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Abstract: Charge-based Self-Sensing Actuation (SSA) is a cost and space-saving method for accurate
piezoelectric based-actuator positioning. However, the performance of its implementation resides
in the choice of its geometry and the properties of the constituent materials. This paper intends
to analyze the charge-based SSA’s performances dependence on the aforementioned parameters
and properties for a piezoelectric cantilever. A model is established for this type of Piezoelectric
Actuator (PEA), and a multi-objective function is defined. The multi-objective function consists
of the weighted actuator and sensor objective functions of the PEA. The analytical optimization
approach introduced herein aims to assess the evolution of the defined multi-objective function
across a defined set of geometrical parameters and material properties and highlights the existence of
a subset of solutions for an optimal charge-based SSA’s implementation. The commercially-available
finite element analysis software, COMSOL Multiphysics, is used on the parametric model of the
given structure to validate the analytical model. Then, experiments are conducted to corroborate the
numerical and analytical modeling and analysis.

Keywords: design; optimization; piezoelectric actuators and sensors; self-sensing actuation;
micro-/nano-robots

1. Introduction

The sensor requirements for nanopositioning systems are among the most demanding of
any control system. The sensors must be compact, high-speed, and able to resolve position
down to the nanoscale [1]. By allowing a Piezoelectric Actuator (PEA) to be simultaneously an
actuator while measuring its displacement (strain) and/or the perceived force (stress) as its own
sensor, the implementation of the Self-Sensing Actuation (SSA) is an inexpensive and space-saving
solution for an accurate nanopositioning system. SSA provides a sensor that meets all of the above
requirements at no cost or extra space occupancy. In the past few decades, SSA has gained attention
in micro-engineering applications by enabling the design of compact devices with lower costs and
simpler configurations [2–4].

Overall, there are two SSA approaches:

• SSA based on the piezoelectric direct effect, which consists of a dual dielectric feedthrough cancellation
to recover the signal arising from the PEA’s strain. It is achieved either by using a capacitance
bridge where one represents the PEA as a strain-dependent voltage source (voltage-based SSA) [5]
or with an antiparallel circuit when one chooses to represent the PEA as a strain-dependent charge
source (charge-based SSA) [6,7].
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• SSA based on the PEA’s change of electrical properties, that is by measuring the changing relative
permittivity [8], capacitance [9], or capacitance and resistance at the same time [10] to estimate the
PEA’s displacement and/or perceived force.

For this paper, only the charge-based SSA will be considered, because of its simple underlying
principle and easy implementation [3,11–13].

Even though charge-based SSA has demonstrated a great potential [3,11–13], its effectiveness
depends on the morphology of the PEA and the choice of the mechanical properties of its constituent
materials. Therefore, the first step to take full advantage of the potential of charge-based SSA is the
PEA’s design. The design of the piezoelectric bender (see Figure 1) should maximize both the bender’s
tip displacement δpre (or strain in the x− direction S1pre ) due to a control voltage vc and the amount of
strain-induced charges Qδ due to external forces Fext and/or piezoelectric bending (bending due to the
piezoelectric reverse effect under the application of vc).

Figure 1. Layer sequence of a unimorph.

1.1. Piezoelectric Actuator Design Optimization

The distribution of material inside the piezoelectric layers influences the actuators’ performance,
and hence, the number, shape, size, and placement of the actuators have to be optimized. Among the
optimization methods for piezoelectric actuators, there are:

• Parametric optimization in which the parameters of the PEA are varied in order to determine the
dimensions and material properties that guarantee improved performances in terms of output
range [14,15]

(
δpre
vc

)
and in terms of bandwidth [16]. δpre is the bending due to the piezoelectric

reverse effect under the application of vc. Another parametric optimization for PEAs is found
in [17] where the design of the dimensions of the PEA that would satisfy prescribed performances
are based on interval techniques [18].

• Topology optimization, which is based on the Piezoelectric Material with Penalization (PEMAP)
model, where the design variable is the pseudo-density ρ1, which describes the amount of
piezoelectric material in each finite element in the piezoelectric layer(s). Topology optimization is
employed to find an optimal distribution of piezoelectric material in a multi-layer plate or shell
structure to provide the maximum displacement δpre or generated forces in a given direction at
a given point of the domain [19–21].

• Simultaneous topology and polarization optimization, which uses the Piezoelectric Material with
Penalization and Polarization (PEMAP-P) and works to find the optimum actuator layout and
polarization profile simultaneously [22–24]. For this method, in addition to the pseudo-density
ρ1, a new design variable ρ2 is introduced for the polarization of the piezoelectric material. The
optimization problem consists of distributing the piezoelectric actuators in such a way so as to
achieve a maximum output displacement δpre in a given direction at a given point of the structure,
while simultaneously minimizing the structural compliance.

All these methods aim to determine the geometric feature that will enhance the PEA’s
generated displacement due to an applied input voltage without regard to the sensor aspect of
the piezoelectric material.
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1.2. Piezoelectric Sensor Optimization

On the one hand, applying an input voltage will result in the piezoelectric material
elongation/contraction, and on the other hand, a pressure applied onto a piezoelectric material
will be converted into an electrical output (strain-induced charges). When a piezoelectric material is
used to convert mechanical into electrical energy, it is called a piezoelectric sensor. As for piezoelectric
actuators, works have been conducted for the optimization of piezoelectric sensors.

These searches can be grouped into two categories:

• Geometric optimization methods that aim at the optimization of geometric parameters such as the
length, width, and thickness of the piezoelectric layer in order to maximize the output recuperated
electrical charges at the electrodes Qδ. Pillai et al. [6] presented an analytical method to design
an optimal unimorph beam that maximizes the strain-induced charges’ sensitivity when acted
upon by a uniform mechanical load p at a specified frequency νs

(
Qδ

p(νs)

)
. Schlinquer et al. [25]

suggested a unimorph, and Chen et al. [26] a bimorph piezoelectric cantilever mechanical
structure optimization for energy harvesting. The optimized design aimed to maximize the PEA’s
strain-induced charges due to external harmonic load

(
Qδ

Fext(ν)

)
, where ν is the frequency of the

harmonic load.
• Localization optimization methods that aim to find the placement with the highest pressure point

on a given structure and thus guarantee the highest possible output recuperated electrical charges
at the electrodes [27,28].

1.3. Simultaneous Piezoelectric Actuation and Sensing Design Optimization

Some researchers have considered using both the direct and reverse effect of piezoelectric materials
to ensure simultaneous good observability and controllability of a structure. Moheimani et al. [29]
proposed an electrode pattern on a piezoelectric tube actuator for simultaneous sensing and actuation.
Moussa et al. [30] used a topological optimization method to design a compliant microactuator
that optimally integrates actuating and sensing areas in a monolithic structure. Rougeot et al. [31]
introduced a three-layered piezoelectric cantilever design for which the upper and lower layers were
used for the PEA’s actuation, whilst the middle layer served for the sensing of the PEA’s displacement
and perceived force. In the approaches of [29–31], the actuation and sensing did not share the same
electrodes. Therefore, the resulting structure cannot be considered to be an optimized PEA design for
charge-based SSA.

Masson et al. [32] presented an analytical approach for the design of piezoelectric cantilever
actuators, which aims to improve the SSA performance for external loads’ estimation while minimizing
the dielectric effect

(
Cpea · vc

)
. The optimized piezoelectric cantilever mechanical structure they

proposed was supposed to achieve a tip displacement of at least δmin = 25 µm, a minimum blocking
force of Fmin

bl = 100 mN, and withstand a maximum electric field of Emax
3 = 3 V/µm (depolarizing field).

The optimization problem was formulated as follows:

minimize
l, w, h

F(l, w, h) = − Qδ

Fext
(
Cpea · vc

)
subject to E3(hp) 6 3 V/µm,

Fbl(l, w, h) > 100 mN,

δ(l, w, h) > 25 µm

(1)

where Cpea is the PEA’s capacitance in the absence of mechanical deformation and null electric field.

The approach suggested an optimization for the external load estimation
(

Qδ
Fext
≡ Qδ

δmec

)
and

did not account for the piezoelectric actuation-induced charges
(

Qδ
δpre

)
. A simplified schematic of the

superposition of bending under external load and piezoelectric bending is shown in Figure 2 to help
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perceive the difference between both. Furthermore, the objective function F(l, w, h) just constrain the
minimum displacement and blocking force and does not aim to maximize the actuation

(
δpre
vc

)
.

Earlier studies on the optimal design of piezoelectric structures aimed to optimize the sensor’s
sensitivity to mechanical loads and to increase the actuation. None intended to optimize both
simultaneously. In the following is presented an approach for the optimal design of the morphology
and choice of the mechanical properties of a unimorph piezoelectric cantilever for optimized sensor
and actuator properties simultaneously.

PEA’s
Morphology

h, w, l, s

Electrically
induced
stressesvc 6= 0

Fext = 0

Mechanically
induced
stressesvc = 0

Fext 6= 0

+

+

d31

‹
AE

{·}dA
T1(x, y, z)

1
s11

p

Electrically
induced

strain

T1pre (x, y, z)

1
s11

p

Mechanically
induced
stressesT1mec (x, y, z)

Qδ

+

+

δpre

δmec

δ

Figure 2. Schematic of the superposition of bending under external loading (—) and piezoelectric
actuation (—). PEA, Piezoelectric Actuator.

The remainder of the article is organized as follows. In Section 2, the principle of SSA is briefly
discussed and the constitutive equations of a unimorph piezoelectric cantilever for piezoelectric
actuation and strain sensing are presented. Then, in Section 3, we introduce the parameters’
optimization function for actuation, sensing, and a multi-objective function that allows optimal
actuation and strain sensing at the same time. In Sections 4 and 5, respectively, finite element analysis
and experiments results of the given structure are presented, as well as a comparison with the results
of the analytical model. Finally, conclusions are provided in Section 6.

2. Self-Sensing Actuation Analytical Model

The SSA technique allows a single piece of piezoelectric material to concurrently sense and
actuate in a closed loop system. A key characteristic of these materials is the use of the piezoelectric
reverse effect to actuate the structure in addition to the direct effect to sense structural deformation.
Indeed, mechanical stress provokes the appearance of electrical charges on the material’s surface
(piezoelectric direct effect), and an electric field provokes the deformation of the material (piezoelectric
reverse effect). Due to the reverse and direct effects, the electrodes used to supply the PEA can also be
used to retrieve the charges appearing due to the deformation thereof. In an SSA’s implementation,
the drive and sense electrodes share a common node. One benefit of a self-sensing actuator is that
the sensor and actuator are truly collocated. Collocated control has been shown to have a number of
advantages relating to the closed-loop stability of the structure [33].

Before attempting to optimize the design of a piezoelectric material for SSA’s implementation,
it is necessary to establish its constitutive relationships. These constitutive relationships to describe
a piezoelectric material’s electromechanical behavior are compiled in two main equations:

• The charge equation, which models the electrical subsystem of the PEA. This equation describes
how the charge flowing through the PEA is split into a dielectric charge Qd and a charge Qδ that
is related to the mechanical deformation of the PEA.

• The displacement equation, which models the mechanical subsystem of the PEA. This equation
describes the contribution of external forces Fext and applied voltage vc to the generated
displacement by the PEA δ.
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An optimal piezoelectric sensor would maximize the charges resulting from the PEA’s deformation(
Qδ

δ

)
. An optimal piezoelectric actuator would maximize the displacement generated by the applied

voltage
(

δ

vc

)
. However, piezoelectric actuators or sensors are electromechanically-coupled systems.

Any change of the electrical parameters of a piezoelectric element reverberates on the mechanical side
and vice versa. This intermingling of electric and elastic phenomena will determine the performances
of the SSA’s implementation for which both Qδ and δ must be optimized concurrently.

In the following subsections, the charge and displacement equations are going to be determined
for the case of a unimorph piezoelectric cantilever.

2.1. Charge Equation (Strain Sensitivity)

Consider the unimorph in Figure 1. To improve the SSA performance for the estimation of external
loads and deformations due to piezoelectric bending, it is necessary to optimize the position of h0

and hγ, the neutral plane (The neutral plane is the surface within the beam, where the material of
the beam is not under stress, neither compression nor tension) under external load, and piezoelectric
bending, respectively. The derivation of both terms for a unimorph piezoelectric cantilever can be
found in [34,35] and are given by:

h0 =
h2

e sp
11 + h2

pse
11 + 2hehpse

11

2(hesp
11 + hpse

11)
(2)

hγ = −
3hph2

e sp
11 + 2h3

e sp
11 − h3

pse
11

6hese
11(he + hp)

(3)

where s is the material compliance modulus, h the layer thickness, and the subscripts (or superscripts)
p and e denote the piezoelectric and elastic layer, respectively.

(a)
vc 6= 0

Fext = 0

(b)
vc = 0

Fext 6= 0

(c)
vc 6= 0

Fext 6= 0

Figure 3. Stress distribution of a cantilevered piezoelectric unimorph (hp = 100 µm and he = 50 µm):
→ piezoelectric layer’s stress distribution and→ elastic layer’s stress distribution. The piezoelectric
material used for this stress distribution is the PSI-5H4E (d31 = −320 × 10−12 C/N,
sp

11 = 1.6129× 10−11 m2/N), and the elastic layer is Ni (s11
e = 4.67× 10−12 m2/N).

From the optimized position of h0 and hγ will result a mostly positive (or negative) stress
distribution in the PEA’s cross-sections (see Figure 3). The stress distribution in the PEA’s cross-sections
is directly linked to the strain-induced charge Qδ. Indeed, piezoelectric materials are considered to
be a stack of infinitesimal small layers, and each one contributes to the overall charge available at
the PEA’s electrodes Qδ according to the stress in the layer T1(x, y, zp) [34,35]. A mostly positive
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(or negative) stress distribution will result in a better ratio between δ, the bender’s tip displacement,

and Qδ. From a good ratio
Qδ

δ
will result a good estimation sensitivity to both external loads and

strain due to the piezoelectric actuation.
The analytical model to be used herein was extracted from [34–36]. In [34–36], the Poisson effect

was neglected, that is only the stress in the x− direction, T1(x, y), was considered and Ti=2,··· ,6(x, y)
neglected. If one applies an electric field E3 = vc

hp
and Fext at the tip of the PEA, both in the poling

direction, the total amount of charges accumulated on the PEA’s electrodes is given by:

Qpea = Qδ + Qd =

‹
AE

d31T1(x, y) + εT
33E3︸ ︷︷ ︸

D3

dA (4)

where AE = l ·w is the PEA’s electrode area and l and w are the length and width thereof (see Figure 1).
It is worth mentioning that the PEA’s electrodes surface is always equal to the PEA’s surface.
Qd is compensated by the charge-based SSA algorithm with the knowledge of vc [7,13], so that
the charge to be used for the estimation is only related to the external load and the strain due to the
piezoelectric actuation.

The PEA’s effective stress (T1(x, y) = T1(x) ∀ y) in Equation (4) results from piezoelectric
actuation T1pre and bending due to external loads T1mec . The piezoelectric bending δpre results from
the compression or extension in the piezoelectric material enforced by the electric field E3. This is the
mechanical base of all piezoelectric actuation. For more details, see [34,35]. For the bending due to
external loads δmec, the piezoelectric bender behaves as a passive composite beam [37].

From Equation (4), one can deduce the total amount of strain-induced charges due to both the
external load and the piezoelectric bending as:

Qδ(l, w, he, hp, se
11, sp

11) = d31
´ l

0
´ w

0

[
T1pre(he, hp, se

11, sp
11)+

T1mec(l, w, he, hp, se
11, sp

11)
]

dxdy
(5)

From the calculations by Smits et al. [36], the effective stress of the piezoelectric layer of
a piezoelectric bender’s cross-section is given by:

T1pre(he, hp, se
11, sp

11) + T1mec(l, w, he, hp, se
11, sp

11) =
1

hp

´ hp+
hp−

{
se

11(hp)3 + sp
11(he)3 − 6se

11hp(he + hp)
[
zp −

hp
2

]}
d31he

K(he ,hp ,se
11,sp

11)hp
vcdzp

− 1
hp

´ hp+
hp−

[
2(sp

11he + se
11hp)zp + sp

11(he)2 − se
11(hp)2

]
6se

11
K(he ,hp ,se

11,sp
11)w

M(x)dzp

(6)

where K(he, hp, se
11, sp

11) is given by:

K(he, hp, se
11, sp

11) = 4sp
11se

11he(hp)3 + 4sp
11se

11(he)3hp + (sp
11)

2(he)4 + (se
11)

2(hp)4

+6sp
11se

11(he)2(hp)2 (7)

and M(x) is the bending moment in which all occurring external loads will be merged. For this study,
one only considers an external force Fext applied at the tip of the bender, that is M(x) = Fext · (l − x).

To optimize the SSA’s sensitivity to strain due to the piezoelectric converse effect, one needs to
optimize

(
Qδ
vc
≡ Qδ

δpre

)
. To optimize the SSA sensitivity to strain due to mechanical load, one needs to

optimize
(

Qδ
Fext
≡ Qδ

δmec

)
.
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2.2. Displacement Equation (Actuation)

The displacement of the tip of the piezoelectric cantilever can be found by applying the principle
of superposition: the deformation contributed by the mechanical flexure of the beam due to the
application of an external force Fext is added to the deformation due to the piezoelectric converse effect
under the application of vc. The sum of the two displacements is equal to the total displacement of the
tip of the bender (see Figure 2).

Calculations to derive the displacement equation of the piezoelectric cantilever can be found
in [36,38]. The displacement due to the superposed effect of vc and Fext is given by:

δ(l, w, he, hp, se
11, sp

11) =

[
4(sp

11he + se
11hp)l

w
Fext − 3d31he(he + hp)vc

]
se

11sp
11l2

K(he, hp, se
11, sp

11)
(8)

One also knows from [36,38] that:

δ

vc
(l, he, hp, se

11, sp
11) =

Qδ

Fext
(l, he, hp, se

11, sp
11) (9)

Besides the tip deflection δ, the tip force that can be generated by the PEA, also referred to as blocking
force, is of interest. From Equation (8) can be derived the PEA’s blocking force Fbl as follows:

Fbl(l, w, he, hp, se
11, sp

11) =
3
4

d31he(he + hp)w

(sp
11he + se

11hp)l
vc (10)

Fbl is used to define the maximum force generated by the actuator. As suggested by [32],
Fbl can also be used to impose a geometric constraint and help reduce the number of parameters
to be fine-tuned. Using commercial actuator benders from PIceramic as a reference, we opted for
Fbl = 100 mN with an applied input voltage of vc = 60 V. This yields, from Equation (10):

w(l, he, hp, se
11, sp

11) > 0.0022
(sp

11he + se
11hp)l

d31he(he + hp)
(11)

Equation (11) expresses the geometric constraint that guarantees the minimal blocking force Fbl .

3. Optimization of the Design

3.1. Definition of the Multi-Objective Function

Regardless of whether it is a piezoelectric stack, piezoelectric cantilever, or piezoelectric tube
actuator, the PEA’s physical parameters to be fine-tuned will alter the stiffness of the actuator to
allow the maximum displacement possible while ensuring a better internal stress distribution within
the piezoelectric layers for strain-induced charged measurement. Apart from piezoelectric stack
actuators, for which the entire piezoelectric material undergoes tensile or compressive stress, in bending
piezoelectric based-actuators such as the piezoelectric cantilever and piezo tube actuators, the internal
stress distribution of the PEA’s cross-section may contain both tensile and compressive stress for a given
cross-section of the PEA (see Figure 3). The internal stress distribution of the PEA’s cross-section is of
the utmost importance for strain-induced charge measurement. The total accumulated charges on the
PEA’s electrodes is the contribution of all the Weiss domains constituting the piezoelectric material.
The generated charge (positive or negative) of each Weiss domain is a function of the stress (tensile or
compressive) undergone by it [34,35].

When designing a PEA for charge-based SSA’s implementation, one should optimize the
PEA’s morphology to not only maximize the displacement due to the piezoelectric actuation(

f1 = δ
vc
|Fbl>100 mN

)
, but also the charges produced by the PEA’s strain. The PEA’s strain may result
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from piezoelectric actuation
(

f2 = Qδ
vc
|Fbl>100 mN ≡ Qδ

δpre
|Fbl>100 mN

)
, external loads

(
f3 = Qδ

Fext
≡ Qδ

δmec

)
,

or the superposition of both effects. The optimized design of a PEA’s morphology for SSA should
result from the optimization of the scalarized (Scalarizing a multi-objective optimization problem
is an a priori method, which means formulating a single-objective optimization problem such
that optimal solutions to the single-objective optimization problem are Pareto optimal solutions
to the multi-objective optimization problem) set of the actuator and sensor objectives into a single
objective. Furthermore, from Equation (9), one knows that an optimal f1 is equivalent to an optimal f3.
Consequently, the multi-objective function to be maximized can be written as follows:

minimize
l, w, he, hp, se

11, sp
11

F(l, he, hp, se
11, sp

11) = −
2

∑
i=1

Wi f̂i

subject to w(l, he, hp, se
11, sp

11) > 0.0022
(sp

11he + se
11hp)l

d31he(he + hp)
,

E3(hp) 6 Emax

(12)

where Wi|i=1,2 are user-supplied weights and f̂i =
fi
| fi|

is the normalized vector of fi.

3.2. Analysis of the Objective Function

The piezoelectric material to be used for this optimization is the PSI-5H4E (Initial depolarizing
field Ec ∼ 0.3 V/µm, d31 = −320× 10−12 C/N, d33 = 650× 10−12 C/N, sp

11 = 1.6129× 10−11 m2/N).
Equation (8) states that δ ∝ vc, that is the higher the applied voltage, the higher the bender tip’s
displacement. Moreover, from Equation (11), one knows that vcmax = 60 V. Consequently, using Ec as
a limiting factor, one can determine the piezoelectric layer thickness, that is:

hp = η
vcmax

Ec
(13)

where η is the safety factor. For η = 0.5⇒ hp = 100 µm.
For convenience, l = 50 mm, as it reduces the number of dimensions of the problem and makes

the results easily readable. This leaves he, se
11 and w as parameters to be fine-tuned to optimize the

PEA’s morphology and mechanical properties for the SSA’s implementation. The following is the
summarized analysis of Figure 4’s subfigures:

• In Figure 4a, one notices the existence of a global maximum for f1(he, se
11), that is there is a material

se∗
11 with thickness h∗e that guarantees the maximal cantilever tip displacement δ for a given input

voltage vc. The function f1opt(he, se
11) describes the optimal combination of he and se

11 to take
full advantage of the piezoelectric actuation. The piezoelectric actuation is independent of the
cantilever width w (see Equation (8)). Therefore, w can independently be determined through
Equation (11) to guarantee the minimal blocking force.

• For visualization purposes of Qδ
vc
(w, he, se

11), one opted for he, w ∈ R∗ and four materials as
the elastic layer to be used: Cs (se

11 = 5.8824× 10−10 m2/N), Ag (se
11 = 1.2048× 10−11 m2/N),

Ta (se
11 = 5.3763× 10−12 m2/N), and Cr (se

11 = 3.4602× 10−12 m2/N). When analyzing Figure 4b,
it is worth noting that Qδ

δpre
(w, he, se

11) is monotonically increasing with respect to w and he.
This indicates that wider electrodes and thicker elastic layers allow collecting more strain-induced
charges. The thickness of the elastic layer is directly linked to the position of the piezoelectric
bending neutral plane hγ (see Figure 5). The thicker the elastic layer, the more the average
stress distribution in the piezoelectric layer becomes positive, that is T1pre(zp) > 0. It is known
from [34,35] that this positive stress distribution should result in larger stress-induced charges
collected through the PEA’s electrodes.
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(a) (b)

(c) (d)

Figure 4. Geometric parameters and material properties’ dependence. (a) Piezoelectric actuation.
(b) Piezoelectric sensor’s sensitivity to strain induced by piezoelectric actuation for Cs, Ag, Ta,
as Cr as the elastic layer of the bender. (c) Piezoelectric sensor’s sensitivity to strain induced by
piezoelectric actuation for Ag as the elastic layer of the bender. (d) Simultaneous sensing and
actuation: ”Self-Sensing”.

(a)
he = 50 µm

vc 6= 0
Fext = 0

(b)
he = 100 µm

vc 6= 0
Fext = 0

(c)
he = 200 µm

vc 6= 0
Fext = 0

Figure 5. Piezoelectric actuation neutral axis evolution due to elastic layer thickness change.
The piezoelectric layer is made of PSI-5H4E, and the elastic layer is Ag. The piezoelectric layer
thickness is fixed at hp = 100 µm.
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• Whereas it was not possible to express the blocking force constraint for f1(he, se
11), it is possible

to do so with Qδ
vc
(he, se

11, w). Let us choose Ag as the elastic layer of the cantilever for illustration.
Ag is not the material that gives the best sensor sensitivity (see Figure 4b). Nonetheless, Ag has
the best electric conductivity among these materials. This allows for the application of vc directly
on the elastic layer. This eliminates the need for additional electrodes. As a result, the overall
stiffness of the structure and total thickness are not affected. f2(w, he, se

11) represents the portion
of Qδ

δpre
(w, he, se

11) that satisfies the blocking force constraint. The function f2opt(w, he, se
11) describes

the optimal combination of he and w for Ag, as the elastic layer, which offers the best sensitivity
to strain-induced charges and satisfies the blocking force geometric constraint.

• Figure 4d depicts the behavior of the multi-objective function (see Equation (12)), that is the
simultaneous sensing and actuation objective where Wi|i=1,2 = 1. One can choose Wi so that
either the actuation or the sensor sensitivity is overriding the other. The Pareto front in Figure 6
reveals the trade-off curve between the sensor and actuator objectives, f1 and f2, respectively.

(a) (b)

(c)
Figure 6. Trade-off between the actuator and sensor objectives, f1 and f2, respectively. The piezoelectric
actuation f1 is independent of the cantilever width. (a) Overlapping of the PEA’s actuation and
sensing behaviors. (b) Evolution of the SSA’s geometrical optimal configuration as a function of the
weighting factor Wi. F(w, he, se

11) describes combinations of he and w for Ag as the elastic layer that
satisfy the blocking force geometric constraint. Fopt(w, he, se

11) represent the optimality of F(w, he, se
11).

(c) Pareto front.

4. Simulation with COMSOL Multiphysics

We realized a stationary study with piezoelectric devices as the physics to be used and built
a clamped unimorph piezoelectric bender. A constant input voltage of vc = 60 V was applied to the
PEA and the value of the tip deflection, and colormap of the stress distribution in the x− direction,
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T1pre(x, y, z), thereof, is displayed in Figure 7. For the readability of the results and comparison purposes
with the analytical model, we chose to keep only w, he as variable parameters. The piezoelectric material
to be used for this optimization was PZT-5H with a fixed layer thickness of hp = 100 µm. Ag was
chosen as the elastic layer, and the cantilever length was fixed at l = 50 mm. The piezoelectric material
in the actuator, PZT-5H, and elastic layer material, Ag, were already defined in the material library of
COMSOL Multiphysics.

Figure 7. Colormap of the stress distribution in the x-direction T1pre (x, y, z) (N/m2) at vc = 60 V and
illustration of the bender tip deflection (for this figure, he = 200 µm and w = 10 mm).

A parametric sweep study through a defined range was performed in COMSOL Multiphysics
to determine the influence of w and he in the actuation (PEA’s tip displacement δ) and the sensor
sensitivity to strain due to piezoelectric actuation

(
Qδ
δpre

)
. Figure 8 depicts simulation results performed

in COMSOL Multiphysics considering the same unimorph piezoelectric cantilever as in the previous
section. As for the analytical model (see Figure 4a,b), the PEA’s actuation presented a global maximum
and was independent of the cantilever width w. The strain-induced charges were monotonically
increasing with respect to w and he. However, it must be pointed out that the analytical model of
the unimorph piezoelectric cantilever introduced by [36] and adopted by [34,35,38] treats in-plane
problems. This model only considers stress in the x-direction, T1(x, y, z). According to the linear theory
of piezoelectricity [39], the electric displacement, D3, should include stress in the y and z-direction,
T2(x, y, z) and T3(x, y, z), respectively. It is worth mentioning that Ti|i=1,2,3(x, y, z) are not applied
external stresses, but rather, stresses caused by the piezoelectric converse effect under the application
of vc. The strain-induced charges should thus be given by:

Qδ (T1, T2, T3) =
1
hp

hp+ˆ

hp−

lˆ

0

ŵ

0

{d31[T1(x, y, z) + T2(x, y, z)] + d33T3(x, y, z)}dxdydz (14)
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Figure 8b depicts both the strain-induced charges when considering only T1(x, y, z) and the one
resulting from Equation (14). A finite element analysis considering the lateral deformation, rather than
the 2D boundary conditions of the analytical model, treats the coupling problem more rigorously and
furnishes more realistic results. It is worth noting that both Qδ(T1) and Qδ(T1, T2, T3) are monotonically
increasing with respect to w and he and only differ in magnitude.

Whereas choosing the PEA’s width w will only impact the sensor sensitivity to strain, there is
a trade-off between the PEA’s actuation and sensor sensitivity when it comes to the elastic layer
thickness he (see Figure 6a). Therefore, it may be necessary to choose to favor either the actuation or
the sensitivity of the sensor, according to the needs of the application.

(a) (b)

Figure 8. Numerical evaluation of the influence of the varying PEA’s width w and elastic layer
thickness he. (a) The piezoelectric actuation. (b) The piezoelectric sensor’s sensitivity to strain induced
by piezoelectric actuation.

5. Experimental Validation

Nine unimorph piezoelectric cantilevers were used for the validation of the numerical
and analytical analysis. They were made of an upper piezoelectric layer with fixed thickness
hp = 100 µm and a lower nickel layer with a thickness he = {50, 100, 200} (µm). For each he,
a width w = {1.5, 2.5, 3.5} (mm) of the cantilever is associated. The nickel foils (NI000450,
NI000480, NI000550) were purchased at Goodfellow, then diced into the aforementioned dimensions.
The piezoelectric layer (PZT-5H) was purchased at PIceramic. A Step input voltage vc = 100 V was
applied to the PEA. During the application of vc, the PEA’s tip displacement δ(t) was measured
with the displacement optical sensor LC-2420, and the current going through the PEA Q̇pea(t) was
measured with the current probe HIOKI CT6700. The algorithm presented in [13] was implemented on
the real-time hardware dSPACE (DS1103) for the extraction of the strain-induced charges Qδ from Q̇pea.

The experimental setup used for this validation is illustrated in Figure 9a. Figure 9c,d present the
fitted surfaces of the measured PEA’s tip displacement δ̄ and strain-induced charges Q̄δ resulting from
the application of vc. δ̄ and Q̄δ are displayed as dots in these figures. They respectively represent the
average of δ(t) and Qδ(t) under 50 seconds from the application of the step input voltage vc.

Results displayed in Figure 9 corroborate the numerical and analytical conclusions, that is there
is a trade-off between the PEA’s actuation and sensor sensitivity in the choice of the elastic layer
thickness he. Increasing the PEA’s sensor sensitivity will be at the cost of its actuation and vice versa.
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In this case, the objective function (see Equation (12)) is said to be conflicting, and there exists
a (possibly infinite) number of Pareto optimal solutions (see Figure 6). Without a piece of additional
subjective preference information on either the PEA’s actuation or sensor sensitivity, all Pareto optimal
solutions are considered equally good.

(a)
(b)

(c) (d)

(e) (f)

Figure 9. Cont.
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(g) (h)

Figure 9. Influence of varying PEA’s width w and elastic layer thickness he: measured, numerical,
and analytical results. (a) Photo of the experimental setup. (b) Schematic block diagram of the
experiment. (c) Measured PEA’s tip displacement due to the application of a step input voltage: PEA’s
actuation. (d) Measured strain-induced charges due to the application of a step input voltage: PEA’s
sensor sensitivity. (e) Numerical evaluation of the piezoelectric actuation. (f) Numerical evaluation of
the PEA’s sensor sensitivity. (g) Analytical evaluation of the piezoelectric actuation with the application
of the geometric constraint (Equation (11)) to guarantee the minimal blocking force, Fbl > 100 µm.
(h) Analytical evaluation of the PEA’s sensor sensitivity.

6. Conclusions

This paper presented an analytical optimization approach of a unimorph piezoelectric bender for
charge-based SSA. For a chosen piezoelectric material, a thickness was imposed by its depolarizing
field. The suggested approach helped fine-tune the choice of the thickness and material of the elastic
layer, as well as the width of the entire piezoelectric bender. These choices have led to a set of
solutions that optimizes the piezoelectric actuation and its sensitivity to strain-induced charges (due to
mechanical load and/or piezoelectric actuation). The final design resulted from the optimization
of a multi-objective function, which aimed at a better stress distribution in the piezoelectric layer
for better strain-induced charge sensitivity and the structure’s stiffness for maximum deflection as
a response to input voltages. A finite element analysis (FEA) implemented in commercial software
was used to corroborate the analytical approach. Finally, experiments were carried out to validate the
FEA results.

The analytical, numerical, and experimental results have led to the same conclusion: there is
a trade-off between the PEA’s actuation and sensor sensitivity when implementing a charge-based SSA
in a piezoelectric cantilevered actuator. Therefore, depending on the application, a piece of additional
preference information on either the PEA’s actuation or sensor sensitivity must be provided.
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