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Abstract: This paper deals with the modeling and control problem of an ionic polymer metal
composites (IPMC) actuated flexible beam. The mechanical dynamic of the flexible beam and
the electrical dynamic of the IPMC actuators have been taken into account in the modeling
approach. Furthermore, in order to achieve the desired configuration of this IPMC actuated
flexible beam, a control strategy is proposed based on the Linear quadratic Gaussian (LQG)
control and damping injection. Finally, the proposed model is validated on a real experimental
set-up. The effectiveness of the proposed control strategy is shown by the simulation results
based on the real physical parameters of the experimental set-up.
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1. INTRODUCTION

The medical use of endoscope for the minimally invasive
surgery becomes more and more common due to the ad-
vantage of the suffering alleviation of patients. The re-
search on this topic has drawn the attention of researchers
since the last century. In the recent years, because of the
development of smart materials and manufacturing tech-
niques, particular interest is to use the embedded actuators
on endoscopic robotics for providing additional degrees
of freedom. A micro endoscope model for endonasal skull
base surgery has been proposed in (Chikhaoui et al., 2014).
The bending of the endoscope is performed by electro-
active polymer (EAP) actuators as shown in Fig. 1. The
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Fig. 1. Simplified EAP actuated compliant endoscope

* The contribution of Y. Wu and Y. Le Gorrec has been done within
the context of the ANR-DFG (French-German) project INFIDHEM
and the Bourgogne-Franche-comté Region ANER project under the
reference codes ANR-16-CE92-0028 and 2018Y-06145 respectively.
Francois Lamoline is a FRIA Research Fellow under the grant F
3/5/5-MCF/BC and would like to thank the financial support of
F.R.S-FNRS.

EAP used to bend the endoscope in this model is Ionic
Polymer Metal Composites (IPMC). This actuator is one
of the most important EAP actuators which has attractive
properties such as: low actuation voltage, ease of fabri-
cation and relatively high strain (Shahinpoor and Kim,
2001). The main part of the endoscope is a compliant inner
tube. From the modeling point of view, this compliant
inner tube can be regarded as a flexible beam.

Due to the flexibility of the inner tube and physical
proprieties of the IPMC actuator, this IPMC actuated
endoscope naturally leads to a complex multi-physical
modeling and control problem. For this reason, the port-
Hamiltonian framework shall be investigated in this pa-
per to deal with this multi-physical modeling and control
problem. This approach has been proven to be powerful
for the modeling and control of complex physical systems
(Maschke and van der Schaft, 1992, 1994). It has been
generalized to distributed parameter systems described by
partial differential equations (van der Schaft and Maschke,
2002; Le Gorrec et al., 2005). The port-Hamiltonian ap-
proach is based on the characterization of the energy
exchanges between components of the system. It allows
to interconnect different parts of the system through the
energy change ports in a straight and clear way. Thanks
to this interconnection advantage, the port-Hamiltonian
approach is very adapted for modeling this IPMC actuated
endoscope described as a couple system of partial differ-
ential equation (PDE) interconnected with an ordinary
differential equation (ODE). Hence, the port-Hamiltonian
approach is very suitable for modeling of the IPMC ac-
tuated endoscope taking both the flexibility of the inner



tube and the IPMC physical propriety into account. On
the other hand, the port-Hamiltonian framework provides
also various passivity based control design strategies for
the infinite-dimensional systems(Macchelli, 2011; Ramirez
et al., 2014). Furthermore, an appropriate coordinate ap-
proximation and a lower order controller are proposed in
(Wu et al., 2018). These results are based on the LQG
control design method (Jonckheere and Silverman, 1983;
King et al., 2006), but provide a passivity and Hamiltonian
structure preserving reduction schema which can design
a reduced order control for the infinite-dimensional port-
Hamiltonian system.

The main contributions of this paper are to propose a reli-
able model for the IPMC actuated flexible beam which re-
produces the basic properties of the medical endoscope and
to design a control strategy for the proposed model based
on the structure preserving LQG method. This paper is
organized as follow: a PDE-ODE interconnected model
for the 1-D IPMC actuated flexible beam is proposed in
Section 2. In Section 3, an LQG and damping injection
based finite-dimensional controller has been investigated
in order to improve the dynamics of the system. An ex-
perimental set-up is used to validate the proposed model in
Section 4 and the simulation results show the effectiveness
of the proposed control law are shown by using physical
parameters of this experimental set-up. Eventually, final
remarks and perspectives of this work are discussed in
Section 5.

2. MODELING OF IPMC ACTUATED FLEXIBLE
BEAM

The Timoshenko beam model is used to reproduce the
flexible behavior of the endoscope. The IPMC actuator
patches are glued on the flexible beam in order to control
the configuration of the beam. In this section, a complete
model of an IPMC actuated flexible beam is proposed.

2.1 Port-Hamiltonian formulation for flexible beam with
distributed control

Let first consider a Timoshenko beam described as a
port-Hamiltonian system (Macchelli and Melchiorri, 2004;
Jacob and Zwart, 2012):

t=(J—-R)Lx (1)

with the operator J = (Pl% + PO) and matrices:
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with the state (energy) variables: the shear displace-
ment x; = a—w(z t) — ¢(z,t), the transverse momentum
distribution x5 = p(z )aw(z t), the angular displacement
x3 = g¢ (z,t) and the angular momentum distribution

xy =1, 8t( ,t) for z € (a,b), t > 0, where w(z,t) is the

transverse displacement and ¢(z,t) is the rotation angle
of the beam. The coefficients p, I,, F, I and K are the
mass per unit length, the angular moment of inertia of a
cross section, Young’s modulus of elasticity, the moment
of inertia of a cross section, and the shear modulus re-
spectively, and the state space X = L?([a,b];R*). The
operator J = P1% + Py defined by the matrices P, = PlT
and Py = —P] is a first order skew symmetric differential
operator acting on the state space X. The matrix R is the
dissipation matrix contains the translation and angular
viscous fraction constants R; and Rr. The energy of the
beam is expressed in terms of the energy variables,
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In order to define an extended Dirac structure including

the boundary (Le Gorrec et al., 2005), we introduce the
following boundary port—variables:

[ (b~ 22)(b) = (p™22)(a) ] v(b) —v(a) ]
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where F(z),T(z),v(z),w(z) are the force, moment, veloc-

ity and angular velocity at z point respectlvely

The flexible beam is clamped at the a side and free at the
other side b. In order to define the boundary condition of
the Timoshenko beam (1), we define the input and output
variables by the boundary ports as follows:
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Using this partition the input and output boundary port
variables are explicitly given as follows:

w, = [v(a) w(a) F(b) T(b)]",
yp = [ Fla) T(a) —v(b) —w(b)]"
Notice that Ax = (J — R) Lz with the domain
D(A) = {.cx € H' ([a,b]; RY) [ggiw] € kerW}

S

(8)

generates a contraction semi-group on X.

As the beam is clamped at the side a, and free at other
side b. Thus the boundary conditions are: on the side a,
the velocity and the angular velocity are zeros and on the
side b, the force and the moment are zeros. This implies
the u, = 0. The outputs are the power conjugated of
inputs. According to the boundary conditions, they are the



reaction forces at the side a, F'(a) and T'(a), the velocity
and the angular velocity are free at the side b respectively.

The control objective is to modify the configuration of
the flexible beam by the IPMC actuator patches. The
actuation of this kind of actuator is the bending moment
due to the voltage applied on it. Hence, we consider some
distributed port defined by distributed moment acting on

the beam. With the distributed port (¥4, ¢q )T, the system

becomes:
m:(j—R)Ex—i-Bud 9
yq = B*Lx ©)
where the B : C' — X is the distributed input map,
ug € C! are the distributed moment applied on the beam,
yq € C? are the power conjugated variables of ug, i.e. the
angular velocities.

The configuration of the beam is controlled by the dis-
tributed moment generated by IPMC actuators over the
domain of the beam. The distributed input variables are
the distributed moment: b;(2z)ug;(t) on the i—th small in-
tervals Ip; = [« ;] of the spatial space [a, ], i.e. b;(z) =1
if z € I; and b;(z) = 0 elsewhere and 7 € {1,2,--- ,m}
if there are m actuators glued on the beam. As output,
we consider the angular velocity mean values in the same

intervals fg; = ya; = fab bi(z)%mdz. As a consequence the
p
distributed input is given by:

0 0
Bu=Y"| o |wa)=]| o [w®  (10)
b Lbi(z) b(z)

where B: C™ — X, b(z) = [b1(2), -+ ,bm(2)] and ug(z) =
[ug1(2), -, ugm(2)]*. The output is the power conjugated
variable of the input, i.e., yq = B*Lx. The energy balance
equation is defined as aatb < y?;ud. The inputs ug are
bending moments generated by IPMC actuators. The
dynamic of the IPMC actuator and the interconnection
between the IPMC actuator and the flexible beam will be

explicated in the next subsection.

2.2 The IPMC actuator model

The bending of the IPMC with respect to the applied
voltage is mainly attributed to the cations flux and polar
solvents in the polymer membrane diffusion between the
electrodes (see left side in Fig 2) (Shahinpoor and Kim,
2001).
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Fig. 2. IPMC bending principle and its electrical model

The dynamics of IPMC is composed of three parts: the
electric part from the electrodes, the diffusion in the
polymer and the mechanical part of the actuator. In this
work, since we assume a perfect interconnection between
the actuator and the beam, the mechanical contribution
of the IPMC actuator is considered as part of the flex-
ible structure. Hence, we shall consider only the electric

interface/polymer diffusion components of the IPMC. A
lumped RLC equivalent circuit model of the IPMC has
been proposed in (Gutta et al., 2009) and is shown on
the right side of Fig 2. The output torque of the IPMC
is proportional to the voltage across the capacitor. The
interconnection ports are placed across the capacitor.

The electric model of one IPMC actuator can be written
as the following PHS

1 O0H,

2 e 1 0
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where the total energy of the system is defined as the sum
2 2
of the magnetic and electric energies H, = %% + %% and

the state vector is z, = [, Q]T with ¢ the flux and Q the
charge of the capacitor, 71 and r, are the resistances, u
is the applied voltage on the IPMC actuator and y is the
current in the inductance and y, is the voltage across the
capacitor. The above system is only for one actuator. We
assume that the beam is driven by m IPMC actuators, thus
we can write their electrical dynamics together as follows:

OH,
o —R1 -I.| | & I 0
.| = t a
|:Q:| |:Im —Ro 81—?@ - 0 u(h) + Im “
o -9 OH, (1n
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with state variables
T
@ =[p1-pm] €RT,
T
Q=1[Q1 - Qm] €R™,
input output variables
u) ua?y’ yll E Rm
dissipation matrices R; = diag[ry,r1,--- ,7r1] € R™*™,

and Ry = diag[l/re,1/rg, -+ ,1/rg] € R™*™,

Furthermore, the bending moments applied on the flexible
structure are generated by y, with constant coefficients
ki,i € {1,2,...,m}. From the power conserving inter-
connection, u, is the current applied on the capacitor
due to the mechanical movement of the structure. The
interconnection relation is defined by

Ug| 0 +k Yd
Uq|  |—k O Ya|
with & = diaglk,- - ,kn] € R™. The interconnected
model of the flexible beam and the IPMC actuators can
y=1[0In 0] ——

be written as
0
+ 1| uw
0
ox’

. _|J-R Bk | 0H
= |—k"B* J—R| x
—————
where u,y € R™, x = [x,¢,Q]” and 0 are zero matrices of
appropriate dimensions. The state space of the complete
system is X = L?([a, b]; R?) x R?>™. Notice that

(12)
J-R
OH



I, —Ro
The total Hamiltonian of the interconnected system is:

J—R— {_Rl _Im} .

1
H=H,+H,= 5XTQX
1 1 1
= iQTc_lQ + 590TL_1<P+ 3 [l
with the capacitance matrix C' = diag[Cy,Cy, -+ ,Cp] €
R™ and the inductance matrix L = diag[L1, Lo, -+ , L] €

R™. The energy matrix of the whole system is given by
Q = diag[L, L, C].

3. LQG CONTROL DESIGN AND DAMPING
INJECTION

In this section, we shall consider the control problem
of this IPMC actuated flexible beam model (12). The
control objective is to achieve the desired configuration of
the flexible beam using the appropriate electrical tension
applied on the IPMC patches. To this end, we proposed
an LQG control design plus a damping injection method
shown in Fig. 3.

Current

IPMC
4 /N

Flexible Beam
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Fig. 3. Experimental set-up

This control design strategy contains two parts. Firstly,
the LQG controller is used to reduce the vibration of
the flexible beam. However, the LQG controller has the
disadvantage of having the same order as the system itself,
and the LQG controller can not preserve the passivity in
general case. Hence, the Hamiltonian LQG control design
and reduction method shall be used to get a reduced
order controller which is easier to implement on real
physical systems. Secondly, the damping injection is used
to ameliorate the setting time of the system. The LQG
controller contains a Kalman filter and an optimal state
feedback problem. It can be reformulated as:

x = (J-R)Q—-BK — FB*Q) % + Fu,
Ye = Kx
where X is the state variable of the LQG controller, F' and

K are the filter and optimal state feedback gains. These
gains can be computed as:

K =R'B*P. and F = P;QBR,'
where the P, and Py are the solutions of the following filter
and control Riccati equations:

(J-R)QP/+P;Q(J —R)"—P;QBR,'B*QP;+Q, (: 0
14

(13)

QJ-R)*P.+P.J-R)Q—-P.BR'B*P.+ Q=0
(15)
where ), and R,, are the covariance operators of the state
and the output measurement white noises, Py = P; > 0 is

the unique solution of the Riccati equation (14). Q and R

are the weighting operators of the optimal control problem
consisting the following cost function:

—+o00 ) )
Jc:/ I x 1%+ wl|%)dt
o ( Q R)

In general case, the LQG controller (13) is not passive
and the Hamiltonian structure can not be preserved in
the closed-loop system. Nevertheless, the LQG controller
can be reformulated as the port-Hamiltonian system if the
weighting operators @) and R and the covariance operators
@, and R, are chosen as in the following theorem (Wu
et al., 2018):

Theorem 1. (Hamiltonian LQG method). The LQG con-
troller (13) with the associated weighting operators and
covariance operators

(16)

R=R,.
and @ and Q, such that:
Quz = Q71 (QQJ*P0+2PCJQ+Q) Q7127 (18)

with z € X, is passive and has a port-Hamiltonian
realization. Furthermore the operator equations (15) and
(14) admit a unique solution, P, and Py respectively. These
two solutions are related by:

Q 'P.= P;Q (19)

The above theorem provides a passive LQG control de-
sign method and derives a port-Hamiltonian closed-loop
system. Another advantage of this LQG control design
that it provides a balanced reduction coordinate because
P.Py # I implies the state space is separable due to their
different contribution for the controller design. Thus, the
control design and reduction problem can be considered in
the same time. The balanced reduction coordinate for the
port-Hamiltonian system (12) as:

(17)

Definition 2. The port-Hamiltonian system is called Hamil-
tonian LQG balanced if there exist positive and non-
increasing sequence (o,,)nen such that the Riccati equa-
tion solutions Py and P are both equal to the diagonal
operator:

P; = P, =X = diag(oy)nen € L(£2). (20)
Let T be the transformation operator that diagonalizes P,
and Py such that:

TP T =TT"P.TT =%, (21)
Then the Hamiltonian LQG balanced realization of the
port-Hamiltonian system (12) can be denoted as follow:

xp = (Jp — Ryp) Qpxp + Byu

y = ByQux, '
Then the Petrov-Galerkin projection method shall be used
to reduce the balanced realization (22) and its Hamilto-
nian LQG controller with preserving the passivity and
the Hamiltonian structure. Interested readers can find
further details in (Harkort and Deutscher, 2012). By us-
ing the structure preserving method, the reduced port-
Hamiltonian system can be written as:

{ Ty = (Jr - Rr) err + Bru
Yy = B?QT‘IT ’
The reduced order LQG controller can be designed by
the above reduced order system and Theorem 1. This

controller can be applied to the complete system (12) in
order to compensate the vibration of the flexible beam.

(22)

(23)



In order to ameliorate the response time of the system, we
shall employ the damping injection method proposed for
the port-Hamiltonian framework (van der Schaft, 2000).
In this case, we consider the following control law:

(24)
where output y of the system is the current, which can be
measured very easily. The main objective of the control
is to improve the response performance which is, in this
case, to reduce the response time. So we can use a positive
damping injection to accelerate the dynamic of the system,
i.e. the control parameter r. < 0. However, in order to
guarantee the stability of the system, this parameter is
lower bounded by the nature damping coefficient 1, i.e.
Te > —T1.

U= —-rey,

However, the variation of the flexible beam becomes more
important when the response time gets faster. Hence, we
combine the LQG controller and the damping injection
together in order to find a compromise between the flexible
beam vibration and the time response.

4. VALIDATION OF THE MODEL AND THE
CONTROL

In this section, we will validate our proposed model on
an experimental set-up and show the effectiveness of the
proposed control law using the physical parameters of this
set-up.

4.1 Ezperimental validation of the model

The validation will be done on a experimental set-up which
reproduces the basic mechanical property of the endo-
scope. A dSPACE board and a computer (with Matlab
Simulink) is used to generate the control signals U €
[0,7V] on the IPMC, to get the measurements and to fur-
ther implement the controller. The measurements are the
displacement of the flexible structure, the applied voltage
and the current of the IPMC actuator. The displacement is
measured by a laser displacement sensor from KEYENCE
company (LK-G152).

The flexible beam is clamped on one side and let free
on the other side. Since we consider a linear Timoshenko
beam model with a rectangular cross section, the moment
of inertia can be computed by the width and the thickness
of the beam. The physical parameters of the flexible beam
and the IPMC actuator can be found in the data sheet
and the literature shown in Table 1:

L Length 1.6 x 101 m
w Width 7Tx 1073 m
T Thickness 2.2x10% mm
p Mass density 936 kg/m3
I Inertia moment of area 4.7 x 10715 m?

I,  Angular moment of inertia  4.34 x 10712 kg.m

L, Length of IPMC patch 3x1072m
C Capacitance 58x 1072 F
1 Resistance r1 29.75 Q
o Resistance 7o 700

Table 1. Physical parameters of the flexible
beam and IPMC actuator

The unknown parameters are the Young’s modulus F, the
shear modulus K and two dissipation constants R;, R,

and the beam-actuator coupling constant k;. In order to
identify the parameters of the flexible beam, we measure
the displacement with the laser sensor. The positioning of
the laser sensor is at 5mm from the tip of the flexible struc-
ture in equilibrium position. The beam-actuator coupling
constant k; can be identified by measuring the blocking
force of the IPMC.

For the identification procedure under Matlab® and for
the control design and implementation afterword, we use
the method proposed in (Golo et al., 2004) to discretize
the system with preserving the Hamiltonian structure.
The identification result is shown in the left figure of
Fig 4. The curve fitting of the model simulation with
optimally identified parameters (black solid line) and the
experimental data (red dashed line) is satisfying, with a
fitting percentage of 89.67%.

‘Time response

Displacement [mm]

Experimental measure|
[=Model simulation

"0 2 4 B 8
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Fig. 4. Left: Parameter estimation. Right: IPMC actuated
beam model validation

The identification results are shown in the Table 2.

4.14 x 109 Pa
1.418 x 109 Pa
2 x 1075 kg.m3/s

E Young’s modulus

K shear modulus

R:  Traversal viscous fraction
R, Angular viscous fraction 1x107% kg.m/s
ki Coupling constant 3x107° N.m/V

Table 2. Identified parameters of the flexible
beam and IPMC actuator

In order to validate the proposed model, we use the
experimental set-up In this set-up, the flexible beam is
actuated by one IPMC patch on the clamped side. In the
right figure of Fig. 4, we compare the proposed model with
the experimental measurement. The red dashed line is the
simulation result with the proposed model and the black
solid line is the experimental measure with applying 1.5V
on the actuator.

4.2 Control of IPMC actuated flexible beam

The open-loop response of the IPMC actuated flexible
beam has shown in the right figure of Fig. 4. The response
time of this system is very slow (7, = 11s). In order
to improve the performance of this system, the control
design strategy proposed in Section 3 will be used. We
first consider the damping injection control law v = —r.y
where output y of the system is the current which can be
measured very easily. We use a positive damping injection
to accelerate the dynamic of the system, i.e. the control
parameter r. < 0. However, in order to guarantee the
stability of the system, this parameter is lower bounded
by the nature damping coefficient 71, i.e. 7. > —ry. The
oscillation of the beam on the free tip becomes important
with using this simple positive damping injection. In order



to reduce the vibration of the beam, we use the LQG based
controller proposed in Theorem 1.

Displacement of Beam free end

-

==Open-loop response
=Damping injection
—LQG. ing injecti
" Reference
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T T

10 15 20
Time [s]

o
@

Fig. 5. Positive damping injection control and

LQG+positive damping injection control

The comparison of different control laws for equilibrium
position assignment has shown in Fig. 5. The Hamiltonian
LQG method allows to get a lower order controller for the
infinite-dimensional system. We recall the discretisation
elements of the infinite-dimensional beam is 100, i.e., the
state variables of the full order LQG controller should
be the same ie. x € R*2 We show the closed loop
response using a reduced order LQG controller with only
2 state variables x. € R2. The purple dotted line is
the reference of the tip displacement. The black dashed
line is the open-loop response and the red solid line
shows the positive damping injection closed-loop response.
The blue dashed-dotted line is the closed-loop response
with the Hamiltonian LQG controller plus the positive
damping injection. By using this control law, the response
time is significantly improved compared to the open-loop
system. At the same time, this response has less vibration
compared than only using the positive damping injection.
Finally, a good compromise between oscillations and time
response (around 2 second) can be found.

5. CONCLUSION AND FUTURE WORK

The problem of the modeling and the control design
for an IPMC actuated flexible beam has been studied
in this paper by using the port-Hamiltonian approach.
The mechanical dynamic of the flexible beam has been
modeled by the Timoshenko beam model. The IPMC
actuator dynamic is considered as a RLC circuit. Two sub-
systems are interconnected through a power preserving
way. Furthermore, a control law has been proposed based
on the Hamiltonian LQG control method and damping
injection. The damping injection is used to accelerate the
response time of the system and the LQG controller is used
to compensate the oscillation of the flexible beam. The
proposed model has been validated by an experimental set-
up. Then the simulation results show the effectiveness of
the proposed control law by using real physical parameters
of this experimental set-up. The future work will deal with
the control law implantation on the experimental set-up.
In the application of this paper, only one IPMC actuator
patch has been studied. How to modify the shape of the
flexible beam shall be investigated by using more actuator
patches in the future.
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