
Similarity detection for smart and transparent
long-range IoT relaying

Congduc Pham
University of Pau, France

congduc.pham@univ-pau.fr

Abdallah Makhoul
Univ. Bourgogne Franche-Comté, FEMTO-ST, France

abdallah.makhoul@univ-fcomte.fr

Mamour Diop
University of Gaston Berger, Senegal

serigne-mamour.diop@ugb.edu.sn

Abstract—LPWAN refers to highly energy-efficient wireless
communication over very long distances. Nonetheless, even with
the increased range, 1-hop connectivity can be difficult to
achieve in real-world deployment scenario. Especially for remote
and rural areas where density of gateways is low and where
devices/gateway are usually deployed for a specific application.
Therefore, a smart and transparent 2-hop approach has been
proposed in a previous work to leverage these connectivity
issues. This article extends this approach with similarity detection
features in order to (i) reduce the power consumption when
waking-up to relay packets and (ii) reduce the radio activity
time when running under duty-cycle regulated constraints.

Index Terms—LoRa, Low-power IoT, Similarity detection

I. INTRODUCTION

Low-Power Wide Area Networks (LPWAN) refers to highly
energy-efficient wireless communication over very long dis-
tances. These technologies are particularly adapted to battery-
operated small Internet-of-Things (IoT) devices. The most
popular LPWAN technologies (e.g. SigFox, LoRa) can achieve
more than 20km in line-of-sight (LOS) conditions.

In a previous work, a 2-hop LoRa approach has been pro-
posed to extend the LoRa network coverage [1] as feedbacks
from pilot deployments highlighted the fact that even with
the longer range offered by LoRa, many of these deployment
campaigns suffer from connectivity issues with the gateway
as clear LOS communication is difficult. For instance there
can be hard constraints on gateway and gateway’s antenna
placement with possible installation often limited to the farm
office where power supply and wired Internet are available.
Due to field/terrain configuration, some devices can also be
isolated from the other devices and direct transmission to the
gateway is impossible to achieve.

n3

GatewayRelay-device

End-device

Fig. 1: Long-range 2-hop connectivity architecture

In addition, there can also be severe limitations on the
maximum transmission power allowed in some countries that
reduce the transmission range. The 2-hop LoRa approach was

to design a smart, transparent and battery-operated interme-
diate node – relay – that can be added after a deployment
campaign to seamlessly provide an extra hop between the
remote devices and the gateway as illustrated in Figure 1. The
red link indicates no direct connectivity and the orange link
indicates unstable connectivity. When a stable connection can
be realized with the gateway, the link shows in green.

The smart and transparent relay will wake-up at appropriate
moments to catch uplink transmissions from specific devices
in order to perform the relay operation. However, by nature,
a relay device has higher energy consumption than end-
devices as they are transmitting more oftenly. In addition,
in some countries, a transmitter can be constrained by duty-
cycle limitations. In Europe, following the ETSI EN300-
220-1 recommendations [2], a transmitter is limited to 1%
duty-cycle (i.e. 36s/hour) in the general case, even if it can
change to another frequency channel. A relay forwarding
uplink packets from n end-devices can have to transmit n
packets to the gateway. Assuming each transmission takes
about 1.5s (approximately the time-on-air of a 20-byte payload
packet – header included – when using the LoRa settings for
achieving the longest range) then a relay can rapidly be limited
by the duty-cycle if end-devices send packets at a higher
rate than 1 packet/hour. To reduce energy consumption and
radio activity a relay can very simply decide to not forward
a new measure from a device when this measure is close to
the last measure received from that device. However, when
simply doing so, the relay still need to wake-up to receive the
new measures. In addition, as there is no possibility to detect
possible redundancy between different devices the mitigation
of radio activity remains very limited.

In this article, we extent the smart relay with automatic
embedded similarity detection features in order to (i) reduce
the power consumption when it has to wake-up to forward
packets from child devices and (ii) reduce the radio activity
time when running under duty-cycle regulated constraints.
We propose similarity detection features based on distance
function to evaluate the similarity between datasets sent by
child devices. The main constraint is to propose a low-
complexity and small memory footprint approach.

The rest of the article is organized as follows. Section
II reviews related works in redundancy/similarity detection.
Section III presents the distance-based similarity detection
mechanism. Section IV describes our relay with similarity

detection features, explaining the proposed approach for low-
complexity similarity detection. Implementation and experi-
mental results are presented in Section V and Section VI
concludes.

II. RELATED WORKS ON SIMILARITY DETECTION

In the literature we can find several approaches that aim
to detect and reduce data redundancy [3], [4], [5], [6]. The
main idea is to propose a quantitative approach in identifying
two similar data measures by studying similarity functions.
Such function measures the degree of similarity between two
measures and returns a value between 0 and 1. A higher
similarity score indicates that the data measures are more
similar, thus we can consider these measures as redundant.

Similarity functions were used in various domains and
applications in order to identify near duplicate objects (data).
For instance, for Web search engines [7], Web mining appli-
cations [8], detecting plagiarism [9], collaborative filtering in
data mining [10], etc. To the best of our knowledge, we are
the first to use these functions for data aggregation in sensor
networks. Recently, many studies have proposed new algo-
rithms that define the similarity between objects or records.
These algorithms are classified into three categories, inverted
index based methods [11], prefix filtering methods [12], and
signature based methods [13]. Most of these methods are quite
complex for wireless sensor networks that usually generate
large amount of candidate pairs, all of those need to be verified
by the similarity function.

In [14], the authors presented a work for data collection
in industrial sensor networks. They proposed three differ-
ent methods based respectively on, sets similarity functions,
distance functions and the k-means clustering algorithms.
Their results show that their method reduces collected and
transmitted data while preserving data integrity.

The authors in [4] propose a local similarity imputation
method for eliminating missing data. The proposed technique
is based on a fast clustering algorithm and top k-nearest neigh-
bors. The top k-nearest neighbor hybrid distance weighted
imputation is proposed to fill in missing values in clusters. The
obtained results show that the proposed method can impute the
missing data values effectively.

A flexible overlay protocol for duplicate sensitive aggre-
gation functions (FOMA) is proposed in [15]. It aggregates
partial results in two layers (routing and aggregation) with no
computation error in a highly energy-efficient manner. It uses
four phases to collect data from sources: creating a routing
tree structure, finding proper data aggregation nodes, creating
signatures, and data collection. The obtained results show that
the proposed approach outperforms other existing ones (e.g.
TAG) in terms of energy consumption and data accuracy.

Researchers in [16] presented a data aggregation technique
based on the Jaccard sets similarity function and several
optimizations in [17]. The aim is to study the similarity
between several datasets generated by neighboring nodes at
the cluster-head level. They provided a new prefix filtering
method and results show that the approach reduces data size by

eliminating in-network redundancy and sending only necessary
information to the sink.

In [18] the authors propose two algorithms PARTENUM
and WTENUM for evaluating set-similarity joins. Their ap-
proach handles a large subclass of set-similarity predicates
allowed by the definition of the set-similarity join operator.
Their algorithms guarantee that two highly dissimilar sets will
not appear as a candidate pair with a high probability. The
authors demonstrate the efficiency of their approach through
experimental evaluation on real and synthetic data sets.

Our main objective in this paper is to study and use
similarity functions for the simple and resource-constrained
2-hop relay node in LoRa IoT networks where the topology
is usually a simple star centered on a single gateway.

III. SIMILARITY DETECTION PROPOSAL

In our approach, we consider that the relay collects mea-
sures from the devices and identifies pairs of measures whose
similarities are above a given threshold. A similarity function
uses a threshold of value between 0 and 1. A higher similarity
score indicates that the measures are more similar, thus we
can consider that the devices are generating redundant data.
If the compared data are found to be similar to each other,
the relay does not need to transmit all data and can also avoid
waking-up for those redundant devices.

A. Identification of redundant nodes

A relay node receives several data measures coming from
different child nodes. Our idea is to use data similarity and
distance functions in order to identify neighboring nodes
generating similar data and to not wake up for those redundant
nodes. To find the similarity between data measures, several
similarity functions can be used for data comparison, such as
edit distance, Euclidean distance, cosine distance, Jaccard sim-
ilarity, Bray-Curtis distance, Camberra, etc. In our approach
we propose to use the Euclidean distance which is widely used
in various domains.

In mathematics, the Euclidean distance is the straight line
distance between two vectors of data. Let us first consider
two data sets Ri and Rj generated by the two child devices
Si and Sj respectively in the same period p. Then, in order
to compute the Euclidean distance between Ri and Rj . We
consider for instance Ri =

[
ri1 , ri2 , ri3 , ri4 , . . . , riT

]
and

Rj =
[
rj1 , rj2 , rj3 , rj4 , . . . , rjT

]
with |Ri| = |Rj | = T .

Finally, we can calculate the Euclidean distance between the
two vectors Ri and Rj based on the following equation:

Ed(Ri, Rj) =

√√√√ T∑
k=1

(rik − rjk)2 (1)

where rik ∈ Ri and rjk ∈ Rj .

B. Distance Normalization

The normalization of data is an essential process when using
the distance functions. The objective of the normalization
process is to scale all vectors of data to have the same variation

then, to perform an exact comparison among these vectors. In
this paper, we use Gaussian normalization to normalize data
generated by the sensors. First, we calculate the Euclidean
distance for each pair of data vectors in the network:

Ed = {Ed(R1, R2), Ed(R1, R3), . . . , Ed(RN−1, RN)}

where N is the total number of sensors. Then, we can apply
the Gaussian normalization using the following formula when
Ed(Ri, Rj) 6= 0:

E′d(Ri, Rj) =
Ed(Ri, Rj)− Y

6× σ
+

1

2
(2)

where Y is the mean of all distances and σ is the standard
deviation of pairwise distance over all data. Y and σ are
calculated as follows:

Y =

∑|d|
k=1 dk
|d|

and σ =

√∑|d|
k=1(di − Y)2

|d|
,

where |d| = n× (n− 1)

2

Thus, Ri and Rj are said to be redundant if E′d(Ri, Rj) ≤
ε, where ε in[0, 1] is a user defined threshold based on the
application requirement.

IV. 2-HOP RELAYING WITH SIMILARITY DETECTION

A. Review of the smart relay node

Our 2-hop LoRa approach [1] adds an extra hop between
some end-devices and the gateway. The addition of the relay
is performed after the deployment of both end-devices and the
gateway. Logically, the relay node does not take part in any
data sensing tasks and one of the major considerations should
be its appropriate location to cover areas where connectivity
is either lost or unstable after the network deployment. We
designed the relay-device with the following requirements:
• Low-cost, low power: the objective is to avoid additional

hardware such as Real-Time Clock (RTC) to make the
relay only different from end-devices with the uploaded
software. Therefore, an end-device can be ”recycled” and
reprogrammed to act as a relay. As it is also desirable that
relays run on battery, their longevity must be similar to
the longevity of end-devices.

• Smart: relays are designed to remain in low-power mode
most of the time, only waking-up at appropriate moments
to catch uplink transmissions from end-devices. There-
fore, a relay-device must be able to switch from deep
sleep to active mode by smartly analyzing the uplink
pattern from end-devices during an observation phase
activated at relay’s startup.

• Transparent: relays are transparent to the rest of the
network: (a) no change in hardware or software for end-
devices or gateway to support the new 2-hop approach;
(b) no additional signaling traffic between relays and end-
devices or gateway. Therefore, end-devices are not be
aware of the 2-hop relay mode, and do not have to per-
form any discovery and binding process to a nearby relay.

The relay also does not need to exchange parameters with
the gateway for advertising its presence. On the gateway
side, no scheduling mechanism for end-devices and relay
is required. Furthermore, withdrawal or failure of a relay
leaves the network as functional as before its integration
in the network.

We can summarize the behavior of the relay node as follows
for the purpose of the rest of the paper: after an initial
observation phase where uplink transmission time patterns
from end-devices are collected, the relay will autonomously
and periodically wake up from deep sleep mode to catch uplink
packets and perform the relaying task.

B. Extending with similarity detection

The relay node basic behavior described in [1] and sum-
marized in previous sub-section is extended with the distance-
based similarity detection features. Messages from end-devices
are supposed to use the following format: ”SH/44” which
means for instance that the soil humidity is 44. An example
with 3 sensor nodes, S1, S2 and S3, is shown below.

S1: S2: S3:
SH/44 SH/45 SH/46
SH/44 SH/43 SH/44
SH/46 SH/43 SH/43
SH/46 SH/43 SH/43
SH/46 SH/44 SH/44
SH/45 SH/44 SH/43
...

After m sensing periods (equivalent to a number of mes-
sages from devices), e.g. m = 3, we have R1 =

[
44, 44, 46

]
,

R2 =
[
45, 43, 43

]
and R3 =

[
46, 44, 43

]
. Then, the relay

computes Ed = {Ed(R1, R2), Ed(R1, R3), Ed(R2, R3)} with
Eq. 1 and computes E′d(R1, R2), E′d(R1, R3) and E′d(R2, R3)
with Eq. 2 to determine whether (a) sensor 1 is redundant with
sensor 2, (b) sensor 1 is redundant with sensor 3 and (c) sensor
2 is redundant with sensor 3.

Figure 2 illustrates the similarity detection mechanism with
respect to the device’s sensing period and the relay’s observa-
tion phase. Here we illustrate with 8 devices with a sensing
period of 10 minutes, m = 3 and a relay’s observation phase
of twice the device’s sensing period. We also show the 1-hour
cycle that can be of importance when dealing with radio duty-
cycling regulations.

1 4 6 2 7 3 58 1 4 6 2 7 3 58 1 4 6 2 7 3 58 1 4 6 2 7 3 58 1 4 6 2 7 3 58 1 4 6 2 7 3 58

sensing period

observation phase

similarity detection phase

1 hour

Fig. 2: Overall timing schematic

As indicated previously, the relay can also simply choose
to not forward the last measure from a device as shown in
Figure 3 for r12 = 44 and r23 = 43. However, even though
these measures are not forwarded to the gateway, they are
taken into account for the similarity detection mechanism.

1 4 6 2 7 3 58 1 4 6 2 7 3 58 1 4 6 2 7 3 58

similarity detection phase

………X X
X = not forwarded, last value suppression

1st sensing period 2nd sensing period 3rd sensing period

Fig. 3: Single device last measure suppression

C. Similarity detection in action

After the initial similarity detection phase (e.g. with m =
3), some redundancy patterns can already be identified and
the relay can decide to not forward some messages. With
the previous datasets example, the relay computes Ed =
{3.31, 3.60, 1.41} with Eq. 1 and computes E′d(R1, R2) =
0.59, E′d(R1, R3) = 0.64 and E′d(R2, R3) = 0.26 with Eq.
2 where Y = 2.77, σ = 0.97 and |d| = 3. If the application
defines ε = 0.3 then the relay can decide that devices S2
and S3 are redundant each other. Figure 4 shows for the next
sensing periods the decision of the relay node.

S1 S2 S3
44 45 46
44 43 44
46 43 43
46 43 43
46 44 44
45 44 43

S1 S2 S3
no	wake-up	for	S2,	get	data	from	S3 44 45 46

44 43 44
46 43 43
46 43 43
46 44 44
45 44 43

1 4 6 2 7 3 58 1 4 6 2 7 3 58 1 4 6 2 7 3 58 1 4 6 2 7 3 58

X X
X = not forwarded, similarity detection

similarity patterns are updated

X X

3rd sensing period 4th sensing period 5th sensing period 6th sensing period

X

X X X

X

X
X

E'd(R2,R3)=0.265 <0.3 E'd(R2,R3)=0.264 <0.3 E'd(R2,R3)=0.266 <0.3

S1 S2 S3
44 45 46
44 43 44
46 43 43
46 43 43
46 44 44
45 44 43

X X
X

X X

………

similarity detection phase

S1 S2 S3
44 45 46
44 43 44
46 43 43
46 43 43
46 44 44
45 44 43

E'd(R2,R3)=0.266 <0.3

X X X
X X X X

X X X
X X

Fig. 4: Similarity detection: avoiding message forwarding

In the 4th sensing period, both messages from S2 and S3
are not forwarded by the relay because they are similar to the
last received values. This is indicated by the ”X” symbol on
the time line. Note that measures from S2 and S3 are still used
to update future similarity detection computations. In the 5th
sensing period, the relay forwards the message from S2 while
the message from S3 is not forwarded because S3 is detected
to be redundant with S2. This is indicated by the circled ”X”
on the time line. In the 6th sensing period the message from S2
is not forwarded as it is similar to the last received value from
S2. The message from S3 is also not forwarded, but thanks
to the similarity detection mechanism. These informations are
also illustrated by the tables below the time line in Figure 4.
Each cell at row k and column i store the measure rik which
is the measurement from device i in sensing period k.

D. Saving more energy by not waking-up

1) Principle: The proposed similarity detection mechanism
can allow for more energy saving by avoiding the relay to wake
up for redundant devices. In Figure 5, we indicate similarity
computations between 2 devices i and j to obtain E′d(Ri, Rj)
by a double arrow in the measurement table, between the 2
corresponding columns, except for devices 1 and 3 that are

indicated by the double arrows on the right side of the S3
column. We can see that after determining that S2 and S3 are
redundant, at the end of the 3rd period, the relay chose to
not wake up for the next message from S2 in the 4th sensing
period. This is indicated by the red cell in the measurement
table and by the ”z” symbol on the time line. The relay wakes
up for the next message from S3 but as this message is the
same than the previous one, it is not forwarded by the relay.
However, this measure will be used to update E′d(R1, R3)
which is the only similarity computation that can be performed
because the measure for S2 is not available. Compared to the
previous case, E′d(R2, R3) = 0.286 because Y and σ are
different since both E′d(R1, R2) and E′d(R2, R3) cannot be
computed at this step.

1 4 6 2 7 3 58 1 4 6 2 7 3 58 1 4 6 2 7 3 58 1 4 6 2 7 3 58

X
z = no wake up, similarity detection

similarity patterns are updated

X

3rd sensing period 4th sensing period 5th sensing period 6th sensing period

z

E'd(R2,R3)=0.286 <0.3 E'd(R2,R3)=0.273 <0.3 E'd(R2,R3)=0.280 <0.3

………

similarity detection phase
z z

S1 S2 S3
44 45 46
44 43 44
46 43 43
46 43 43
46 44 44
45 44 43

E'd(R2,R3)=0.266 <0.3

X

S1 S2 S3
44 45 46
44 43 44
46 43 43
46 43 43
46 44 44
45 44 43

XX

S1 S2 S3
44 45 46
44 43 44
46 43 43
46 43 43
46 44 44
45 44 43

X
X
X

S1 S2 S3
44 45 46
44 43 44
46 43 43
46 43 43
46 44 44
45 44 43

X

X
X
X

Fig. 5: Similarity detection: avoiding wake-up

In the 5th sensing period, the relay will now not wake up
for S3 but will wake up for S2, therefore alternating between
devices in the redundant set. We can see that E′d(R1, R2),
and especially E′d(R2, R3), can now be updated by adding
the measures indicated by the double arrows. Continuing with
the 6th sensing period, it is similar to the 4th sensing period
where the relay skips to wake up for S2 but wakes up for S3.
Again, here, the measure from S3 is not forwarded because it
is similar to the last received measure.

Compared to the previous case where 5 message transmis-
sions were avoided during the 4th→6th sensing periods, here
the relay additionally did not wake up 3 times, saving more
energy.

2) Similarity computation with missing measurements: As
the relay may not wake up to receive measurements from some
devices that are detected to be redundant, the similarity detec-
tion procedure must be able to cope with missing measures.
In the example described in Figure 5, that happens in the
5th sensing period. For instance Ed(R1, R2) was computed
with R1 =

[
r11 , r12 , r13 , r15

]
and R2 =

[
r21 , r22 , r23 , r25

]
because r24 was missing. Ed(R2, R3) was computed with
R2 =

[
r21 , r22 , r33 , r25

]
and R3 =

[
r31 , r32 , r33 , r34

]
because

both r24 and r35 are missing. The objective is to only take
real measures to compute the similarity patterns. Although the
mechanism described previously and illustrated in Figure 5 is
still valid, we want to propose a low-complexity approach and
simple implementation compared to for instance the approach
proposed in [4].

First, the relay keeps a measurement table with M rows

and N columns to store the rik , i refers to the device which
will be translated into a column index and k refers to the
sensing period which will be translated into a row index. The
table rows can be logically indexed from 0 to M − 1. The
relay starts at sensing period 1 as shown in Figure 3 and the
similarity detection computations can begin when m messages
from devices have been received. Each row l of the table
contains measures from devices for a given sensing period
k and we have l = k mod M . At the end of sensing period
k, the relay performs the similarity detection computations by
taking into account sensing periods [k−M +1, k], if k > M ,
and sensing periods [1, k] if k ≤M .

s.	p. S1 S2 S3
0
1 44 45 46
2 44 43 44
3 46 43 43
4 46 N/A 43
5
6
7
8
9

s.	p. S1 S2 S3
0
1 44 45 46
2 44 43 44
3 46 43 43
4 46 44 43
5 46 44 N/A
6
7
8
9

s.	p. S1 S2 S3
0
1 44 45 46
2 44 43 44
3 46 43 43
4
5
6
7
8
9

X X

s.	p. S1 S2 S3
0
1 44 45 46
2 44 43 44
3 46 43 43
4 46 44 43
5 46 44 43
6 45 N/A 43
7
8
9

s.	p. S1 S2 S3
0
1 44 45 46
2 44 43 44
3 46 43 43
4 46 44 43
5 46 44 43
6 45 44 43
7 45 44 N/A
8
9

s.	p. S1 S2 S3
0
1 44 45 46
2 44 43 44
3 46 43 43
4 46 44 43
5 46 44 43
6 45 44 43
7 45 44 43
8 45 N/A 43
9

X

X

X

X

X

X

X
X

X
X

X
X

X
X

X
X

X X
X

X
X

X
X

X
X

X

X
X

X
X

X X
X

m
=3

M
=1
0

Fig. 6: Similarity detection with missing measures

If the relay decides in sensing period k to not wake up for
a device i, it will indicate so in the table with a special value,
e.g. ril = N/A, with l = k mod M . This is illustrated in
Figure 6 for k = 4 and k = 5. Obviously, E′d(Ri, Rj) up to k
can only be computed if both rik and rjk are different from
N/A. In Figure 6, the E′d(Ri, Rj) that can be computed are
again shown with the double arrows.

We propose the following simple algorithm. In sensing
period k, when receiving rik , the relay determines l = k
mod M and replaces in the table all rij , j < l, that were
set to N/A by rik thus replacing the missing measures in
previous steps by the newly received measure at step k. This
is illustrated in Figure 6 when k = 5 and where r24 takes the
value of r25 for device S2. The corresponding cell is shown in
orange color. By doing so, Ed(R1, R3) and Ed(R2, R3) can
be updated up to k = 4 and up to k = 5 for Ed(R1, R2). When
k = 6, the relay does not wake up for S2 again (alternating
between S2 and S3 that have been detected as redundant) and
receives a real measure from S3. Now, the relay sets r35 = r36
for device S3. The cases when k = 7 and k = 8 are similar
to the case when k = 5 and k = 6 respectively.

E. Similarity detection to mitigate duty-cycling

Similarity detection in the context of LPWAN can provide
some sort of duty-cycling mitigation technique when radio

duty-cycle is limited to a very small ratio as explained in
Section I (e.g. 36s/hour). As the relay knows the number of
child devices with their respective transmission interval, it can
determine the total radio time needed for relaying all the uplink
messages from child devices during a 1 hour period (assuming
for instance the ETSI regulation explained previously). If this
total radio time is greater than the allowed radio time, e.g.
36s, then the relay knows how many uplink messages it has
to ignore. During the observation phase, a First Come First
Serve policy can be used to relay uplink messages and then
when similarity scores are available, the decision of relaying
or not can be optimized based on number of similarity pairs
and number of messages that should be ignored. These issues
will be addressed in future works.

V. EXPERIMENTATIONS

A. Implementation

The relay node described in [1] is based on an Arduino
ProMini running at 3.3v and 8MHz. The similarity detection
mechanism is added as follows:

• an additional measurement table stores the last measures
from end-devices. The size of this table is rather small,
typically to store the last 10 measures from end-devices.

• each measure received by the relay will be added in the
table according to the device’s address and the current
sensing period k, as illustrated previously in Figure 4.

• a similarity table of size |d| = n×(n−1)
2 will store the

similarity scores computed following Eq.2, n being the
number of connected end-device. Similarity scores are
computed at the end of each sensing period and, based on
the value of the ε threshold, similarity between 2 devices
will be marked true (T) or false (F) as illustrated in figure
below for n = 5.

1 2 3 4 5 3 4 5 4 5 5
F F T F T F T F T F

4
idx 1 2 3 4 5 6 7 8 9 10

1 2 3
index

The grey cells represent the first device in the simi-
larity pair. The values on the first line represent the
second device in the similarity pair. For instance, the
similarity score E′d(R2, R3) between device 2 and 3
will be stored at index 5, and so on. Here, device pairs
(1,4), (2,3), (2,5) and (3,5) are similar. Note that we
have E′d(R2, R3) = E′d(R3, R2) therefore the table only
considers E′d(Ri, Rj) where j > i.

• a schedule table will be used to store the wake-up
schedule for the next periods. As explained in Section
IV.D, the relay node will alternate wake-up between
devices in a redundant set. Therefore it is necessary to
identify for which node the relay will wake up at a given
sensing period.

We explain below how the schedule table is filled once
similarity scores are computed and the similarity table filled.

1 2 3 4 5 k
1 T(1) - - F(1) - 4
1=4 F(4) - - T(4) - 5

(a)

1 2 3 4 5
2 T(1) T(2) F(2) F(1) F(2)

*1 2=3 F(4) F(3) T(3) T(4) F(3)
*2 2=5 - F(5) F(5) - T(5)

(b)

1 2 3 4 5 k
3 T(1) T(2) F(2) F(1) F(2) 4

*3 3=5 F(4) F(3) T(3) T(4) F(3) 5
- F(5) F(5) - T(5) 6

(c)

1 2 3 4 5
T(1) T(2) F(2) F(1) F(2)
F(4) F(3) T(3) T(4) F(3)
- F(5) F(5) - T(5)

(d)

Fig. 7: Schedule table: starting a new schedule

Figure 7 illustrates 4 steps from (a) to (d) to start a new
schedule when m = 3 messages have been received from
end-devices (therefore at the end of sensing period k = 3).
The starting configuration is similar to the one illustrated
previously in Figure 5.

The relay node uses the similarity table to sequentially
determine all the similar pairs. Starting with device 1, see
Figure 7(a), the relay determines that device 1 and 4 are similar
and then indicates for next period k = 4 that it will wake up
for device 1 (marked with T as true) and that because of
device 1, noted T (1). For the same sensing period, the relay
will indicate for device 4 that it will not wake up (marked
with F as false) and that because of device 1, noted F (1).
The relay will then indicate for sensing period k = 5 the
opposite wake up pattern: i.e. F (4) for device 1 and T (4) for
device 4. Since device 1 is only similar to device 4, only the
next 2 sensing periods are scheduled. Going to device 2, the
relay first finds that device 2 is similar to device 3 and then
to device 5. In Figure 7(b), we can see in green the cells that
are filled when processing the (2,3) pair and in beige the cells
that are filled when processing the (2,5) pair. The information
on the first device’s id in the pair, e.g. device 2, is kept in
each cell to be able to link together cells that are involved in
the same similarity set, e.g. {2, 3, 5}. Going to device 3, see
Figure 7(c), the relay finds that 3 is similar to 5. However,
when trying to fill in the corresponding cells the relay also
finds that these cells have already been filled. Therefore no
new schedule is created for device 3 as shown in Figure 7(c).

After steps (a)..(c), the relay will perform the regular wake-
up from deep sleep based on timestamp data gathered during
the observation phase. However, with the addition of the
similarity detection mechanism, the relay will wake up for
a device i at sensing period k only if the schedule table
indicates T for device i at sensing period k. If the schedule
table indicates F then the relay node will indicate N/A in
the measurement table as explained in Section IV.D.2. In the
example illustrated in Figure 7, the relay will wake up for
device 1 and 2 at sensing period k = 4, then for device 3 and
4 at sensing period k = 5. At the end of sensing period k = 5
some cells in the schedule table for sensing period k = 6 are
not defined, see Figure 7(d). The relay will therefore use the
similarity table to fill in the empty cells but only for partially
filled sensing periods, therefore stopping at k = 6 as illustrated
in Figure 8(a). Figure 8(b) shows the end of a schedule cycle
where the relay has finished processing all defined schedules

and where it will re-start creating new schedules for another
schedule cycle as depicted previously in Figure 7(a).

1 2 3 4 5 k
1 T(1) T(2) F(2) F(1) F(2) 4
1=4 F(4) F(3) T(3) T(4) F(3) 5

T(1) F(5) F(5) F(1) T(5) 6

1 2 3 4 5
T(1) T(2) F(2) F(1) F(2)
F(4) F(3) T(3) T(4) F(3)
T(1) F(5) F(5) F(1) T(5)

(a) (b)

Fig. 8: Schedule table: continuing a schedule

B. Memory footprint

We detail here the main memory usage of the similarity
detection mechanism. To handle 10 child devices and keeping
the last 10 measures, the measurement table is 10 ∗ 10 ∗ (4 +
1 + 1) = 600B where 4 is the size of a double variable
type and there are 2 bytes for the device address and the
measure’s status (whether is it a real measure, a copied one
or N/A). If limited in memory, an unsigned int coded on 2
bytes could reduce the table size by 200B. The number of
historical measures can also be reduced. Then the similarity
table is (10∗(10−1))/2 = 45B. For the schedule table, when
handling 10 devices, the maximum number of similarity pairs
is 9. Therefore the maximum number of sensing periods to
schedule ahead in a cycle is also 9. So the schedule table is
10 ∗ 9 ∗ 2 = 180B where the 2 bytes/cell are for a wake-up
status (T , F or empty) and the id of the first device in the
similarity pair. In total the memory footprint of the similarity
detection mechanism is 600+45+180 = 825B where a large
part is for the storing past measures. Our relay node based
on the Arduino ProMini (ATMega328P) has a total of 2kB of
memory which is used at 88% with the similarity features.

C. Deployment tests

We performed field tests to assess the performance of the
proposed 2-hop approach with similarity features. Fig. 9 shows
the scenario that has been deployed in one of the WAZIUP
pilot site in Gaston Berger University’s experimental farm,
Saint-Louis, Senegal. We deployed a network consisting of 8
soil humidity end-devices (S1 to S8), a relay and one gateway
(GW). GW was placed in the farm office. End-devices have
same transmission intervals set to 10mins. LoRa parameters
of the experiments were chosen as follows: spreading factor
of 12, bandwidth of 125kHz and coding rate of 4/5, which is
the usual setting providing the longest range. The transmission
power for all tests has been set to 10dBm (following Senegal
regulations).

After some additional stability and calibration tests to also
normalize the output of various low-cost conductive soil
humidity sensors the ε threshold has been set to 0.4. Note
that the distance normalization step described in Section III.B
is useful to highlight similar pairs when some devices are
sending very different measures. For the tests, all 8 sensors
are placed in a small area, not in a large area as they would
be in a real farm. We watered the area so that soil conditions
are most likely to be the same for sensors {1, 2, 3 , 4}, {5,
6} and {7, 8}.

Gateway

Relay-device

SH/44

1 2 3 4

5 6 7 8

SH/45 SH/46

1 4 6 2 7 3 58

10mins

Fig. 9: Deployment scenario

We observed the expected behavior where the relay suc-
cessfully determines similarity between devices and saves both
energy, by reducing the number of wake-ups, and radio time,
by not forwarding similar measures. We disabled intentionally
the last value suppression mechanism for the same device in
order to only focus on the similarity detection between devices
as the duration of the test was not long enough for the soil
condition to change significantly. The schedule table of the
experiment is shown in Figure 10. We can see that for each
schedule (sensing period) there are 3 wake-up instead of 8.

(a) (b)

1 2 3 4 5 6 7 8
1 T(1) F(1) F(1) F(1) T(5) F(5) T(7) F(7)

1=2 5=6 7=8 F(2) T(2) F(2) F(2) F(6) T(6) F(8) T(8)
1=3 F(3) F(3) T(3) F(3) - - - -
1=4 F(4) F(4) F(4) T(4) - - - -

1 2 3 4 5 6 7 8
1 T(1) F(1) F(1) F(1) T(5) F(5) T(7) F(7)

1=2 5=6 7=8 F(2) T(2) F(2) F(2) F(6) T(6) F(8) T(8)
1=3 F(3) F(3) T(3) F(3) T(5) F(5) T(7) F(7)
1=4 5=6 7=8 F(4) F(4) F(4) T(4) F(6) T(6) F(8) T(8)

Fig. 10: Deployment scenario

The Arduino ProMini running at 3.3v draws about 15mA
in receive mode. In deep sleep mode, the board draws 5uA.
When forwarding a packet, the energy consumption is similar
to the transmission from an end-device, i.e. 40mA. For each
wake-up, there will be a continuous receive for a maximum of
2s (guard time of 500ms and 1.5s of packet reception), then
it has to forward the packet during 1.5s (time-on-air of a 20B
packet). Therefore, for each uplink packet with wake-up, the
relay draws in the average (2s∗15mA+1.5s∗40mA)/3.5s ≈
26mA/s. With 3 wake-up and forwarding every 10 mins (i.e.
6 times in an hour) we have a mean consumption on an 1
hour period of (6 ∗ (3 ∗ (2s + 1.5s)) ∗ 26mA + (3600s −
63s) ∗ 0.005mA)/3600s ≈ 0.460mA/h which still allows for
more than 226 days of operation compared to the 85 days if
the relay node needs to wake-up/forward for the 8 devices.
Regarding the radio activity time, from 8 ∗ 6 ∗ 1.5s =72s/h
which is far greater than the allowed 36s/hour, the relay now
consumes 3 ∗ 6 ∗ 1.5s =27s/h which is now compatible with
ETSI regulations.

Currently, the data platform is not aware of possible similar-
ity relationship between devices, therefore measures that were
not forwarded thanks to the similarity detection mechanism
appear as missing measures in the graphics. It is possible for
the relay to insert the list of similar devices when sending a
measure from a given device i. The IoT gateway can then be
enhanced with the possibility to reconstruct and upload data

for missing devices. It can also do so by using a specific tag to
allow the data platform to identify and display to the end-user
the similarity attribute.

VI. CONCLUSION

We presented an extension of a 2-hop LoRa relay node with
similarity detection features in order to (i) reduce the power
consumption when waking-up to relay packets from child
devices and (ii) reduce the radio activity time when running
under duty-cycle regulated constraints. The implementation
and experimental tests demonstrate the effectiveness of our
approach, especially validating the usage of the distance-based
similarity function running on low-cost hardware.

ACKNOWLEDGMENTS

This work is supported by the WAZIUP (grant No 687607)
and WAZIHUB (grant No 780229) projects funded by EU
Horizon 2020 research program.

REFERENCES

[1] M. Diop and C. Pham, “Increased flexibility in long-range iot de-
ployments with transparent and light-weight 2-hop lora approach,” in
Proceedings of the IEEE WD’2019, Manchester, UK, 2019.

[2] ETSI, “Electromagnetic compatibility and radio spectrum matters (erm);
short range devices (srd) [...] part 1: Technical characteristics and test
methods,” 2012.

[3] H. Harb, A. Makhoul, D. Laiymani, and A. Jaber, “A distance-based data
aggregation technique for periodic sensor networks,” ACM Transactions
on Sensor Networks (TOSN), vol. 13, no. 4, pp. 32:1–32:40, 2017.

[4] L. Zhao, Z. Chen, Z. Yang, Y. Hu, and M. S. Obaidat, “Local similarity
imputation based on fast clustering for incomplete data in cyber-physical
systems,” IEEE Systems Journal, vol. 12, no. 2, pp. 1610–1620, 2018.

[5] H. Harb, A. Makhoul, and C. A. Jaoude, “A real-time massive data
processing technique for densely distributed sensor networks,” IEEE
Access, vol. 6, pp. 56 551–56 561, 2018.

[6] H. Lin, X. Liu, X. Wang, and Y. Liu, “A fuzzy inference and big data
analysis algorithm for the prediction of forest fire based on rechargeable
wireless sensor networks,” Sustainable Computing: Informatics and
Systems, vol. 18, pp. 101–111, 2018.

[7] M. Henzinger, “Finding near-duplicate web pages: a large-scale evalua-
tion of algorithms,” Proceedings of the 29th ACM SIGIR, 2006.

[8] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, “Syntactic
clustering of the web,” Computer Networks and ISDN Systems, vol. 29,
no. 8-13, pp. 1157–1166, 1997.

[9] T. C. Hoad and J. Zobel, “Methods for identifying versioned and
plagiarized documents,” Journal of the American Society for Information
Science and Technology, vol. 54, no. 3, pp. 203–215, 2003.

[10] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity
search,” Proceedings of 16th WWW’07, pp. 131–140, 2007.

[11] S. Sarawag and A. Kirpal, “Efficient set joins on similarity predicates,”
Proceedings of ACM SIGMOD, pp. 743 – 754, 2004.

[12] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for
similarity joins in data cleaning,” Proceedings of the 22nd ICDE’2006.

[13] S. Sarawag and A. Kirpal, “Efficient exact set-similarity joins,” Proceed-
ings of the 32nd VLDB’06, pp. 918–929, 2006.

[14] H. Harb and A. Makhoul, “Energy-efficient sensor data collection
approach for industrial process monitoring,” IEEE Trans. Industrial
Informatics, vol. 14, no. 2, pp. 661–672, 2018.

[15] M. Ashouri, H. Yousefi, A. M. A. Hemmatyar, and A. Movaghar,
“Foma: Flexible overlay multi-path data aggregation in wireless sensor
networks,” in Proceedings of the IEEE ISCC’2012.

[16] J. Bahi, A. Makhoul, and M. Medlej, “An optimized in-network ag-
gregation scheme for data collection in periodic sensor networks,” in
Proceedings of the ADHOC-NOW’2012, pp. 153–166.

[17] J. M. Bahi, A. Makhoul, and M. Medlej, “A two tiers data aggregation
scheme for periodic sensor networks,” Ad Hoc & Sensor Wireless
Networks, vol. 21, no. 1-2, pp. 77–100, 2014.

[18] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-similarity joins,”
in Proceedings of the 32nd VLDB’2006.pp. 918–929.

