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Abstract: This paper aims to propose a finite-dimensional observer-based state feedback
controller to stabilize a class of boundary controlled system. To this end, we propose to use
an early-lumping approach, where the infinite-dimensional port-Hamiltonian system is first
discretized using a structure-preserving method. Then, we build a passive observed-based
controller using a Linear Matrix Inequality (LMI) and finally, the controller is interconnected
with the infinite-dimensional system in a passive way. Due to its passivity and Hamiltonian
structure, this observer-based controller can stabilize not only the discretized lumped parameter
system but also the original distributed parameter system. This approach avoids the intrinsic
drawback of early lumping approach and spillover effects. Finally, the boundary controlled
undamped wave equation is used to illustrate the effectiveness of the proposed controller.

Keywords: Port-Hamiltonian Systems (PHS), Boundary Control Systems (BCS), Linear
Matrix Inequalities (LMI).

1. INTRODUCTION

The stabilization and the control of Boundary Control
Systems (BCS) i.e. systems driven by Partial Differential
Equations (PDE) with boundary sensing and control, has
raised major attention among the control system commu-
nity in the last decades. Recently, the control of BCS has
been addressed by using the port-Hamiltonian framework
(Le Gorrec et al., 2005). Port-Hamiltonian formulations
are an extension of Hamiltonian formulations derived for
mechanical to open multi-physic systems i.e. multi-physic
systems with inputs and outputs (Maschke and van der
Schaft, 1992; Duindam et al., 2009; van der Schaft, 2006).
This formalism has proven to be particularly suitable
for the modeling and control of complex systems such
as infinite-dimensional and non-linear systems. The port-
Hamiltonian formulations of distributed parameter sys-
tems (DPSs) have been investigated in (van der Schaft
and Maschke, 2002; Le Gorrec et al., 2005; Villegas, 2007;
Jacob and Zwart, 2012). Different stability results and
control strategies have been proposed based on the struc-
ture and the passivity properties of these systems (Villegas
et al., 2009; Ramı́rez et al., 2014; Macchelli et al., 2017;
Ramı́rez et al., 2017). In particular, interesting results on
the stability of boundary controlled PHS connected to
? This work has been done within the context of the ANR-
DFG (French-German) project INFIDHEM, the Bourgogne-Franche-
Comté Region ANER project and the AC3E basal project under
the reference codes ANR-16-CE92-0028, 2018Y-06145 and FB0008
respectively.

dynamic controllers have been proposed in (Ramı́rez et al.,
2017).

In the finite-dimensional setting, the observer-based state
feedback control has shown to be a very efficient and
popular control design technic, due to a large number
of degrees of freedom that can be used for assigning
the closed-loop performances of the system. The non
controllability of the observer poles allows getting rid
of the dynamic extension focusing on the original plant
dynamics assignment. Many extensions to nonlinear and
distributed parameter systems have been proposed since
the primary works of Luenberger and Kalman (Kalman
et al., 1960; Luenberger, 1964, 1966, 1971). Recently,
the port-Hamiltonian representation has been drawing
the attention because its easy way to deal with complex
systems. But dealing with linear systems, not many works
have been developed until now with this formulation. In
fact, the only work that achieves equivalent results to the
pole placement or Linear Quadratic Regulation (LQR)
has been done in (Prajna et al., 2002). Using this same
approach, it was developed a reduced order observer-based
satate feedback controller in (Kotyczka and Wang, 2015).

On the other hand, it has been shown that the port-
Hamiltonian system and the passivity are useful for the
observer design of nonlinear systems in (Shim et al., 2003;
Venkatraman and van der Schaft, 2010). The Intercon-
nection and Damping assignment Passivity-Basd Control
(IDA-PBC) method (Ortega et al., 2002) have been ex-



tended to the observer design of the port-Hamiltonian
system in (Biedermann et al., 2018; Vincent et al., 2016).

In the infinite-dimensional case, two approaches are possi-
ble. The first one is the late lumping approach in which the
observer is designed from the infinite-dimensional systems.
The main problem comes from the infinite-dimensional
aspect of the controller structure that needs to be reduced
for the practical and real-time implementation. The sec-
ond one is the early lumping approach. In this case, the
system is first discretized and then, the finite-dimensional
controller is designed from the reduced order system. The
main drawback is the spillover effect induced by the use
of a reduced order controller on the infinite-dimensional
system, leading to high-frequency mode destabilization.

The aim of this paper is to propose a new reduced order
observer-based control design technics, for boundary con-
trolled systems, that guarantees the passivity property of
the resulting dynamic controller. This controller will allow
assigning the low-frequency modes and will guarantee that
when applied to the infinite-dimensional system it, will not
destabilize the high-frequency modes, avoiding spillover
effects.

This paper is organized as follows: Section 2 presents the
control problem considered in this work. Then, Section
3 contains the main contribution of this work, where we
propose a passive observer-based controller. After that, the
effectiveness of the proposed control design is illustrated
in Section 4 using the undamped wave equation. Finally,
the conclusion of this work and the perspectives are given
in the last section.

2. PROBLEM FORMULATION

Let first consider linear finite-dimensional port-Hamiltonian
systems of the form:

P

{
ẋ(t) = (J −R)Qx(t) + gu(t)

y(t) = g>Qx
(1)

where x ∈ Rn, u, y ∈ Rm are the state, input and
output variables, J = −J> ∈ Rn×n, Rn×n 3 R =
R> > 0, Rn×n 3 Q = Q> > 0 and g ∈ Rn×m are the
structure matrix, dissipation matrix, the energy matrix of
the system and the input matrix respectively. The total
energy of the system is given as

H(x) =
1

2
x>Qx. (2)

In order to set a desired behavior for this class of systems
we consider an observer-based state feedback of the form

u = −Kx̂
where x̂ is driven by the following Ordinary Differential
Equation (ODE)

P̂

{
˙̂x(t) = (J −R)Qx̂(t) + gu(t) + gc (y − ŷ)

ŷ(t) = g>Qx̂
(3)

The state feedback gain matrix K and the Luenberger
observer gain matrix gc are designed separately by using
pole placement, optimal control (LQR) or the LMI method
in (Prajna et al., 2002). Combining the observer dynamics
and the state feedback, the observer-based controller can
be written as follows:

C

{
˙̂x(t) =

(
(J −R)Q− gcg>Q− gK

)
x̂(t) + gcuc

yc(t) = Kx̂
(4)

where x̂ ∈ Rn, uc and yc are the observer state, input
and output of the controller respectively. The closed-loop
system can be written as the interconnection of the system
(1) and the dynamic controller (4) with the following
power preserving interconnection law:

uc(t) = y(t)
u(t) = −yc(t). (5)

Even if the closed loop performances are guaranteed by
the state feedback, the resulting controller (4) loses the
passive and port-Hamiltonian representation, because the
matrix R is not necessarily semi-positive definite and
the input-output pair are not conjugated. Then, when
the finite-dimensional system (1) is obtained from the
approximation of an infinite-dimensional system, there is
no guarantee that the observer-based controller applied
to the infinite-dimensional system will lead to satisfactory
performances and even worst, the stability of the closed-
loop system can not be guaranteed.

In this paper, we consider boundary controlled port-
Hamiltonian systems of the form:

P


∂x

∂t
(t, z) = P1

∂

∂z
(Lx) + P0(Lx), x(0, z) = x0(z)

u(t) = Bx(t, z), z ∈ [a, b]

y(t) = Cx(t, z), t ≥ 0
(6)

where x(t, z) ∈ X = L2([a, b];Rn), u(t) and y(t) ∈ Rn
are the state variables of the system, the inputs used for
control and the measured outputs respectively, z ∈ [a, b]
and P1 = P>1 , P0 = −P>0 and L is a coercive operator
in X = L2([a, b];Rn). Finally, B and C are boundary
operators. The system P in (6) is discretized in order
to design a finite-dimensional controller (early lumping
approach). To avoid the loss of structure and passivity of
the infinite dimensional system (6), structure preserving
discretization methods (Golo et al., 2004; Trenchant et al.,
2017) are used. Then, the aproximation of the infinite-
dimensional system (6) results in a finite-dimensional
system with the same structure of (1)

P

{
ẋd(t) = (Jd −Rd)Qdxd(t) + gdu(t)

yd(t) = g>d Qdxd
(7)

where xd(t) ∈ Rndn is the estimation of x(t, z) in some
specific points of the spatial domain. The dimension of this
finite dimensional system is ndn, where n is the number of
state variables of the infinite-dimensional system (6) and
nd is the number of variables desired for the discretization
of each sate variable in x(t, z). Then, the dimension of the
controller will be the same of (7), i.e. nc = ndn. Note
that, one can change the size nc depending on the type
of discretization used. However, this does not make any
difference in the controller design

In this article, we propose a new design methods that
allows to assign the close-loop dynamic from an observer
already designed and guarantees the passivity of the con-
troller (4). This passivity property will be used to prove
that when the passive finite-dimensional controller is ap-
plied to the infinite-dimensional system, the closed-loop
system is asymptotically stability.



The main idea of this approach can be summarized in the
following steps: discretize the infinite-dimensional system
P in (6) choosing an nd small enough to facilitate the
design and large enough to describe the dynamics of P
correctly. Then, design the controller as it is presented in
this work considering the plant P in (7) and finally, use
the controller on the real plant P in (6).

3. PASSIVE OBSERVER-BASED CONTROL DESIGN

In order to get rid of the reference signal we consider a
general formulation of the observer-based controller (4) of
the form:

C


˙̂x(t) = (Jc −Rc)Qcx̂(t) + gcuc(t) + gdr(t)

yc(t) = g>c Qcx̂

yp(t) = g>Qcx̂

(8)

with x̂(t) ∈ Rnc the state of the controller, uc(t) and
yc(t) ∈ Rn respectively, the input and output used to
control the infinite-dimensional plant P in (6), Jc = −J>c ,
Rc = R>c , Qc = Q>c and gc some matrices to design, with
Jc, Rc, Qc ∈ Rnc×nc and gc ∈ Rnc×n. r(t) and yp(t) ∈ Rn
other ports used for observer purposes. We consider the
interconnection of Fig. 1

Fig. 1. Block Diagram of Control by Interconnection.

that correspond to the power preserving interconnection :

uc(t) = y(t)

u(t) = r(t)− yc(t)
(9)

It has been shown in (Ramı́rez et al., 2017) that such
interconnected system is stable as soon as the finite-
dimensional system is passive. Hence, we aim at building
a passive controller of the form (8). For this purpose we
use the Theorem 1.

Theorem 1. Given the system (7) and the matrix gc such
that

Ao = (Jd −Rd − gcg>d )Qd
is Hurwitz. If the following Linear Matrix Inequality (LMI)
has a solution in the unknown symmetric matrix X = X>

2αInc
− gdg>c − gcg>d +AoX + XA>o ≤ 0 (10a)

−2βInc
+ gdg

>
c + gcg

>
d −AoX−XA>o ≤ 0 (10b)

− 1
γ Inc + X ≤ 0 (10c)
1
δ Inc −X ≤ 0 (10d)

with control design parameters α, β, γ and δ such that
0 ≤ α < β and 0 < γ < δ, then considering the following
matrices

Qc = X−1 (11)

Sc = AoQ
−1
c − gdg>c , (12)

Jc =
1

2
(Sc − S>c ) (13)

Rc = −1

2
(Sc + S>c ) (14)

then, the following results hold

(i) lim
t→∞

(xd(t)− x̂(t)) = 0;

(ii) The matrices Rc and Qc satisfy
(a) αIn ≤ Rc ≤ βIn;
(b) γIn ≤ Qc ≤ δIn
and the controller (8) is passive and has a port-
Hamiltonian representation;

(iii) The closed-loop system can be written as the control
by interconnection of the infinite-dimensional system
(6) with the controller (8) and remains stable.

Proof. We consider the error signal

x̃(t) = xd(t)− x̂(t). (15)

The result (i) in Theorem 1 is similar to prove that
the error x̃ converges asymptotically to zero. Deriving
the error (15) with respect to time, replacing ẋd and ˙̂x
from equations (7) and (8) respectively, and using the
interconnection (9) the error dynamics is

˙̃x(t) = (Jd−Rd−gcg>d )Qdxd− (Jc−Rc+gdg
>
c )Qcx̂ (16)

By the statement of the theorem 1, Ao is Hurwitz and is
given by

Ao = (Jd −Rd − gcg>d )Q (17)

Replacing (17), (13), (14) and (12) into (16) we show that

˙̃x = Aox̃ (18)

and the dynamics of the error is asymptotically stable.

For the result (ii), we check from the LMI (10) that

2αInc ≤ gg>c + gcg
> −AoQ−1c −Q−1c A>o ≤ 2βInc

1
δ Inc ≤ Q−1c ≤ 1

γ Inc

Replacing Sc and S>c from (12) and inverting the second
inequality we obtain

2αInc ≤ −(Sc + S>c ) ≤ 2βInc

γInc
≤ Qc ≤ δInc

then, replacing Rc by (14) we can conclude the result (ii),
where Jc = −J>c from (13), Rc = R>c ≥ 0 because α ≥ 0
and Qc = Q>c > 0 because γ > 0.

Finally, the result (iii) is proved using Theorem 10 from
(Ramı́rez et al., 2017). �
Remark 1. One condition of the theorem is that the ma-
trix Ao = (Jd − Rd − gcg>d )Qd is Hurwitz. gc is nothing
else than the Luenberger observer gain. Then, Ao can
be written as Ao = A − LC, where A = (Jd − Rd)Qd,
L = gc and C = g>d Qd. Finally, it is possible to check the
observability of the system and design the observer with
conventional methods as LQR, pole placement or the LMI
method proposed in (Prajna et al., 2002).

Remark 2. One special case of Theorem 1 is the LQG
controller design method proposed in (Wu et al., 2018),
in which Qc is chosen equal to Qd.

4. NUMERICAL EXAMPLES

In the following, undamped wave equation is considered
through the practical application case of boundary con-
trol of an elastic string. The observer-based controller is



derived using the control by interconnection of Theorem
1. First, we recall the port-Hamiltonian formulation of
the elastic string and its discretization. Then, the control
design procedure is shown. At last, the simulation results
of the closed-loop system are shown.

4.1 Wave Equation Model

Consider the elastic string model in the port-Hamiltonian
form (6) i.e.

P1 =

(
0 1
1 0

)
, P0 =

(
0 0
0 0

)
(19)

x(t, z) =

(
p
q

)
(t, z), L =

(
1
ρ(z) 0

0 T (z)

)
(20)

with inputs and outputs

u(t) =

(
1
ρ(z)p(t, a)

T (z)q(t, b)

)
, y(t) =

(
−T (z)q(t, a)

1
ρ(z)p(t, b)

)
(21)

where T (z) and ρ(z) are Youngs’ modulus and the mass
density respectively, p(t, z) and q(t, z) are the momentum
and strain respectively defined as

p(t, z) = ρ(z)
∂w

∂t
(t, z), (22)

q(t, z) =
∂w

∂z
(t, z) (23)

with w(t, z) as the displacement of the string. For more
details about the formulation of this Boundary Control
System, the reader is refered to (Villegas, 2007). In order
to design the finite dimensional controller, the staggered
grids finite difference discretization method (Trenchant
et al., 2017) is used to derive the finite dimensional
approximation of the above BCS.

Fig. 2. Spatial discretization.

The spatial discretization scheme in Fig. 2 results in the
finite-dimensional system

xd =

(
pd
qd

)
, pd =

 p1
...
pnd

 , qd =

 q1
...
qnd

 (24)

where xd = xd(t), pd = pd(t), qd = qd(t), pi = pi(t) and
qi = qi(t) with i = 1, . . . , nd. The inputs of the systems
are

u(t) =

(
1
ρpa(t)

Tqb(t)

)
=

(
1
ρp(t, a)

Tq(t, b)

)
(25)

This input of the reduced order system is the same as
the one defined for the infinite dimensional system (21).
Unfortunately, it is not possible to get the same output
with this kind of discretization scheme. In this case, the
output of the finite dimensional system is chosen as close
as possible to the one defined in (21) i.e.

y(t) =

(
−Tq1(t)
1
ρpnd

(t)

)
≈
(
−Tq(t, a)
1
ρp(t, b)

)
(26)

Finally, the matrices of the discretized system (7) are

J =

(
0 D
−D> 0

)
, R =

(
0 0
0 0

)
, (27)

Q =

(
h
ρ Ind

0

0 ThInd

)
, g =

(
0 gb
ga 0

)
, (28)

with

D =
1

h2


−1 1 . . . 0 0

0 −1
. . . 0 0

...
...

. . .
. . .

...
0 0 . . . −1 1
0 0 . . . 0 −1

 , (29)

ga =
1

h


−1
0
...
0
0

 , gb =
1

h


0
0
...
0
1

 (30)

where Ind
is the identity matrix of dimension nd, h is the

distance between two consecutive variables as shown is Fig.
2, J , R, Q ∈ R2nd×2nd , g ∈ R2nd×2, ga, gb ∈ Rnd and
D ∈ Rnd×nd .

4.2 Controller Design

In order to design the passive observer-based controller
using Theorem 1, the first step is to design the matrix
gc in order to assign the observer performances. To this
purpose, we use the Linear Quadratic Regulator (LQR)
problem through the use of the Matlab function

g>c = lqr(A>d , C
>
d , Qo, Ro) (31)

where Ad = (Jd−Rd)Qd and Cd = g>d Qd are respectively,
the state matrix and the output matrix of the plant,
and Qo ∈ R2nd×2nd and Ro ∈ R2×2 are the state and
input weighting functions used to design the observer. The
numerical values used for the design are given in Table 1,
where I2nd

and I2 are the identity matrices of size 2nd and
2 respectively. The resulting matrix Ao defined by (17) is
computed by using the resulting gain gc derived from (31).

Then, we solve the LMI (10) by using the Matlab LMI
toolbox. Then, we replace the solution of the LMI in (11),
(12), (13) and (14) in order to obtain Qc, Sc, Jc and Rc
respectively. In this example, the design parameters α, β
and δ are chosen accordingly to the values of the Table 1
and we change the values of γ by γ1, γ2 and γ3 as shown
in the Table 1.

In order to compare closed-loop behavior, it was designed
the controller for different eigenvalues of the matrix Qc.
Because that, it was chosen different values for the param-
eter γ, with γ1, γ2 and γ3 as Table 1 shows. Fig. 3 shows
the eigenvalues of matrices Rc and Qc obtained with the
different values of γ. In this example, we fix α and β as it
is shown in Table 1. Then, the eigenvalues of Rc remain
between α and β as shown in the upper figure of Fig. 3.
γ1 < γ2 < γ3 implies that Qc(γ1) < Qc(γ2) < Qc(γ3) as
shown in the lower figure of Fig. 3.

The eigenvalues of the augmented closed-loop are given by
the matrix

Acl =

(
(J −R)Q −gg>c Qc
gcg
>Q (Jc −Rc)Qc

)
(32)

which describe the dynamic of the vector
(
x>d (t) x̂>(t)

)>
.



Table 1. Parameters to tune and simulation

L 1 Length of the string
T 1 Youngs’ modulus
ρ 1 mass density
Qo 40I2nd

Observer Design
Ro I2 Observer Design
α 0 Rc parameter design
β 400 Rc parameter design
γ1 0.0001 Qc parameter design
γ2 0.0030 Qc parameter design
γ3 0.0080 Qc parameter design
δ 0.2 Qc parameter design
nd 10 Discretization for controller design
nd 100 Discretization for the Simulation
t0 0 Initial time [s]
tf 2.5 Final time [s]
Ts 0.02 Time step [s]

ode15s Matlab function for time discretization
r(t) 0 New input
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x
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0.1

0.12

R
e
a
l
a
x
is

Eigenvalues Qc

λ(Qc(γ1))
λ(Qc(γ2))
λ(Qc(γ3))

Fig. 3. Eigenvalues of Rc and Qc for different tuning
parameters

The eigenvalues of the matrix Acl for different tuning
parameters γ are shown in Fig. 4. In fact, the matrix
Acl contains the eigenvalues of the state feedback and
the observer given by A − BK = A − gg>c Qc and A −
CL = A− gcg>Q respectively, with A = (J −R)Q, B = g
and C = g>Q. Remember that, in this work we focused in
the controller design and we suppose that the matrix gc is
already design. And note that, the state feedback matrix
K = g>c Qc also depends on the observer matrix gc. So,
we are combining the design of the observer with the state
feedback, instead of designing them separately as in the
traditional way.

For the three different tuning parameters of the controller,
a set of poles of the closed-loop system are the same (the
ones superposed in Fig. 4). These poles correspond to
those given by the observer. The rest of poles are the ones
related to the state feedback and in this case, one can
observe when we increase the eigenvalues of Qc by tuning
the design parameter γ (Fig. 3), the eigenvalues of the
close loop system go to the left side of the complex plan
as shown in Fig. 4. Hence, it is possible to conclude that,
when we increase the eigenvalues of Qc, then the dynamic
of the closed-loop system is faster.

4.3 Closed-loop simulation

In the following, it is shown the dynamical simulation of
the closed-loop system tuned with the parameters α, β, γ
and δ shown in Table 1. In this case, we choose γ = γ2.

-3 -2.5 -2 -1.5 -1 -0.5 0

Real axis

-25

-20

-15
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25
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a
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Closed-Loop EigenValues

λ(Acl(γ1))
λ(Acl(γ2))
λ(Acl(γ3))

Fig. 4. Closed-Loop Eigenvalues for different tuning pa-
rameters

The initial conditions for the momentum it was chosen as
zero, while for the strain, a sinusoidal initial condition was
chosen. On the other hand, the controller is initialized at
0, i.e. x̂(0) = 0.

Although the controller was designed for a specific dis-
cretization with nd = 10, in the simulation we increase
the order of the discretization with the values of nd = 100
in order to make it close to the infinite-dimensional system.

In Fig. 5, we show the convergence of the observer esti-
mations of the momentum and the strain to the real ones
at z ≈ 0.81m. One can observe that observer estimations
converge to the state variables in 1.5s despite the initial
condition of the strain and its estimation are different.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.8

-0.6

-0.4

-0.2

0

0.2

Momentum at z ≈ 0.86 [m]

p(t)

p̂9(t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time t[s]

-0.2

0

0.2

0.4

0.6

Strain at z ≈ 0.81 [m]

q(t)

q̂9(t)

Fig. 5. Comparison of the momentum and the stain with
their estimations at one point of the string z ≈ 0.8m.

Fig. 6 shows the temporal and spatial response of the
real strain of the closed-loop system from the non-zeros
initial condition to the equilibrium position. Notice that,
the higher order system (nd = 100) is stabilized by using
a reduced order observer-based controller with nc = 10.
Despite this, with this passive controller, the closed-loop
system remains stable, because the property given by the
interconnection of passive systems.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we propose a passive observer-based state
feedback control design method for one class of Bound-
ary Control Systems (BCS) under the port-Hamiltonian
framework. Starting from the point that the system can be
discretized by a structure preserve method and also that
the observer it was already designed with some criteria.
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Fig. 6. The Strain of the high order closed-loop system
with the reduced order controller.

Then, one can get Qc by solving the LMI (10) and further-
more, the matrices Jc and Rc are obtained by substituting
Qc in the equations (13) and (14) respectively. The design
parameters α, β, γ and δ can be used to set the closed-
loop system performance. For instance, as shown in the
simulation example, when we increase the parameter γ,
the state feedback eigenvalues are increasing in the same
time. The response time of the closed-loop system becomes
faster.

The ongoing work is to analyze the influence of the con-
trol design parameters on the closed-loop performances.
Secondly, the extension of the proposed passive observer-
based control design method to the nonlinear case would
be investigated.
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(2016). Port-hamiltonian observer design for plasma
profile estimation in tokamaks. IFAC-PapersOnLine,
49(24), 93–98.

Wu, Y., Hamroun, B., Le Gorrec, Y., and Maschke, B.
(2018). Reduced order lqg control design for port
hamiltonian systems. Automatica, 95, 86–92.


