
Distributed Self-Reconfiguration using a Deterministic
Autonomous Scaffolding Structure

Pierre Thalamy

Univ. Bourgogne Franche-Comté

FEMTO-ST Institute, CNRS

Montbéliard, France

pierre.thalamy@femto-st.fr

Benoît Piranda

Univ. Bourgogne Franche-Comté

FEMTO-ST Institute, CNRS

Montbéliard, France

benoit.piranda@femto-st.fr

Julien Bourgeois

Univ. Bourgogne Franche-Comté

FEMTO-ST Institute, CNRS

Montbéliard, France

julien.bourgeois@femto-st.fr

ABSTRACT
In the context of large distributed modular robots, self-reconfigura-

tion is the process of having modules, seen as autonomous agents,

acting together and moving to transform the morphology of their

physical arrangement to produce a desired shape. However, due to

motion constraints, the number of modules that can move concur-

rently is greatly limited, thus making self-reconfiguration a very

slow process.

In this paper, we propose an approach for accelerating self-reconfi–

guration to build a porous version of the desired shape, using scaf-

folding. We expand this idea and propose a method for constructing

a parametric scaffolding model that increases the parallelism of the

reconfiguration, supports its mechanical stability, and simplifies

planning and coordination between agents. Each agent has a set

of basic rules using only four states which guarantees that module

movements and the construction of the scaffold are deterministic.

Coupled with an underneath reserve of modules that allows the

introduction of rotating quasi-spherical modules at various ground

locations of the growing porous structure, our method is able to

build the scaffolding structure inO(N
2

3) time with N the number of

modules composing the structure. Furthermore, we provide simula-

tion results showing that our method uses O(N
4

3) messages with

no congestion.

KEYWORDS
Self-Reconfiguration; Autonomous Robots; Distributed Algorithm

ACM Reference Format:
Pierre Thalamy, Benoît Piranda, and Julien Bourgeois. 2019. Distributed Self-

Reconfiguration using a Deterministic Autonomous Scaffolding Structure.

In Proc. of the 18th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019,
IFAAMAS, 9 pages.

1 INTRODUCTION
Programmable Matter (PM) [11] is defined as matter that can auto-

nomously alter its physical properties such as its shape or color,

as a response to an internal or an external event. While many

technologies on the rise claim to be PM, we believe PM based

on Modular Self-reconfigurable Robots (MSR) [9] to be the most

promising endeavor, owing to the versatility of the systems [4].

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

MSR are robots composed of an arbitrary number of individual

modules, which can be seen as autonomous agents, that can physi-

cally attach to each other and coordinate through communication

to achieve a common goal. Though various types of modular robot

architecture exist [2], we are interested in lattice-based modular

robots, where connected modules are organized in a regular lattice

structure, on which modules navigate using their neighbors.

Self-reconfiguration is a notoriously intricate problem [12, 13]

which can be stated as finding a series of individual motions (prefer-

ably performed in parallel) that can transform an initial arrange-

ment of modular robotic modules (also named configuration or

shape) into a goal one. It is a fundamental algorithm for large mod-

ular robots and PM that encompasses a number of non-trivial sub-

problems, such as defining the goal shape [3, 21, 25, 26], computing

a feasible construction plan [7, 27], or coordinating the motion of

modules along multiple paths in parallel while avoiding collisions

[6, 19]. Solutions have been proposed from various research perspec-

tives such as control theory, computational geometry, multi-agent

systems, and biomimetics [1].

Self-reconfiguration can be viewed both as a destruction [7, 10]

and a construction process; while we mainly tackle the latter prob-

lem in this article, the algorithm proposed in this article could easily

be reversed to perform a clean destruction.

Self-reconfiguration is a notably slow process that is very de-

manding in term of resources. Therefore, in this article, we would

like to propose a method for building 3D objects that is both fast

and efficient in term of communication and computation. Further-

more, we would like to offer more guarantees on the respect of

mechanical constraints throughout the construction.

In order to attain these objectives, we start by redefining the

notion of a shape as its Boundary Representation, an external sur-

face with a mechanically sound internal organization. This is then

transposed into the context of self-reconfiguration as the construc-

tion of a scaffolding structure representing the object that satisfies

mechanical constraints and provides a structure for supporting a

massive number of module movements. We, hence, introduce an

algorithm for deterministically constructing this structure based

on simple local rules and only 4 agent states.

Such a deterministic approach naturally poses fault-tolerance

issues, which will be the topic of future works.

In this article, we obtain the following results. By using scaffold-

ing and coating instead of a filled object, a pyramid requires
b3

3

times less modules with b the tile branches length. Our method

is able to build the scaffolding structure of a coated pyramid in

O(N
2

3) time with N the number of modules composing the struc-

ture whereas the filled pyramid requires O(N
4

3) time, that is N
2

3

times more. Furthermore, we demonstrate that our method uses

O(N
4

3) messages with no congestion as the modules having the

highest throughput manage 4 messages/time step and we provide

simulation results that confirm this complexity for several scenar-

ios.

2 CONTEXT
We mainly perceive objects by their optical and mechanical charac-

teristics. From an optical standpoint, an object can be represented

by its external surface, which reflects the light that is provided by

an external source. In order to visually materialize an object, it is

sufficient to coat the boundary between the interior and the exterior

of the object with light-scattering matter (in image synthesis, this is

called the Boundary Representation (BRep) [8]) model of an object).

(See Figure 3.c)

From a mechanical standpoint, however, an object must, thanks

to its internal structure, be able to withstand external forces such as

gravity or contact forces. An internal structure is therefore practical

for the mechanical coherence of an object (Figure 3.b).

In the context of the self-reconfiguration of an arbitrary shape

A into a goal shape B, every module has to navigate a path from its

initial position in configuration A to its final position in configu-

ration B. If we consider a filled object then all the possible paths

are placed on the external surface of the object, which lowers the

number of possible simultaneous movements.

Indeed, moving through the volume of an object multiplies the

number of potential paths that can be followed by modules in

parallel. This can be guided by a skeletal structure forming a scaffold

on the interior of the object, where all these paths can be followed

simultaneously by moving modules.

In order to preserve the external aspect of the object, it is then

necessary to cover, or coat, the scaffolding structure, which can

be done by navigating the many paths provided by the scaffold in

parallel.

In this paper, we focus on a solution for the construction of this

scaffolding structure.

To do so, we have made the following assumptions:

(1) The object we aim to build resides in a regular Face-Centered

Cubic (FCC) lattice which ensures a high density of modules

and therefore a compelling visual representation of the shape

as it will be more difficult for light to traverse its boundary.

(2) Underneath the object lies a sandbox-like environment, act-

ing as a reserve of modules, and from which modules can be

moved at various ground locations of a regular square grid

(Figure 3.a).

(3) This sandbox also brings the energy and the initial commu-

nication that provides the description of the goal shape.

3 RELATEDWORKS
One particularly tricky aspect of self-reconfiguration stated ear-

lier is the coordination of motions between concurrently moving

modules so that they avoid blocking the motion of each other or

attempting to simultaneously move into the same space. Some au-

thors such as Naz et al. [19] proposed to leave a gap betweenmoving

modules through communication-based coordination in order to

limit the risk of collisions. While this is powerful and practical

for the rotating motion of 2D space modules, it cannot be applied

efficiently to 3D space as is.

Furthermore, most existing solutions to the self-reconfiguration

problem in largemodular robots consider simplemodule geometries

(such as different flavors of cubes [5, 15, 17, 28, 31]), and actuators

capable of performing both translation and rotation motions. Yet,

the self-reconfiguration of modules with more complex geome-

tries [29, 30] has proven itself much harder, especially when only

the latter form of motion is possible [18], as modules are more

likely to prevent the motion of another due to blocking constraints,

especially when they have rigid non-deformable bodies.

The most relevant reconfiguration work to our module geom-

etry is the one of Yim et al. [29], where the authors proposed a

probabilistic self-reconfiguration algorithm for reconfiguring rhom-

bic dodecahedron modules residing in a FCC lattice, and that can

only move using rotation. They proposed a method named Goal-
Ordering, in which modules use one or two metrics to decide which

target location in the goal configuration they should go fill. Their

method however, suffers from overcrowding around the open goal

positions, and is likely to get stuck in local minima and avoid con-

verging altogether, especially in solid and hollow shapes.

In order to ease the motion constraints of self-reconfiguration

and increase motion parallelism, Kotay and Rus [16] proposed to

engineer the interior of the target shape by discretizing it into re-

peating hollowmulti-module sub-structures named tiles, that would
leave large tunnels for modules to navigate the structure in parallel,

at the cost of a large increase in the granularity of the shape. This

approach is referred to as Scaffolding. In this work, we are also

interested in scaffolding as a way to increase the parallelism poten-

tial of the reconfiguration, as well as to ease coordination between

moving modules and avoid blocking issues due to overcrowding.

More recent works have also considered a similar approach to

lowering the complexity of reconfiguration for cubic modules capa-

ble of both rotation and translation. Støy approximated the target

shape with a porous representation made by removing individual

modules from its volume in a manner that would guarantee an ab-

sence of local minima, and hollow or solid sub-configurations. He,

then, proposed to use local rules and cellular automata to perform

the reconfiguration in [24], or through a gradient descent method

in [25].

Furthermore, an aspect of self-reconfiguration that should be

further considered is the mechanical constraints imposed on the

system. Twomain types of mechanical failures are identified in [14]:

(1) loss of stability due to a shift in the center of mass of the system;

(2) structural failure, caused by the breaking of a bond between

modules after an excessive stress. While Hołobut and Lengiewicz

also present a distributed procedure for predicting if the next re-

configuration step will cause a structural failure in their paper, to

the best of our knowledge, no self-reconfiguration algorithm truly

considers mechanical constraints in their design—when these same

constraints might prevent them from working in practice. With our

novel approach to scaffolding, we aim to make progress towards

achieving mechanically sound reconfigurations by structural de-

sign, hence without having to resort to such software methods that

involve a costly performance overhead.

4 MODULAR ROBOTIC MODEL
In this work, we consider a modular robot made from an arbitrary

number of quasi-spherical modules named 3D Catoms, that move

by rotating on the surface of neighbors, and connect to up to 12

neighbor modules, one on each of their connectors (see Figure 1).

We strongly advise readers to browse through [23] for a better sense

of the geometry and motion mechanisms of 3D Catoms. Our project
is a follow-up of the Claytronics project [11] and Catom stands

for Claytronics atoms. 3D Catoms reside in a 3-dimensional grid

described as a Face-Centered-Cubic Lattice (FCC), with coordinates

in Z3. 3D Catoms are symmetrical and therefore their orientation

does not matter. Positions on the grid are referred throughout the

paper as lattice cells, or simply as positions.
A 3D Catom M is able to move from one cell to a free neighbor

position by rotating on the surface of another 3D Catom P acting

as a pivot. This corresponds to a change of latching connectors

on the surface of P ; a rotation can therefore be described as a

couple ⟨Ci ,Cj ⟩P , whereCi andCj refer to connectors with identifier

i, j ∈ [0, 11]. These connectors are also used by 3D Catoms to
communicate with their immediate neighbors, the only mode of

communication available to them. Furthermore, a rotation ⟨Ci ,Cj ⟩P
can be performed through one of two paths on the surface of P ,
either by rotation on an hexagonal face, or through an octagonal

face (Rh and Ro on Figure 1, respectively). We provide a YouTube

video illustrating this mode of motion (see footnote
1
).

A 3D Catom is said to be mobile if it can reach at least one of its

neighbor cells according to its motion constraints. The set of all

motion constraints imposed on a moduleM that seeks to move to

a neighbor position N is identical to the one introduced by Yim et

al. in Proteo [29].
Due to the geometry of the modules and the resulting blocking

constraints, it is not possible to bridge the gap between two lines of

modules growing towards each other, therefore the construction of

a shape that has all its elements connected on each layer needs to

be grown from a single initial point, and with a carefully designed

set of construction rules, likely resulting in a diagonal growth of

the volume of the object.

Figure 1: Two possible paths that can be used to performmo-
tion ⟨C0,C2⟩P on the surface of a module P .

1
Youtube video illustrating 3D Catom motions https://youtu.be/IZh-5p1dbKk

5 SCAFFOLDING
Our scaffold model is defined as an arrangement of canonical com-

ponents sharing a common structure named tiles.

5.1 Anatomy of a Scaffold Tile
A tile is composed of a core made of a root module surrounded

by 4 support modules (placed to help others to vertically traverse

the structure), and a number of branches connecting it to other

tiles. The length of these branches b is a parameter of our model,

it is determined by the mechanical capabilities of the structure,

in relation to the connector strength of the 3D Catom hardware.

However, b has to be greater than 4 as the space would be too tight

for module motion otherwise.

We can express the number of modules that compose a tile using

the relation N
tile modules

= 6(b − 1) + 5. In the remaining figures,

we will use b = 6, which yields N
tile modules

= 35. This number can

be compared to the fully filled bounding box of the tile that would

use b3 modules (216 with b = 6).

Each tile is an arrangement of modules that follows the axes

of the FCC grid. As shown in Figure 2.b, the center node R (also

referred to as Tile Root, drawn in white) is connected to:

• a branch made of modules {Xi |i ∈ [1..b − 1]} (in orange)

following the
−→x axis;

• a branch {Yi |i ∈ [1..b − 1]} (drawn in green in Figure 2.c)

following the
−→y axis;

• four branches {Zi |i ∈ [1..b − 1]}, {RiдhtZi |i ∈ [1..b − 1]},

{RevZi |i ∈ [1..b − 1]}, {Le f tZi |i ∈ [1..b − 1]} (in blue in Fig-

ure 2.e) following axes
−→z , (1,−1, 1), (−1,−1, 1) and (−1, 1, 1),

respectively.

Finally, the tile is also composed of four support modules named

SZ , SRiдhtZ , SRevZ and SLe f tZ at respective positions (1, 1, 0),

(1,−1, 0), (−1,−1, 0) and (−1, 1, 0) relative to R (in yellow on Fig-

ure 2.b).

We also define eight special empty positions below the tile, placed

near the tip of incoming vertical branches named Entry Point Lo-
cations (EPL), and shown as transparent cells on Figure 2.a. EPL

are the positions that allow modules to enter a growing tile from

the lower levels. When a module enters one of these positions (as

a FreeAgent), it stops and either requests a goal destination into

this tile from the Coordinator of this tile (i.e., Tile Root), or in some

cases waits for some condition to clear before moving to its destina-

tion. There are two types of entry points, appearing in purple and

blue on Figure 2.a: the blue EPL are temporary and will become

unreachable as branches X and Y start growing, they are used for

introducing future Support modules into the tile; purple EPL are

the main entry points that are used for the rest of the life cycle of

the tile, but can only be used once support modules are in place.

Our scaffolding is then made of regularly placed instances of

partial or complete tiles that can be connected to up to 6 neighbor

tiles through modules Xb−1, Yb−1, Zb−1, RiдhtZb−1, RevZb−1 and
Le f tZb−1 as shown in Figure 2.f. Partial tiles are tiles whose number

of branches is lower than 6, as found on the borders of the object.

5.2 Hierarchical Organization
We define an h-pyramid as a pyramid with a height of h tiles (that

is to say b(h − 1)+ 1modules from the base to the tip). For instance,

https://youtu.be/IZh-5p1dbKk

Figure 2: 3D structure of a tile with b = 6. a) Existing structure made from previous tile. Transparent cells represent entry
points into the tile; b) White module represents the root R of the new tile, origin of the local coordinates system; c,d,e) 3D
position of branch and support modules of the tile; f) Assembly of multiple tiles to construct a scaffold.

in the example of the 4-pyramid shown on Figure 2, the scaffold

results from the assembly of 30 scaffold tiles.

Let us consider a h-pyramid shape composed of Nt iles scaffold

tiles assembled together in the FCC lattice. This shape is made of

5 modules at the tip of the pyramid (constituting the top tile at

height h), 4 tiles under these modules at height h − 1, and again 4

overlapping tiles under each of these tiles and so on until reaching

the base level at height 1).

This h-pyramid is composed of tiles whose origins Ri, j,k are

placed at:

Ri, j,k (b × i,b × j,b × k) with


0 ≤ i ≤ h − k
0 ≤ j ≤ h − k
0 ≤ k ≤ h

In our example shown on Figure 3, for a 4-pyramidwithb = 6, the

number of modules comprising the scaffold is 630 and the coating

uses 760 additional modules.

Nt iles =

h∑
i=1

i2 =
h3

3

+
h2

2

+
h

6

(1)

Then, we can express the number of modules used to construct

the scaffold of the h-pyramid (including support modules drawn

in yellow in Figure 3.b). First, consider Ni the number of modules

from tiles at level i of the pyramid, as they appear on Figure 3.b. We

sum i segments along the hich axis composed of one white module

plus (i−1) groups of 1 white and b−1 red modules; (i−1) segments

along the
−→y axis made of (b − 1 green modules); 4(i − 1)2 ascending

branches of (b−1) blue modules; and 4i2 support modules in yellow.

Ni = i ((i − 1)b + 1 + (i − 1)(b − 1)) + 4(b − 1)(i − 1)2 + 4i2 (2)

Nmodules =

h∑
i=1

Ni = (2b −
1

3

)h3 + (
9

2

− 2b)h2 +
5

6

h (3)

And the number of modules comprising the coating of the pyra-

mid (h ≥ 2) as:

Ncoatinд = 4

(h−1)b+1∑
i=1

i = 2

(
b2h2 + (3b − 2b2)h − 3b + 2

)
(4)

Note that from h = 6 and on, more modules are required for

building the structure than for building the coating of the pyramid.

Since that due to the geometrical constraint of 3D Catoms, we
need to enforce a strict construction order of the tiles of the pyra-

mid (bottom to top, left to right, front to back), we can construct a

graph connecting these tiles, and a spanning tree within that graph

expressing the precedence of the tiles in term of their construction

order.

Figure 3: Construction of a 3D model using scaffolding (b = 6). a) Support structure; b) Scaffold of the 4-pyramid; c) Coated
4-pyramid, after removal of support modules.

The scaffold formation problem fits into our idea of a larger and

more comprehensive self-reconfiguration scheme, introduced in

the next section.

5.3 Self-Reconfiguration Scheme
In the context of the self-reconfiguration into an arbitrary goal

shape G from an empty sandbox, our approach consists in a se-

quence of several phases:

(1) Scaffold construction: If the desired shape is not convex

by itself or when connected to the sandbox, we build a scaf-

fold encompassing a tile approximation of the convex hull

of the union of the object and the base of the sandbox (e.g,

in Figure 4.a, the native white scaffolding of the sphere is

complemented by a red scaffolding, filling the gap between

the object and the base), and fill holes in the shapes. Un-

der a carefully designed construction plan, this supports the

mechanical stability of intermediate configurations.

(2) Removing excess modules: Non-essential modules are

removed from the shape, and stored onto the scaffold, ready

to be used as coating later on.

(3) Coating: Construction of the surface of the shape, using

excess modules and additional modules called in from the

sandbox (see Figure 4.b).

Figure 4: Complete self-reconfiguration scheme example for
the construction of a more complex shape, a sphere. a) Ex-
tended scaffold; b) Coating of the white part of the scaffold.

5.4 Construction Agent Roles
Each tile is composed of {6i + 5|i ∈ [0..b − 1]} modules (see Fig-

ure 2) that must be inserted in a specific order so as to avoid dead-

locks. When docked as a tile component, some of these modules

endorse active roles, while others are simply passive structural

components.

We consider that during its life, a module can be in four different

states. For each of these state it runs a corresponding agent code:

(1) Idle modules are sandbox modules which are waiting to be

called in to partake in the reconfiguration by modules from

the growing structure.

(2) Free Agent modules are Idle modules that have been called in

and entered the reconfiguration scene, waiting to be assigned

a goal position or in motion to their assigned position.

(3) Coordinators are modules docked in the root position of a tile,

and which are responsible for scheduling the construction of

their tile. More specifically, the role of the Coordinator is to
ensure that modules arrive at specific branches in an order

compatible with the construction order of the components

of the tile, and inform incoming modules on where they are

needed.

(4) Relay modules are docked robots whose only role is to for-

ward messages between FreeAgents transiting through its

tile and the local Coordinator. This role can be endorsed by

supports or vertical branch tip modules.

5.5 Tile Construction Process
The tile construction process is performed by modules arriving at

the various EPL of the vertical incident branches of parent tiles (i.e.,

FreeAgent modules), and coordinated by the root module of the tile

(i.e., Coordinator module).

The construction is started by the arrival of the coordinator into

the tile root position, which can only happen once the branches

incident to its tile are complete. While waiting for this condition to

clear, the future coordinator awaits on one of the entry points of the

RevZ branch. If there are no incoming branches whose completion

to wait for, as on some corner cases, it can directly proceed to its

position; otherwise, it keeps waiting for the tip module of the last

incoming branch to notify it that the tile is ready to start growing.

Algorithm 1: Distributed control algorithm for the FreeAgent
module role.

Function reachedNewTileEntryPoint():
coordinatorPos = getNearestTileRoot(getPosition());

relayModule = findSupportOrBranchTipNeighbor();

sendMessage(relayModule, REQUEST_GOAL_POSITION);

Function planNextRotation():
nbh = getNeighborhood();

nextPosition = matchLocalRules(nbh, goalPosition, step);

rotateTo(nextPosition);

Event Handler ROTATION_END:
if getPosition() == goalPosition then

if isScaffoldComponent(getPosition()) then
agentRole = agentRoleForComponent(getPosition());

else
reachedNewTileEntryPoint();

return;
else

step++;

planNextRotation();

Message Handler PROVIDE_GOAL_POSITION(rcvdPosition):
step = 0;

goalPosition = rcvdPosition;

planNextRotation();

When the coordinator gets into position, it immediately sends

down all the vertical branches below it a message expressing the

requirements of the construction of its tile: an 8-bit word indicating

which branches it has to build, and whether or not it will need to

provide a tile root through its RevZ branch. This message is routed

all the way down to the four ground coordinators located under

the current tile, where ground coordinators can then summon Idle
modules from the sandbox according to the requirements and send

them up towards the growing root. It is assumed that the four

ground coordinators are able to share a common notion of time,

that allows them to temporally coordinate their feeding of modules

to the system.

When a previously Idle module is called in for construction, it

endorses the FreeAgent (FA) role, behaving as specified by Algo-

rithm 1, getting routed from tile to tile by local coordinators and

locally navigating each tile from an entry point to a destination

using a set of local rules common to all modules. Every time a FA

module enters a new tile, it updates its coordinate system to use

positions relative to the local coordinator, set as its origin. If the

module is just transiting through the tile, the position returned

by the coordinator will be an EPL, otherwise it will be one of the
6b + 4 non-root tile components. The local rules can be seen as

a dictionary whose key is the tuple ⟨N , PGoal , Step⟩, and Pdisp is

the value. N is a 12-bit representation of the local neighborhood

of the module; PGoal is the goal position of the module in the tile

(relative to the position of the coordinator); Step is there to avoid

rule-matching collision between rules and denotes how many mo-

tions the module has already performed in the tile; Pdisp is the

displacement corresponding to the rotation that the module has to

perform.

Once a FA module has reached its position as a component of the

tile, it updates its state based on its new position, and when relevant,

notifies waiting modules that they can resume their motion.

5.6 Messaging
There are four kinds of messages being exchanged in a distributed

manner during the reconfiguration process detailed in the last

section:

(1) REQUEST_GOAL_POSITION: Sent through Relay mod-

ules to the local Coordinator by a FreeAgent module arriving

at a tile entry point location, to request a destination within

this tile.

(2) PROVIDE_GOAL_POSITION: Response to a goal request

by a Coordinator to a FreeAgent. Follows the same path as

the request. Contains a grid position to be used as goal by

the receiver.

(3) TILE_INSERTION_READY: Sent by the last arrived hor-

izontal branch tip module to the FreeAgent and future tile

root waiting at one of RevZ EPL of the neighbor tile.

(4) INITIATE_FEEDING: Sent by a freshly arrivedCoordinator
down all of its incident vertical branches to express its re-

source requirements to 4 lower-level Coordinators connected
to the sandbox—i.e., how many modules it needs for building

its tile.

6 ANALYSIS
6.1 Algorithmic Complexity
In this section we study the time and message complexities of the

reconfiguration method in the case of the pyramid. Results can then

be generalized to more complex shapes in subsequent works.

Let’s consider throughout this section the construction tree of

the pyramid, whose vertices are the tiles of the pyramid, and whose

edges denote the precedence in the construction order of these tiles.

The root of the tree is the tile at position (0, 0, 0). An edge between a

father and a child vertex means that the start of the construction of

the child is triggered by the completion of the father. We determine

for each of the edges, the time elapsed between the construction

of the father and the one of the child. For instance, within a tile,

the X branch is the first branch to be built, and its completion will

allow the child tile at position (b, 0, 0) relative to tile X to get its

construction process under way.

We assume that the duration of the construction of a tile only

depends on the number of modules forming it, it is therefore built

in constant time. By studying displacement rules, we can deduce

that the sum of the waiting time and the motion time necessary

for a R module to reach its position depends on its height i in the

construction tree, which can be expressed as:

Tt ile (i) = [24 + 6b + 2b(i − 1)] × ts = [24 + 4b + 2b × i] × ts (5)

where ts is the duration of an unitary 3D Catommotion, constituting

a time step.

Theorem 1. In the case of the h-pyramid, the height of construction
tree is 3(h − 1).

Proof. Given that the construction of the tile at (0, 0, i + b)
requires the construction of 4 lower tiles: (0, 0, i), (b, 0, i), (0,b, i)
and (b,b, i), the height of the higher vertex in the tree is equal to the
height of the lower vertex + 3, therefore heiдht(0, 0,h) = 3(h − 1).

Considering that the depth of two vertices placed in the same

plane is 2(h−1) in the construction tree, which is indeed lower than

3(h − 1), we can deduce that the previous path (0, 0, i) to (0, 0, i +b)
is a critical path. □

Theorem 2. The reconfiguration time of the reconfiguration of
the h-pyramid is O(N

2

3).

Proof. Using Equation 5, we can express the time required to

construct the hth level of the h − pyramid in number of motion

times as:

T =
h∑
i=1

24 + 4b + 2b × i = 24h + b(5h + h2) (6)

We conclude that the reconfiguration time is O(h2) time steps.

Using Equation 3, and considering that the parameter b is a positive

constant, we can assume that there exist two positive real numbers

{p,q} ∈ R2 verifying: p × h3 < N < q × h3.
Then, we deduce bounds for h:(

N

q

) 1

3

< h <

(
N

p

) 1

3

Combining with previous Equation 6, we deduce bounds for the

motion time T :

6

(
N

q

) 2

3

+ 54

(
N

p

) 1

3

< T < 6

(
N

p

) 2

3

+ 54

(
N

p

) 1

3

We conclude that the reconfiguration time is O(N
2

3). □

Theorem 3. The complexity of the number ofmessagesNmessaдes

sent to schedule the construction of a Nmodules pyramid isO(N
4

3

modules).

Proof. Each module sends 4 kinds of messages during a recon-

figuration: Nmessaдes = NRGP +NPGP +NT IR +NI F . Where RGP ,
PGP , T IR and IF messages denote the messages detailed in Sec-

tion 5.6. At worst case NT IR = c ×
∑h
i=1 i

2 = Nt iles , c is a small

constant. The numberm of IF messages sent by a module depends

on the level i of its docking tile:m = 4b × (h − 1). Then,

NI F =

h∑
i=1

i2 (4b × (h − i)) =
4b

12

(h − 1)h2(h + 1)

Similarly, messages RGP and PGP are sent k = 3 or k = 4 times

every time a FA module enters a tile, except if it will become root,

therefore using Equation 2,

NRGP = NPGP = k ×

h∑
i=1

(
(Ni − i2) × i

)
As NI F , NRGP , and NPGP are O(h4), we can deduce as in the

previous proof that Nmessaдes is O(N
4

3

modules). □

6.2 Comparison with a Filled Pyramid
In this section, we compare our scaffolding approach that builds

porous objects with the construction of filled objects.

For the h-pyramid, scaffolding uses Nmodules (cf. Equation 3)

modules whereas a filled shape uses:

N
compact
modules =

b(h−1)+1∑
i=1

i2 =
2b3(h − 1)3 + 9b2(h − 1)2 + 13b(h − 1) + 6

6

We observe that the filled pyramid requires
b2

6
times more mod-

ules than the one using scaffolding.

In order to evaluate the number of motions for building a filled

configuration, we notice that for each layer j we have a number of

motions of:

N
layer
j = j2 +

j−1∑
i=1

2i × j

As we have n = b(h − 1)+ 1 layers, and each 3D Catom has to climb

j +1 layers, then we have a total number of movements for building

the filled h-pyramid of:

N
f il led
motions =

b(h−1)+1∑
j=1

(
h − j + j2 +

j−1∑
i=1

2i × j

)
= O(h4)

Using an algorithm similar to Tucci et al. [27] to cover each plane

of the pyramid, we can build two distinct parts of the structure in

parallel, hence:

T f il led = O(N
4

3)

However, this does not take into account the construction of the

surface of the pyramid. Nevertheless, as the algorithm does not use

the vertical border branches of level i to construct the tiles of level

i + 1, we can use these branches [1..i] to transport modules from

the sandbox to fill the borders during the construction of upper

tiles. Then, only the last tile at the top of the pyramid will remain

to be covered, which can be done at the end of the construction of

the scaffold.

To summarize, the reconfiguration time of the construction of

the h-pyramid with scaffolding is O(N
2

3) and the visual aspect is

similar to the one of the fully filled pyramid whose construction

takes O(N
4

3) time.

7 EXPERIMENTS
The experiments were made on the VisibleSim [22] simulator. They

consist in building pyramids of various base sizes (4 × 4, 5 × 5 ...

9 × 9) from an equal-size sandbox.

The video available on YouTube
2
shows recordings of these

simulations. One notable aspect of these recordings is that the

growth of the scaffold progresses in a roughly diagonal manner.

This is due to the enforced construction order that makes sure that

there are never two branches growing facing each other, as our

module geometry would not be able to bridge the gap between them.

Furthermore, it is clear from this video that our method is able to

leverage the potential for parallelism of such a modular robotic

system, with a large number of modules moving concurrently to

2
YouTube video of simulation at https://youtu.be/1pvNBQlcVGE

https://youtu.be/1pvNBQlcVGE

reach their goal positions, approximately following a bell curve

with surges of parallelism, as can be seen on Figure 5.

In this set of experiments, we will study the following properties

of our method: motion parallelism, number of messages exchanged

between any two modules, temporal distribution of these messages.

Other properties of the method can be theoretically derived, which

was done in the previous section.

	0

	50

	100

	150

	200

	250

	0 	100 	200 	300 	400 	500 	600 	700 	800 	900

Nu
m
be

r	o
f	M

od
ul
es
	in

	M
ot
io
n

Time	Steps

9x9	Pyramid	b=6

Figure 5: Motion parallelism over time during the reconfig-
uration into a 9-pyramid (7905 modules).

In the following figures, time is represented as time steps relative

to the rotation time of a module. One time step corresponds to the

time it takes for a single module to move from one position of the

grid to a neighbor one. Also, we assume that communication time

is negligible relative to the motion time of a module.

	0
	20000
	40000
	60000
	80000

	100000
	120000
	140000
	160000
	180000
	200000

	0 	1000 	2000 	3000 	4000 	5000 	6000 	7000 	8000

y(x)	≈
	0.74

	x
4/3 	+		3.

0	x	+
		2.0	

x2
/3

Nu
m
be

r	o
f	S

en
t	M

es
sa
ge

s

Number	of	Modules

Messages	Exchanged	Relative	to	Size	of	Configuration

Figure 6: Number of messages exchanged during scaffold
construction for various sizes of goal configurations.

Figure 6 displays the total number of messages exchanged be-

tween any two neighbor modules during reconfiguration, as a func-

tion of the number of modules required to build various sizes of

pyramids. We verify that the curve given by simulations for 1x1 to

9x9 base tiles is compliant with the expression of the complexity of

Theorem 3.

Furthermore, Figure 7 provides information on the temporal dis-

tribution of these messages, by showing the maximum throughput

observed by each module during a reconfiguration. It shows that a

maximum of four messages are sent within a single time step (this

corresponds to INITIATE_FEEDING messages by newly arrived Co-
ordinators, being sent down all incident vertical branches at once).

On average, the maximum message rate per module is 1.325, which

together show that a congestion of the network, whose avoidance

is a critical aspect of such large distributed systems [20], cannot

occur.

	0
	0.5
	1

	1.5
	2

	2.5
	3

	3.5
	4

	0 	100 	200 	300 	400 	500 	600

M
ax

im
um

	T
hr
ou

gh
pu

t

Modules

Free	Agent
Coordinator
Relay
Beam

Figure 7: Maximum number of messages sent per module in
a single time step for everymodule during a reconfiguration
into a 4-pyramid

8 CONCLUSION AND FUTUREWORKS
In this paper, we introduced of novel approach to the distributed

scaffold-based self-reconfiguration of large modular robotic ensem-

bles, using a parameterizable scaffold model, local rules, and simple

coordination. We defined the purpose and geometry of our scaffold,

proposed a distributed and deterministic method for constructing

it from a sandbox of modules, and explained how its construction

fits into a larger self-reconfiguration scheme that involves the coat-

ing of the structure. We provided an analysis of this method with

the example of the construction of a pyramid, as well as a set of

experiments, which showed that our approach can perform self-

reconfiguration into a porous version of an object in O(N
2

3) time,

leveraging the potential for parallel motion of our modules, and

using O(N
4

3) messages, with no possibility of network congestion.

We envision as future works to replace the resource requests sent

by arriving tile roots, by a continuous feeding of 3D Catoms up
every branch of the scaffold, which could be interrupted by tile

roots when they stop requiring resources. We believe this would

allow us to reach a O(N
1

3) reconfiguration time. Furthermore, we

are interested in generalizing this method to any shape, which re-

quires additional coordination at the tile level to allow modules to

traverse the tile horizontally without colliding. The scaffold coating

algorithm for rendering the surface of objects also needs to be de-

signed. Finally, an interesting topic is the complete removal of tile

root modules, which would direct us towards fully-decentralized

and probabilistic construction methods, and possibly allow a faster

growth order to emerge.

ACKNOWLEDGMENTS
This work was partially supported by the ANR (ANR-16-CE33-

0022-02), the French Investissements d’Avenir program, ISITE-BFC

project (ANR-15-IDEX-03), LabexACTIONprogram (ANR-11-LABX-

01-01), and the Mobilitech project.

REFERENCES
[1] Hossein Ahmadzadeh and Ellips Masehian. 2015. Modular robotic systems:

Methods and algorithms for abstraction, planning, control, and synchronization.

Artificial Intelligence 223 (June 2015), 27–64. https://doi.org/10.1016/j.artint.2015.
02.004

[2] Hossein Ahmadzadeh, Ellips Masehian, and Masoud Asadpour. 2016. Modular

Robotic Systems: Characteristics and Applications. Journal of Intelligent & Robotic
Systems 81, 3-4 (March 2016), 317–357. https://doi.org/10.1007/s10846-015-0237-8

[3] Dongyang Bie, Yanhe Zhu, XiaoluWang, Yu Zhang, and Jie Zhao. 2016. L-systems

driven self-reconfiguration of modular robots. International Journal of Advanced
Robotic Systems 13, 5 (Sept. 2016), 172988141666934. https://doi.org/10.1177/

1729881416669349

[4] Julien Bourgeois, Benoit Piranda, Andre Naz, Nicolas Boillot, Hakim Mabed,

Dominique Dhoutaut, Thadeu Tucci, and Hicham Lakhlef. 2016. Programmable

matter as a cyber-physical conjugation. In Systems, Man, and Cybernetics (SMC),
2016 IEEE International Conference on. IEEE, 002942–002947. https://doi.org/10.
1109/SMC.2016.7844687

[5] Zack Butler and Daniela Rus. 2003. Distributed Planning and Control for Modular

Robots with Unit-Compressible Modules. The International Journal of Robotics
Research (2003), 699–715. https://doi.org/10.1177/02783649030229002

[6] Robert Fitch and Zack Butler. 2008. Million Module March: Scalable Locomotion

for Large Self-Reconfiguring Robots. The International Journal of Robotics Research
27, 3-4 (2008), 331–343. https://doi.org/10.1177/0278364907085097

[7] R. Fitch, Z. Butler, and D. Rus. 2003. Reconfiguration planning for heterogeneous

self-reconfiguring robots. In Intelligent Robots and Systems, 2003. (IROS 2003).
Proceedings. 2003 IEEE/RSJ International Conference on. 2460–2467. https://doi.
org/10.1109/IROS.2003.1249239

[8] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. 1990.

Computer Graphics: Principles and Practice (2Nd Ed.). Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

[9] T. Fukuda and Y. Kawauchi. 1990. Cellular robotic system (CEBOT) as one of the

realization of self-organizing intelligent universal manipulator. IEEE Comput.

Soc. Press, 662–667. https://doi.org/10.1109/ROBOT.1990.126059

[10] Kyle Gilpin, Ara Knaian, and Daniela Rus. 2010. Robot pebbles: One centimeter

modules for programmable matter through self-disassembly. IEEE, 2485–2492.

https://doi.org/10.1109/ROBOT.2010.5509817

[11] Seth Copen Goldstein, Jason D. Campbell, and Todd C. Mowry. 2005. Pro-

grammable matter. Computer 38, 6 (2005), 99–101. http://ieeexplore.ieee.org/
abstract/document/1439465/

[12] A. A. Gorbenko and V. Yu. Popov. 2012. Programming for modular reconfigurable

robots. Programming and Computer Software 38, 1 (Jan. 2012), 13–23. https:

//doi.org/10.1134/S0361768812010033

[13] F. Hou and W. M. Shen. 2010. On the complexity of optimal reconfiguration plan-

ning for modular reconfigurable robots. In Robotics and Automation (ICRA), 2010
IEEE International Conference on. https://doi.org/10.1109/ROBOT.2010.5509642

[14] Paweł Hołobut and Jakub Lengiewicz. 2017. Distributed computation of forces

in modular-robotic ensembles as part of reconfiguration planning. In Robotics
and Automation (ICRA), 2017 IEEE International Conference on. 2103–2109. https:
//doi.org/10.1109/ICRA.2017.7989242

[15] Hiroshi Kawano. 2018. Distributed Tunneling Reconfiguration of Sliding Cubic

Modular Robots in Severe Space Requirements. In DARS 2018, 14th International
Symposium on Distributed Autonomous Robotic Systems. 14.

[16] K. D. Kotay and D. L. Rus. 2000. Algorithms for self-reconfiguring molecule

motion planning. In Intelligent Robots and Systems, 2000. (IROS 2000). Proceedings.
2000 IEEE/RSJ International Conference on, Vol. 3. 2184–2193. https://doi.org/10.

1109/IROS.2000.895294

[17] Jakub Lengiewicz and Paweł Hołobut. 2018. Efficient collective shape shifting

and locomotion of massively-modular robotic structures. Autonomous Robots
(Feb. 2018). https://doi.org/10.1007/s10514-018-9709-6

[18] OthonMichail, George Skretas, and Paul G. Spirakis. 2017. On the Transformation

Capability of Feasible Mechanisms for Programmable Matter. arXiv:1703.04381
[cs] (March 2017). http://arxiv.org/abs/1703.04381 arXiv: 1703.04381.

[19] André Naz, Benoît Piranda, Julien Bourgeois, and Seth Copen Goldstein. 2016. A

distributed self-reconfiguration algorithm for cylindrical lattice-based modular

robots. InNetwork Computing and Applications (NCA), 2016 IEEE 15th International
Symposium on. IEEE, 254–263. http://ieeexplore.ieee.org/abstract/document/

7778628/

[20] André Naz, Benoît Piranda, Thadeu Tucci, Seth Copen Goldstein, and Julien

Bourgeois. 2018. Network Characterization of Lattice-Based Modular Robots

with Neighbor-to-Neighbor Communications. In Distributed Autonomous Robotic
Systems, Vol. 6. Springer International Publishing, Cham, 415–429. http://link.

springer.com/10.1007/978-3-319-73008-0_29

[21] Florian Pescher, Benoıt Piranda, Stephane Delalande, and Julien Bourgeois. 2018.

Molding a Shape-Memory Polymer with Programmable Matter. In DARS 2018,
14th International Symposium on Distributed Autonomous Robotic Systems. 13.

[22] Benoit Piranda. 2016. VisibleSim: Your simulator for Programmable Matter.

In Algorithmic Foundations of Programmable Matter (Dagstuhl Seminar 16271).
Dagstuhl.

[23] Benoit Piranda and Julien Bourgeois. 2018. Designing a quasi-spherical module

for a huge modular robot to create programmable matter. Autonomous Robots
(Feb. 2018). https://doi.org/10.1007/s10514-018-9710-0

[24] Kasper Støy. 2006. Using cellular automata and gradients to control self-

reconfiguration. Robotics and Autonomous Systems 54, 2 (2006), 135 – 141.

https://doi.org/10.1016/j.robot.2005.09.017

[25] Kasper Støy and Radhika Nagpal. 2007. Self-Reconfiguration Using Directed

Growth. In Distributed Autonomous Robotic Systems 6. 3–12. https://doi.org/10.
1007/978-4-431-35873-2_1

[26] Thadeu Tucci, Benoît Piranda, and Julien Bourgeois. 2017. Efficient Scene Encod-

ing for Programmable Matter Self-reconfiguration Algorithms. In Proceedings of
the Symposium on Applied Computing. 256–261. https://doi.org/10.1145/3019612.
3019706

[27] Thadeu Tucci, Benoit Piranda, and Julien Bourgeois. 2018. A Distributed Self-

Assembly Planning Algorithm for Modular Robots. In International Conference
on Autonomous Agents and Multiagent Systems) (AAMAS). Association for Com-

puting Machinery (ACM), Stockholm, Sweden.

[28] S. Vassilvitskii, M. Yim, and J. Suh. 2002. A complete, local and parallel recon-

figuration algorithm for cube style modular robots. In Robotics and Automation,
2002. Proceedings. ICRA ’02. IEEE International Conference on, Vol. 1. 117–122 vol.1.
https://doi.org/10.1109/ROBOT.2002.1013348

[29] Mark Yim, Ying Zhang, John Lamping, and Eric Mao. 2001. Distributed Control

for 3D Metamorphosis. Autonomous Robots 10, 1 (Jan. 2001), 41–56. https:

//doi.org/10.1023/A:1026544419097

[30] Echi Yoshida, Satoshi Murata, Haruhisa Kurokawa, Kohji Tomita, and Shigeru

Kokaji. 1998. A distributed method for reconfiguration of a three-dimensional

homogeneous structure. Advanced Robotics 13, 4 (1998). https://doi.org/10.1163/
156855399X00234

[31] Yanhe Zhu, Dongyang Bie, Xiaolu Wang, Yu Zhang, Hongzhe Jin, and Jie Zhao.

2017. A distributed and parallel control mechanism for self-reconfiguration of

modular robots using L-systems and cellular automata. J. Parallel and Distrib.
Comput. 102 (2017), 80 – 90. https://doi.org/10.1016/j.jpdc.2016.11.016

https://doi.org/10.1016/j.artint.2015.02.004
https://doi.org/10.1016/j.artint.2015.02.004
https://doi.org/10.1007/s10846-015-0237-8
https://doi.org/10.1177/1729881416669349
https://doi.org/10.1177/1729881416669349
https://doi.org/10.1109/SMC.2016.7844687
https://doi.org/10.1109/SMC.2016.7844687
https://doi.org/10.1177/02783649030229002
https://doi.org/10.1177/0278364907085097
https://doi.org/10.1109/IROS.2003.1249239
https://doi.org/10.1109/IROS.2003.1249239
https://doi.org/10.1109/ROBOT.1990.126059
https://doi.org/10.1109/ROBOT.2010.5509817
http://ieeexplore.ieee.org/abstract/document/1439465/
http://ieeexplore.ieee.org/abstract/document/1439465/
https://doi.org/10.1134/S0361768812010033
https://doi.org/10.1134/S0361768812010033
https://doi.org/10.1109/ROBOT.2010.5509642
https://doi.org/10.1109/ICRA.2017.7989242
https://doi.org/10.1109/ICRA.2017.7989242
https://doi.org/10.1109/IROS.2000.895294
https://doi.org/10.1109/IROS.2000.895294
https://doi.org/10.1007/s10514-018-9709-6
http://arxiv.org/abs/1703.04381
http://ieeexplore.ieee.org/abstract/document/7778628/
http://ieeexplore.ieee.org/abstract/document/7778628/
http://link.springer.com/10.1007/978-3-319-73008-0_29
http://link.springer.com/10.1007/978-3-319-73008-0_29
https://doi.org/10.1007/s10514-018-9710-0
https://doi.org/10.1016/j.robot.2005.09.017
https://doi.org/10.1007/978-4-431-35873-2_1
https://doi.org/10.1007/978-4-431-35873-2_1
https://doi.org/10.1145/3019612.3019706
https://doi.org/10.1145/3019612.3019706
https://doi.org/10.1109/ROBOT.2002.1013348
https://doi.org/10.1023/A:1026544419097
https://doi.org/10.1023/A:1026544419097
https://doi.org/10.1163/156855399X00234
https://doi.org/10.1163/156855399X00234
https://doi.org/10.1016/j.jpdc.2016.11.016

	Abstract
	1 Introduction
	2 Context
	3 Related Works
	4 Modular Robotic Model
	5 Scaffolding
	5.1 Anatomy of a Scaffold Tile
	5.2 Hierarchical Organization
	5.3 Self-Reconfiguration Scheme
	5.4 Construction Agent Roles
	5.5 Tile Construction Process
	5.6 Messaging

	6 Analysis
	6.1 Algorithmic Complexity
	6.2 Comparison with a Filled Pyramid

	7 Experiments
	8 Conclusion and future works
	Acknowledgments
	References

