
Hybrid metaheuristic for the Pickup and
Delivery Problem designed for passengers

and goods transportation

Alexis Godart1, Hervé Manier1, Christelle Bloch2,
Marie-Ange Manier1

1Univ. Bourgogne Franche-Comté, FEMTO-ST Institute/CNRS, Rue
Thierry-Mieg (UTBM), 90010 Belfort Cedex, France

(e-mail: {alexis.godart, herve.manier, marie-ange.manier}@utbm.fr,).
2Univ. Bourgogne Franche-Comté, FEMTO-ST Institute/CNRS, 1

Cours Leprince-Ringuet, 25200 Montbéliard, France
(e-mail:christelle.bloch@univ-fcomte.fr)

Abstract: This paper introduces a new formulation for a variant of static Pickup and Delivery
Problem involving passengers and goods, time windows, multiple visits and transfer operations
with or without storage. This model contributes to address mobility and logistics requirements
for stakeholders with the rise of Smart Cities. Solutions of good quality are found thanks to a
hybrid metaheuristic based on an evolutionary algorithm. Our results are compared on small
instances for which optimal solutions have been found using MILP. We discuss perspectives and
upcoming challenges such as the scalability of the model. Copyright c© 2019 IFAC

Keywords: Pickup and Delivery; Multimodal; Dial-A-Ride; Transfers; Hybrid metaheuristic;
Evolutionary algorithm; Smart City

1. INTRODUCTION

This paper introduces a new variant of Pickup and Deliv-
ery Problem (PDP) subject to urban-related constraints.
The approach presented is based on a hybrid evolutionary
algorithm to provide solutions of good quality on some
instances. That work is part of a french project called
MISC (Mobility In Smart Cities). The main purpose of
this project is to create a platform providing real-time mo-
bility services for both people and goods transportation.
It focuses on finding a compromise between keeping cost
control and maximizing quality of service for all mobility
stakeholders (carriers, users, customers) but also local au-
thorities. Cohabitation opportunities between passengers
and goods in a same network are an upcoming trend.
They are mainly based on similarities of constraints, and
reviewed in Trentini and Mahléné (2010) and Trentini and
Mahléné (2012). In addition, some authors explore these
features, such as Masson et al. (2017). The urban transport
problem is often referred to as ”last mile logistics” and
represents a major interest in transportation research.
Ranieri et al. (2018) give a review based on recent scientific
contributions and focus on externalities cost reduction.
Several variants of PDP have been explored, including
characteristics like soft/hard time windows constraints,
multiple echelons, multiple periods or multiple trips per
vehicle. This abundant literature offers a wide variety of
models that can handle most of modern and specific trans-
portation problems. However, urban transport is unique
in its particularities. Vehicles travel short distances and
perform numerous and frequent operations, all into a dense
and overcrowded infrastructure. Multi-echelons PDP also

focuses on the urban context, but it considers restrictions
regarding the access of vehicles. This assumption is often
interesting in the case of restricted-area such as city center,
but sometimes it is also used to simplify the problem.
In this paper, vehicles are assumed allowed to travel ev-
erywhere, leaving the possibility of transfer between two
or more modes. Each vehicle can visit a site multiple times
during its trip. The aim of this work is to measure effec-
tiveness with such an approach for an integrated trans-
portation problem involving a lot of interdependancies.
This problem is known for its NP-hardness which requires
efficient strategies to tackle large instances.

2. LITERATURE REVIEW

This section describes some papers that are relevant to our
problem, the static PDP with multiple visits and trans-
fers. Our paper research extends to Dial-A-Ride Problem
(DARP) because of its similarities and inspiration found
for this problem. Variants exploration is limited to those
containing time windows and/or transfers with and with-
out synchronization.

2.1 Pickup and Delivery Problem

The reader can refer to both Parragh et al. (2008) and
Berbeglia et al. (2007) for a general framework on models
and algorithms used for PDP, and to Ropke et al. (2007)
for models of PDP with time windows (PDPTW). One
formulation of PDP can be as follows: a fleet of vehicles
must satisfy a set of transportation demands between sites,
subject to some transportation-dependent constraints.



Ghilas et al. (2016) addresses a variant of PDPTW which
includes scheduled public transportation lines. Al Chami
et al. (2018) presents a new variant called the multi-period
Pickup and Delivery Problem with Time Windows and
Paired Demands (Mu-PDPTWPD) which suits well in
the context of urban distribution. Considering multiple
periods can lead to great savings because of improved
tactical scheduling. Masson et al. (2017) introduces a two
tiered transportation problem. The problem formulation
implicitly describes a system that mixes passengers and
goods. First tier allows goods to be transported in city
buses from a consolidation and distribution center to a
set of bus stops originally used for passengers. In the
second tier, final customers are distributed by a fleet of
city freighters after transferring goods. A case study is
proposed onto a medium-sized city.

Ghilas et al. (2016) efficiently adapt an Adaptive Large
Neighborhood Search (ALNS) to find solutions of good
quality for some generated instances, dealing with in-
stances containing up to 100 freight requests in one hand.
Results obtained on a real-life scheduled line system show
the efficiency in terms of quality of solutions and computa-
tional time. Al Chami et al. (2018) use an advanced Greedy
Randomized Adaptive Search Procedure (GRASP) com-
bined with an Hybrid Genetic Algorithm (HGA) to solve
instances containing up to 10 periods. Masson et al. (2017)
also use an ALNS algorithm to tackle 15 generated data
sets and provide a comparison of transport systems em-
phasize risks about bad synchronization.

One or more objective in PDP are often expressed with
operational costs, distance, profits, waiting time and so
on. In Al Chami et al. (2018) the problem variant is solved
by minimizing simultaneously the total traveled distance
by vehicles, but also delays by introducing penalties.
Objective in Ghilas et al. (2016) is the total travel cost
based on vehicles dedicated for pickup and deliveries and
vehicles dedicated for transferred requests.

2.2 Dial-A-Ride Problem

DARP is fundamentally similar to PDP in its model-
ing and the reader can refer to Cordeau and Laporte
(2007) for a general framework on DARP. It deals with
on demand transport (mostly expressed by passengers).
Objective functions are more oriented towards quality of
service, mostly seen by minimizing delays, waiting time or
ride time. A general framework for DARP with transfers
(DARPT) is addressed by Masson et al. (2014). The prob-
lem is solved with an ALNS using insertion techniques.
Experiments on real-life instances show savings due to
transfers up to 8%. Guerriero et al. (2014) solve a DARP
depicting a public transportation system where each cus-
tomer specifies his pickup point and drop-off point, and
a requested time window. Their work contributes to find
both the maximum total ride time and the total waiting
time. The problem is solved with some metaheuristics.
Parragh and Schmid (2013) introduce a DARP in which
total routing costs are minimized while routes must re-
spect time window, maximum user ride time, maximum
route duration, and vehicle capacity restrictions. Problem
is tackled using a hybrid column generation and a large
neighborhood search algorithm.

These papers emphasize very interesting features and
upcoming trends. Our goal is to consider several ones
simultaneously and to find good approaches to solve even
more complex instances. Some interesting properties are
described in the following section.

3. PROBLEM FORMULATION

This section describes the PDP variant tackled in this
paper. This variant is solved to optimality in Godart et al.
(2019) with exact methods using Mixed Integer Linear
Programming (MILP) and implemented on IBM CPlexTM

solver. The model created is greatly inspired by Cortés
et al. (2009) work and Masson et al. (2014) work.

3.1 Problem description and modelling

Transportation demands r ∈ R are all known in advance
(static demands). All of them must be satisfied within
their respective time windows [p+

r ; p−r ] and they cannot
be split up. Each demand r corresponds to qr entities
moving from the origin node S+

r to the destination node
S−r . These entities can be either goods or passengers.
In order to separate or mix goods and passengers in
a mode, a set Br contains all vehicles v ∈ V able to
handle r . As an example, a vehicle dedicated to the
transportation of goods can appear only in Br ′ such
as r ′ ∈ R is a demand concerning goods. Service times
are defined for both pickup δ+r (loading operation) and
drop-off δ−r (unloading operation) associated with demand
r ∈ R.

Vehicles v are defined in a set V with heterogeneous
capacities Qv . Each vehicle is either dedicated to the
passengers mobility or to the goods transportation, which
means its capacity is dedicated to one type of entities.
Vehicles have heterogeneous speeds speedv equal to their
mean velocity. They also have an associated depot vwv

from which the vehicle v begins and ends its trip.

The set W contains vehicle depots w . Set Ω designates
origin/destination sites. Any site can possibly be origin
and destination as it can be involved in more than one
demand. Set T defines transfer points t with a storage
capacity sct . This capacity is only used to deal with goods
transportation. For passengers, capacity is unlimited in
public places. No storage capacity (i.e equals to 0) implies
a transfer operation in which both vehicles are meeting
during a same common time window.

Finally, pickup or delivery operation on a node i must be
realized within its opening time window [ei ; li ]. A cost dij

is assigned to each pair of nodes (i , j ), and represents the
shortest distance between i and j in our context.

The 39 constraints in the original problem are described
in Godart et al. (2019). They include strict time windows
constraints for sites and demands, which can lead to in-
feasibility. Thus, we use a new version of the MILP that
allows delays by relaxing the upper bound constraints on
both nodes and demands time windows. These relaxations
have been made to avoid bad or no results because of really
low percentage of feasible solutions on some instances. This
assumption intends to let the evolutionary algorithm ex-
plore the search space and potentially find some solutions
that would be unreachable otherwise.



3.2 Objective function

Our study focuses on Quality of Service (QoS) and cost re-
duction. Then we have adopted a multi-objective approach
by considering three objectives. The first one minimizes
the overall distance traveled by all vehicles. The two other
objectives correspond to the QoS. One minimizes the high-
est delay on demand satisfaction. If demand is satisfied on
time, corresponding delay is null. Else, this delay is equal
to the difference between the effective delivery date and
the latest delivery date p−r . In the same way, the third
objective minimizes the highest delay when visiting sites.
These two criteria permit to guide the hybrid method
towards solutions which strictly satisfy the time windows
constraints (since the MILP model considers them as soft
constraints). This multi-objective optimization transforms
the hard time window constraints in soft ones, while indi-
cating in the algorithm that the solutions with no delay
are the most interesting ones.

4. METHODS

The original PDP deals with assignment of demands on ve-
hicles and with vehicle routing. It includes time and capac-
ity constraints, but also in our variant transfer operations
between vehicles, both with and without synchronization.
These two interdependent sub-problems are solved simul-
taneously in Godart et al. (2019). However, combinatorial
complexity remains too important and prevents us from
tackling large size instances.

Figure 1 shows the decomposition of the problem and
presents the proposed hybrid meta-heuristic. The first
step assigns the demands to vehicles into the evolutionary
algorithm. Then second step assigns pickup, delivery and
transfer operations to vehicles using a greedy algorithm.
The last step creates feasible routes by solving a MILP.
Some constraints are provided by the greedy algorithm
assignment choices (step 2). The newly constrained linear
program is used to solve the scheduling problem (i.e
routing problem), while checking capacity and precedence
constraints, and interdependencies between vehicles.

4.1 Global scheme of evolutionary algorithm

The evolutionary algorithm is based on the well-known
NSGA-II by Deb et al. (2002). It has been adapted by
many authors and its efficiency has been proven for several
decision problems, especially vehicle routing based prob-
lems. This multi-objective algorithm ranks individuals in
several Pareto fronts. It also uses crowding to both improve
the quality and the diversity of the explored solutions. The
evolutionary design used lies on a binary encoding (de-
tailed in the following subsection). Classical operators are
applied for the experimentation: a single-point crossover,
with a probability of 90 %, and the BitFlip mutation,
with a probability equal to one out of the size of the
binary array. Finally, selection is managed by a binary
tournament. Duplicate individuals are allowed.

4.2 Individuals encoding

In step 1, demand assignment is encoded with a binary
matrix b, in which each element is defined as follows:

Fig. 1. Problem decomposition step-by-step

Fig. 2. Functional scheme of hybrid meta-heuristic

bvr =

{
1 if demand r ∈ R is assigned to vehicle v ∈ Br,
0 else.

Table 1 shows this matrix for a given example.

Demands
1 2 3 4 5 6 7 8

1 1 0 0 0 1 1 0 0
Vehicles 2 0 1 1 0 0 0 0 1

3 0 0 1 0 0 1 0 1
4 0 0 0 1 0 1 1 1

Table 1. Example of demand assignment with
4 vehicles and 8 demands

As all demands must be satisfied, each demand must have
at least one vehicle v ∈ Br assigned (1). Several vehicles
assigned to one demand implies transfer operations.



∑
v∈Br

bvr ≥ 1 ∀r ∈ R (1)

4.3 Initial population

Let us note popi the set of individuals obtained after
iteration i . Iteration 0 corresponds to the construction
of the initial population pop0 . Each individual’s genotype
encodes the previously defined binary matrix b. Two
algorithms are used to generate the initial population :

Random assignment: This algorithm randomly chooses
one or several vehicles v in Br for every demand r ∈ R.

Greedy algorithm: This algorithm (algorithm 1) assigns
each demand to the best vehicle regarding three static
indicators Lpr

v , Ltwsrv and Ltwr r
v . Those ones are a priori

computed for each couple (r ,v).
Lprv Physical proximity between vehicle depot wv

and origin/destination nodes S+
r and S−r (lower

is better);
Ltwsrv Time in common between the time window of

vehicle depot and those of origin/destination
sites (higher is better);

Ltwrrv Time in common between the time window of
vehicle depot and request time window (higher
is better).

Those indicators are weighted, and then used in a nor-
malized score GS r

v . Each request is then associated with
the vehicle minimizing this score. Diversity in the initial
population is increased by varying the weights from one
individual to another. The generated solutions do not
include transfer operations.

4.4 Evaluation function

Each individual, which encodes the assignment of demands
on vehicles (step 1), is then evaluated using a process based
on a greedy algorithm (step 2) and MILP (step 3) (see
figure 1). This section explains the rules used to assign
operations to each vehicle. For each vehicle v ∈ V , a set
of assigned pickup operations opv and a set of assigned
delivery operations odv are defined. Indeed, in case of
transfers, each vehicle assigned to a demand must perform
a part of the demand’s route (figure 3). Therefore, the
corresponding pick-up and drop-off operations must be
assigned to the concerned vehicles.

Fig. 3. Example of a demand assigned to n vehicles

At this stage, another greedy algorithm determines which
part of the demand’s route will be done by each assigned
vehicle. Like in the previous greedy algorithm, two static
indicators are calculated :common distance and time. A
first set GSPr

v stores normalized indicators between vwv

and pickup site S+
r . The second set GSDr

v gives normalized

Algorithm 1 Greedy algorithm to create individual o

Create random individual in: p, tw out: b
// calculate priority ratios
set pf = p / (p + tw)
set twf = tw / (p + tw)
// normalize time windows parameter
set twratio = max(d) / (max(l) -min(e))
// calculate score for each pair ’request r assigned to
vehicle v’
for r = 1 to length(R) do

for v = 1 to length(V ) do
set Lprv = dki + dkj k = wv i = S+

r j = S−r
set Ltwsrv = min(li; lk) - max(ei; ek)

+ min(lj ; lk) - max(ej ; ek)
k = wv i = S+

r j = S−r
set Ltwrrv = min(p−r ; lk) - max(p+r ; ek) k = wv

if v 6∈ Br then
set GSr

v = +∞
else

set GSr
v = Lprv * pf - (Ltwsrv + Ltwrrv) * twratio

* twf
end if

end for
end for
// generate individual’s array based on GS
for r = 1 to length(R) do

set best = +∞ // Best GS value
set vbest = 0 // Index of vehicle with best
GS value
for v = 1 to length(V ) do

if GSr
v < best then

set best = GSr
v

set vbest = v
end if

end for
set brvbest = 1

end for

indicators between vwv and delivery site S−r (algorithm
2). Set affectr contains all vehicles to which demand r is
assigned.

The final order of tasks to do per demand is obtained in a
set vlistr . The first vehicle on the list picks up the request
r while the second one deposits it. The transfer points are
determined according to the physical proximity and the
common opening time between the two vehicles and each
transfer point. The method used here is based on previous
algorithms with a normalized score on the two indicators.
Each transfer point can welcome a demand once at most.

Every operation assignment is then submitted to MILP us-
ing constraints on decision variables. Fixing these decision
variables helps to drastically reduce the research space and
thus to accelerate the evaluation process. MILP execution
run time is limited to one minute. If no solution has been
found after that amount of time, high values are returned
for all the three objectives.

5. RESULTS

First we detail the experimental environment. Algorithms
in step 1 and step 2 and initial population strategies are
written in Python. Route scheduling is ensured with MILP



implemented on IBM CPLEX R©. Finally, the evolutionary
algorithm NSGAII is written in java. Results are obtained
on a Intel R© Xeon R© E7-4850 running 16 cores and 256
gigabytes of RAM.
Our hybrid method was tested on small generated in-
stances, for which optimal solution has already been found
using the MILP exact method. These instances and the
corresponding solutions are summarized in table 2.

F00 F01 F02 F03 F04

Vehicles 2 2 2 3 4
Demands 3 4 6 4 8
Best solution 3’532 3’437 3’828 2’979 6’478
% Gap - - - - 13.85
CPU (s) 1.7 0.8 3’118 132 1’209’600

Table 2. Best solutions obtained with exact
methods (MILP, Godart et al. (2019))

The best solution line gives the distance travelled by
vehicles with no delay. Solutions with no gap (F00-F03)
are optimally solved while solution for F04 is an upper
bound. For small instances, the size of population was set
to 10 individuals, and only 50 individuals were examined in
each run (iterations). Building an initial population which
size would be upper or equal to the size of the search

Algorithm 2 assigning operations to vehicles

Assign operations to vehicles out: op, od
// calculate priority ratios
// normalize time windows parameter
set twratio = max(d) / (max(l) -min(e))
// calculate score for each pair ’request r assigned to
vehicle v’
for r = 1 to length(R) do

for v = 1 to length(affectr) do
set Lpprv = dki k = wv i = S+

r
set Lpdrv = dkj k = wv j = S−r
set Ltwsprv = min(li; lk) - max(ei; ek)

k = wv i = S+
r

set Ltwsdrv = min(lj ; lk) - max(ej ; ek)
k = wv j = S−r

set GSP r
v = Lpprv - Ltwsprv * twratio

set GSDr
v = Lpdrv - Ltwsdrv * twratio

end for
sort GSP and GSD ascending
// Choose task per vehicle based on GSP and GSD
set iter = 1
// create task order of vehicles for demand r
set vpr = ∅
set vdr = ∅
while length(GSP) > 0 and length(vpr) <=
length(T) do

if GSP r
iter <= GSDr

iter then
add vehicle iter at the end of vpr

else
add vehicle iter at the beginning of vdr

end if
remove element iter in GSP
remove element iter in GSD

end while
set vlistr = vpr ∪ vdr

end for

space would not be adequate to assess the quality of the
evolution. Table 3 gives the parameter values used.

F00 F01 F02 F03 F04

Number of runs 10 10 5 5 5
Size of initial population 10 10 10 10 20
Number of iterations 50 50 50 50 300

Table 3. Parameters of the experimentation for
”n” and ”n+g” strategies

In order to measure the evolutionary algorithm effective-
ness, we propose two experimentation plans. The differ-
ence lies in how initial population is built. The first one
denoted ”n” generates individuals using only random as-
signment strategy, while the second one named ”n+g” also
creates random individuals but inserts one with the greedy
strategy. The idea is to give the evolutionary algorithm a
good initial genetic patrimony, provided that the greedy
algorithm leads to interesting assignment solutions. In
table 4, the objective values only consider the set gathering
each best solution without delay obtained per run.

”n” Objective value Gap BKS (%) CPU (s)

strategy Best Aver. Best Aver. Best Aver.

F00 3’532 3’648 0 3.3 25 26
F01 3’437 3’590 0 4.5 23 26
F02 no sol. - - - 712 1’136
F03 3’190 3’452 7.1 15.9 31 34
F04 7’406 7’406 14.3 14.3 9’022 14’590

”n+g” Objective value Gap BKS (%) CPU (s)

strategy Best Aver. Best Aver. Best Aver.

F00 3’532 3’643 0 3.1 23 25
F01 3’437 3’437 0 0 22 24
F02 3’873 3’873 1.2 1.2 397 982
F03 2’979 2’979 0 0 29 32
F04 no sol. - - - 13’461 23’725

Table 4. Distance and CPU time obtained for
5 instances with hybrid metaheuristic

For instance F02 with strategy ”n” and instance F04
with strategy ”n+g”, no solution without delay has been
found. Figure 4 shows solutions in the bi-objective context.
Some solutions are close to or sometimes better than the
BKS in term of distance (below 6200), but with a delay
counterpart. When comparing the two strategies, ”n+g”
strategy seems to lead to solutions always close enough
to the optimal one (1.2%). This can be explained by the
greedy individual inserted into the initial population. In
most of cases optimal solutions are found. Other solutions
without delay are still close to the BKS with a mean gap
reaching 4.5% at most. However, for some instances like
F04, we find solutions at best without delay but with a
greater distance.
We notice that the bigger the instance are, the higher
the computational times are. This is due to the routing
problem complexity which directly depends on the number
of demands and vehicles. Nevertheless, our method enables
us to obtain good solutions from 3 (F02) to 63 (F04) times
faster than with the exact method.
The use of exact methods for the routing problem (MILP)



prevents the solving of large-scale instances as the combi-
natorial complexity grows exponentially with the number
of demands and vehicles. Moreover, the exact optimization
engine is invoked as many times as the vehicle routing
problem must be solved, i.e. for each iteration, while large
instances would require more iterations so that the solu-
tion space can be better explored.
Finally our work enabled us to test and validate our pro-
posed method, in particular the partitioning of the prob-
lem into three sequential sub-problems, each one solved
with approached (steps 1 and 2 in figure 1) or exact
methods (step 3). Indeed the conducted tests show that
despite this partition, we reach or get near of optimal
solutions.

6. CONCLUSION

A hybrid metaheuristic combining a multi-objective evo-
lutionary algorithm, greedy heuristics, and a MILP, has
been developped to solve a Pickup and Delivery Problem
in which the transfer of demands is allowed with or without
synchronization. Our method decomposes the problem by
delegating to the evolutionary algorithm the control of
the exploration of solutions with transfers and their po-
tential benefits. However, the evaluation of solutions with
an exact method, like MILP, offers few perspectives for
scale-up instances as the scheduling problem remains NP-
hard. Main interests in interfacing exact methods such as
MILP into a metaheuristic are to characterize the problem
and explore the search space more efficiently, in the per-
spective of applying approximated methods. Relaxation
of hard time windows and assignment heuristics let the
evolutionary algorithm explore efficiently the space to find
some of the rare feasible solutions. Nonetheless the choices
made by the heuristics which assign the operations can be
improved. The existing algorithm will allow to compare
other original indicators, especially dynamic ones. This
could bring a better assessment of each genotype. Then,
the next step is to implement a faster evaluation function,
based on these indicators embedded in heuristics such as
insertion or neighborhood search. Also, solutions found in
this paper can be used for benchmark purposes to compare
future methods on this variant of PDP.

Fig. 4. Non-dominated solutions on 5 runs for instance F04
solved with ”n+g” strategy.

ACKNOWLEDGEMENTS

This work is part of a Mobilitech project funded by the
Bourgogne Franche-Comté region and labelled by Pôle
Véhicule du Futur.

REFERENCES

Al Chami, Z., Manier, H., Manier, M.A., and Chebib,
E. (2018). An advanced GRASP-HGA combination
to solve a multi-period Pickup and Delivery Problem.
Expert Systems with Applications.

Berbeglia, G., Cordeau, J.F., Gribkovskaia, I., and La-
porte, G. (2007). Static pickup and delivery problems:
a classification scheme and survey. TOP, 15(1), 45–47.

Cordeau, J.F. and Laporte, G. (2007). The dial-a-ride
problem: models and algorithms. Annals of Operations
Research, 153(1), 29–46.

Cortés, C.E., Matamala, M., and Contardo, C. (2009). The
pickup and delivery problem with transfers: Formulation
and a branch-and-cut solution method.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.
(2002). A fast and elitist multiobjective genetic algo-
rithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2), 182–197.

Ghilas, V., Demir, E., and Van Woensel, T. (2016). An
adaptive large neighborhood search heuristic for the
Pickup and Delivery Problem with Time Windows and
Scheduled Lines. Computers and Operations Research.

Godart, A., Manier, H., Bloch, C., and Manier, M.A.
(2019). MILP for a Variant of Pickup & Delivery
Problem for both Passengers and Goods Transportation.
In Proceedings - 2018 IEEE International Conference on
Systems, Man, and Cybernetics, SMC 2018, 2692–2698.
IEEE.

Guerriero, F., Pezzella, F., Pisacane, O., and Trollini, L.
(2014). Multi-objective optimization in dial-a-ride pub-
lic transportation. Transportation Research Procedia, 3,
299–308.

Masson, R., Lehuédé, F., and Péton, O. (2014). The dial-a-
ride problem with transfers. Computers and Operations
Research, 41(1), 12–23.

Masson, R., Trentini, A., Lehuédé, F., Malhéné, N., Péton,
O., and Tlahig, H. (2017). Optimization of a city
logistics transportation system with mixed passengers
and goods. EURO Journal on Transportation and
Logistics, 6(1), 81–109.

Parragh, S.N., Doerner, K.F., and Hartl, R.F. (2008).
A survey on pickup and delivery problems. Part I:
Transportation between customers and depot. Journal
für Betriebswirtschaft, 58(2), 81–117.

Parragh, S.N. and Schmid, V. (2013). Hybrid column
generation and large neighborhood search for the dial-
a-ride problem. Computers and Operations Research,
40(1), 490–497.

Ranieri, L., Digiesi, S., Silvestri, B., and Roccotelli, M.
(2018). A review of last mile logistics innovations in
an externalities cost reduction vision. Sustainability
(Switzerland), 10(3), 782.

Ropke, S., Cordeau, J.F., and Laporte, G. (2007). Models
and branch-and-cut algorithms for pickup and delivery
problems with time windows. Networks.

Trentini, A. and Mahléné, N. (2010). Toward a shared
urban transport system ensuring passengers & goods
cohabitation. Tema. Journal of Land Use, Mobility, and
Environment, 3(2), 37–44.

Trentini, A. and Mahléné, N. (2012). Flow Management
of Passengers and Goods Coexisting in the Urban En-
vironment: Conceptual and Operational Points of View.
Procedia - Social and Behavioral Sciences, 39, 807–817.


