our system is based on the idea of Franson interfer-
ometry [1]. We pump a 3 cm-long periodically poled
lithium niobate (PPLN) waveguide around 775 nm to
generate entangled photons via spontaneous parametric
down conversion (SPDC) around λ0 = 2πc/ω0 = 1550 n-
m. The spectral density f(ω) of this source spans over
∼ 2π × 12 THz around ω0 (∼ 100 nm around λ0), and
the quantum state of the twin-photons is

|ψ〉 =

∫ +∞

−∞
dωf(ω)|ω0 − ω〉|ω0 + ω〉 . (1)

The entangled photons are then launched into a standard
SMF-28 fiber of length L0 before being separated by a
3 dB coupler in two arms [A] (Alice) and [B] (Bob).

Each arm includes another fiber spool of length LA,B ,
which transform the input state after propagation into

|ψ〉 =

∫ +∞

−∞
dωf(ω)eiΦ(ω)|ω0 + ω〉A|ω0 − ω〉B (2)

where

Φ(ω) = β(ω)[L0 + LA] + β(−ω)[L0 + LB ] (3)

denotes the phase shift resulting from the propagation
in the optical fibers L0,A,B , and β(ω) represents the cor-
responding fiber dispersion. Whereas Franson interfer-
ometry usually involves Mach-Zehnder (MZ) modulators
offering two temporal paths [2–5], our system exploits
instead N � 2 frequency paths offered by phase mod-
ulators (PM) [6–8]. The creation of these frequency

paths is performed using two phase modulators PMA,B

of half-wave voltage Vπ, modulated at the frequency
Ω/2π = 12.5 GHz with signals of normalized amplitudes
{a, b} = V{a,b}/Vπ and phases {ϕA, ϕB}.

III. THEORETICAL ANALYSIS

The modulators PMA,B induce the transformations

|n〉A,B →
∑
k∈Z

Jk({a, b})eik({ϕA,ϕB}−π/2)|n+ k〉A,B , (4)

where

|n〉 ≡ |ω0 + nΩ〉 (5)

are new frequency paths with n ∈ Z. As explained in
Fig. 1, every path |n〉 is accessed with probability J2

n(s)
where s ∈ {a, b} is the real-valued modulation index of
the modulator. The closure condition

+∞∑
n=−∞

J2
n(s) = 1 (6)

is a property of Bessel functions and holds for all s.
However, the probabilities J2

n(s) decay rapidly to 0 as
n → ±∞, and only N ' 2(s + 1) + 1 frequency paths
have a non-negligible probability. In our experimental
setup, we have s ' 3 and accordingly, up to N = 9 path-
s with n ∈ {−4, . . . , 4} can be explored by the twin-
photons. We use the two Bragg filters FA,B of band-
width ΩF /2π = 3 GHz, which are respectively centered
to ω0 + nΩ and ω0 − nΩ.

Since the modulators sift the angular frequency by Ω,
it is convenient to expand following the frequency-bin
decomposition

|ψ〉 =

∫ +Ω/2

−Ω/2

dω

+∞∑
k=−∞

f(ω + kΩ)

×|ω0 − ω − kΩ〉|ω0 + ω + kΩ〉 . (7)

On the other hand, the phase shift for a photon in a state
|ω〉 after propagation in a length L of optical fiber can
be explicitly expressed as

|ω〉out = eiβ(ω)L|ω〉in . (8)

As a consequence, the probability of coincidence mea-
surement by the avalanche photodetectors DA and DB

is therefore

Pn =

∣∣∣∣∣
∫ +Ω/2

−Ω/2

dω gn(ω)
∑
k∈Z

Jk(a)J−k(b)e−iΦ(k,n,ω)

∣∣∣∣∣
2

, (9)

where

Φ(k, n, ω) = k (∆ϕ+ β1Ω∆L)

−k
(
µ+

1

2
β2L

)
(ω + nΩ)Ω

+k2Ω2

(
µ+

1

2
β2L

)
(10)
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FIG. 3: Numerical simulation of the interference patterns with respect to the total distance L traveled by the twin-photons,
using Eq. (9). The parameters are a = b = 2.75, ∆L = 0, and the filters are positioned at n = 0. (a) Ideal case with no dispersion
(β2 = 0) and perfectly monochromatic filters (ΩF = 0). The interference pattern [which corresponds to the continuous black
line in Fig. 3(d)] remains unaffected by the propagation. (b) Case where dispersion is accounted for (β2 = −22 ps2/km) but the
filters are still perfectly monochromatic. The interference pattern evolves periodically, with a period Lp corresponding to length
necessary for the accumulated dispersion phase β2Ω2Lp/2 to amount to 2π. (c) Realistic case where both the dispersion and
the bandwidth of the Bragg filters (ΩF /2π = 3 GHz) are accounted for. The interference pattern is irreversibly altered during
propagation and impedes long-haul quantum interferometry. (d) Quantum interference patterns from Fig. 3(c) at L = 0 km
(continuous black), L = 4 km (dotted blue), and L = 60 km (dashed red).

up to second-order dispersion termes. In the above e-
quation, β1 and β2 are respectively the group velocity
and the group velocity dispersion in the optical fiber-
s, L = 2L0 + LA + LB the total distance traveled by
the twin-photons, ∆L = LB − LA the distance mis-
match, gn(ω) is spectral density of the source after be-
ing altered by the Bragg elements and the propagation
along the optical fibers, while µ is the quadratic (second-
order) coefficient of the dispersion compensation module.
The superposition of indistinguishable paths as given by
the summation over k, and squaring the sum gives rise
to quantum interferences. The two-photon interference
patterns are obtained by scanning the phase difference
∆ϕ = ϕB −ϕA. Since the filters have a finite bandwidth
ΩF , the integration of ω over [−ΩF /2,ΩF /2] results in a
continuous superposition of shifted interference patterns
leading to a loss of visibility.

The dispersion phase-shift Φ(k, n, ω) is such that the
β1-induced shift is easily canceled with the matching
LA = LB , while the dispersion-induced shift cannot ex-
cept when the dispersion cancellation is emulated via
µ = − 1

2β2L. This phenomenon is illustrated in Fig. 3
which shows the evolution of numerically simulated in-
terference patterns as the twin-photons propagate in the
optical fibers. It can be seen that dispersion not only
alters the visibility of the fringes, but also disturbs the
shape of the interference pattern – and thus, the quantum
correlations.

It should be noted that this result is essentially differ-
ent from conventional time-based system using a Mach-
Zehnder modulator [21]. In that case, a sine interference
pattern is measured because it involves the superposition
of two temporal paths. As the dispersion only affects
the phase relationship between the two paths, a super-
position of shifted sine patterns is obtained leading to
a visibility loss. On the contrary, our method involves
the interference of N paths to produce a Bessel-like in-

terference pattern. As the dispersion affects the phase
relationship between all the N paths, the interference is
strongly altered as shown by Fig. 3. Another consequence
is that the time-based MZ experiment is positively sen-
sitive to source filtering. As reported in ref. [21], if one
uses a narrowband filter to turn the propagation from
“impulse” to “continuous-wave”, it will isolate one sine
interference pattern from the superposition, and reduce
effectively the dispersion effects. In our frequency-path
system, one can not reduce the source bandwidth to lim-
it the effect of dispersion, and furthermore, the use of
N � 2 frequency paths leads to a strong deformation of
the interference pattern that adds to the visibility loss.
This is why an efficient dispersion cancellation strategy
is an absolute requirement for this frequency-path inter-
ferometric approach.

Indeed, unlike in the classical case, the problem of dis-
persion cancellation in the context of quantum interfer-
ometry is not conceptually trivial, as dispersion can be
canceled either locally [9–17] or nonlocally [18–21]. Re-
search is still on-going about the classical or quantum
nature of the non-local dispersion approach [22, 23].

Dispersion cancellation in two-photon experiments was
simultaneously introduced in 1992 by Steinberg et al. [9]
and Franson [18]. Steinberg et al. proposed a dispersion
cancellation scheme based on a Hong-Ou-Mandel inter-
ferometer in which photons are recombined through a
beam splitter before detection [24]. Conversely, Franson
proposed a nonlocal dispersion scheme in which separat-
ed photons experienced independently dispersion effects
of opposite-signs without recombination before detection.
These seminal papers introduced a debate about the clas-
sical or quantum nature of the dispersion cancellation
[22, 25] stimulating the development of classical exper-
iments [20, 26], producing comparable results to those
predicted by Steinberg et al. and Franson. However,
Franson demonstrated the inability of classical models
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FIG. 4: Experimental measurements of the normalized coincidences as a function of the phase difference ∆ϕ, for moderate
(4 km) and long (60 km) distance propagation. The upper row (a)–(c) corresponds to experimental results without any
dispersion compensation (DC), while the lower row (d)–(f) corresponds to measurements performed when the nonlocal dispersion
compensation scheme is implemented. The theoretical Bessel-like patterns are the continuous lines, while the experimental
results are indicated with the symbols. (a) and (d): Interference patterns for 2 km split propagation in LA and LB (L =
LA +LB ' 4 km) (b) and (e): Interference patterns for 2 km co-propagation in L0 (L = 2L0 ' 4 km). (c) and (f): Interference
patterns for 30 km co-propagation in L0 (L = 2L0 ' 60 km).

to describe all of the relevant aspects of nonlocal disper-
sion [19]. Different experimental set-ups have been pro-
posed to explore nonlocal dispersion cancellation such as
nonlocal interferometry or even non-interferometric ar-
chitectures as suggested by Franson [19]. The sources
in that case can be based on spectral [17] or angular-
momentum entanglement [16].

Our method requires a minimum bandwidth to allow
the N -frequency paths: it is therefore not only sensitive
to dispersion by nature, but it actually needs the disper-
sion to be nonlocal. We show here that the dispersion can
be canceled non-locally, thereby restoring the original in-
terference pattern after the twin-photons are propagated
in long-haul optical fibers. When LA = LB , the disper-
sion shift Φ(k, n, ω) depends only the total propagation
distance L = 2L0+LA+LB traveled by the twin-photons.
In fact, the dispersion effect is the same whether both
photons co-propagate along the fiber (L0), or only along
one of the two arms (LA,B). This has two major conse-
quences. First, the whole propagation and dispersion can
actually be experienced by only one photon and still lead
to the same measurements. Second, a negative dispersion
applied anywhere cancels the effect. To perform nonlocal
dispersion cancellation, a dispersion-compensation mod-
ule (DCM) is inserted in arm [A], as shown in Fig. 2.
This module introduces a negative phase-shift that com-
pensates to the group velocity dispersion phase shift. The

coincidence probability of Eq. (9) becomes

Pn ∝ |J0(c)|2 with c = [a2 + b2 + 2ab cos(∆ϕ)]
1
2 , (11)

so that the initial Bessel-like interference pattern is fully
recovered [5].

IV. RESULTS

The experimental results are presented in Fig. 4. The
acquisition of the interference patterns required stable
continuous operation for several days. In particular, each
interference pattern corresponds to continuous data ac-
quisition for a duration of 48 h. Photon counting was
performed using LynXéa photon counters from Aurea
Technology with onboard time-correlator. The filtering
was performed using fiber-Bragg gratings (FBGs) with
a full width at half-maximum (FWHM) bandwidth of
2.6 GHz, with more than 30 dB isolation at 5.6 GHz off-
set. This FBG filters are cascaded with circulators, and
yielded overall losses around 1.5 dB. The bias voltages of
the modulators are set with a precision of 100 µV .

Although full automation provides strong perfor-
mances and reliability, large distances propagation fea-
tures specific technical challenges. One of the most im-
portant difficulty comes from the phase-shift β1∆L that
shifts the interference pattern in Φ(k, n, ω), since ∆L can-
not be strictly set to 0 when LA,B is km-long. Indeed, for
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large distances, this term is very sensitive to temperature
as 1 K induces a 2π phase-shift per kilometer. A simple
way to overcome this difficulty is to propagate most of
the distance without separating the photons, split them
and cancel the whole dispersion afterward. Consequent-
ly, ∆L is then nulled with the best precision possible, and
the temperature fluctuations automatically are compen-
sated for being the same for the twin-photon pair. The
expected results are identical to the case in which the
photons are first separated and then propagate most of
the distance in two identical fibers LA ' LB . However,
this solution may rise questions with regard to the ac-
tual separation of the photons and the “nonlocality” of
the experiment. For this reason, two sets of experiments
were performed.

We first let the photons propagate together in the same
fiber L0 = 2 km with negligible propagation in the arm-
s [A] and [B] (with LA = LB ' 0). The results are
then compared to the experiment in which the photon-
s are separated right after the source (L0 ' 0), while
propagating over LA = LB = 2 km. In both cases, the
total distance traveled by the twin photons is L = 4 km.
A Finisar WaveShaper 4000S with 10 GHz resolution is
used on arm [A] to compensate for the dispersion, and
Figs. 4(a) and (b) show how the Bessel interference pat-
tern is restored for both experiments, in excellent agree-
ment with the simulations. This confirms the fact that
co-propagation (along L0) or split propagation (along LA
and LB) of the photon pair yield the same results, and as
predicted by the theory, the visibility of the interference
pattern is also restored.

Since co-propagation or split propagation eventually
results in the same outcome, a second set of experiments
was performed. Here, in order to show our ability to
cancel the dispersion over large distances, both photons
travel together within the same fiber of length L0 = 30 k-
m while LA = LB ' 0, corresponding to a total distance

L = 60 km for the twin-photons. The Finisar DCM is
replaced by a DCMX from Teraxion with fixed disper-
sion cancellation for 60 km. The results are shown in
Figure 4(c). One can note a slight dissymmetry between
the two Bessel side-lobes in the experimental data, and it
originates from the DCM limited bandwidth. However,
once the DCM response is accounted for in our simula-
tion, an excellent agreement is achieved for the case of
long-haul fiber propagation.

V. CONCLUSION

In conclusion, we have demonstrated robust, high-
dimensional (N = 9) frequency-path quantum interfer-
ometry in long-haul optical fibers, in which twin-photons
travel a distance up to 60 km. We expect such systems to
play a major role in future quantum information network-
s, particularly for quantum-key distribution frequency-
based systems [6, 27]. It is also known that ultra-high Q
whispering-gallery mode resonators are ideal platforms
to achieve both high-capacity optical fiber communica-
tions [28] and quantum entanglement via the nonlinear-
ity of the bulk material [29–31], and consequently, we
expect as well our interferometric results to be relevan-
t in the context of resonator-based quantum frequency
combs [32, 33].
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[1] J. D. Franson, Phys. Rev. A 44, 4552–4555 (1991).
[2] S. E. Harris, Phys. Rev. A 78, 021807 (2008).
[3] S. Sensarn, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett.

103, 163601 (2009).
[4] L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Mas-

sar, J.-M. Merolla, and K. P. Huy, Phys. Rev. A 82,
013804 (2010).

[5] L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Fur-
faro, P. Emplit, S. Massar, K. P. Huy, and J.-M. Merolla,
New Journal of Physics 14, 043015 (2012).

[6] M. Bloch, S. W. McLaughlin, J.-M. Merolla, and F. Pa-
tois, Opt. Lett. 32, 301–303 (2007).

[7] L. Olislager, E. Woodhead, K. P. Huy, J.-M. Merolla,
P. Emplit, and S. Massar, Phys. Rev. A 89, 052323
(2014).

[8] P. Imany, O. D. Odele, J. A. Jaramillo-Villegas,
D. E. Leaird, and A. M. Weiner, Phys. Rev. A 97, 013813
(2018).

[9] A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Phys.

Rev. Lett. 68, 2421–2424 (1992).
[10] A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Phys.

Rev. A 45, 6659–6665 (1992).
[11] K. A. O’Donnell, Phys. Rev. Lett. 106, 063601 (2011).
[12] A. Cuevas, G. Carvacho, G. Saavedra, J. Cariñe, W. a. T.
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