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 

Abstract—We designed a ground based radar system with 

a C-band two-dimensional cross multiple input multiple 

output (MIMO) array for three-dimensional imaging and 

displacement estimation purpose. For this system, we 

developed a far-field pseudo-polar image format algorithm 

using pseudo-polar spherical coordinate. The use of a tensor 

compressive sensing technique allows to focus under-

sampled raw data and to optimize the data acquisition time 

and memory usage. A novel algorithm, named as tensor 

based iterative adaptive approach, is proposed for the 

effective and efficient reconstruction of sparse targets with 

a reduced level of sidelobes. Experiment results validate the 

designed radar system and the proposed algorithms.  

 
Index Terms—Three-dimensional (3D) imaging, cross multiple 

input multiple output (MIMO), compressive sensing, pseudo-polar 

spherical coordinate, iterative adaptive approach.  

I. INTRODUCTION 

ROUND based synthetic aperture radar (GBSAR) is a 

powerful technique to monitor displacement, deformation, 

and vibration of terrain and infrastructure with an accuracy of 

sub-millimeter [1-2]. In GBSAR, a one-dimensional (1D) 

synthetic aperture is normally formed by sequentially moving 

the transceiver on a rail to get a high angle resolution. In recent 

years, linear multiple input multiple output (MIMO) array 

based methods have been proposed [3-4], which can reduce the 

data acquisition period of GBSAR, benefiting some specific 

applications where it is necessary to do many measurements 

within a short time. Besides, a shorter data acquisition time is 

also useful to mitigate the phase artifacts caused by microwave 

propagation in atmosphere on the displacement estimation.  

Characterized by a highly suboptimal aperture compared 

with the airborne/spaceborne SAR, several imaging algorithms 

were developed to focus GBSAR data, including time-domain 

back projection algorithm (TDBP), frequency-domain back 

projection algorithm, range migration algorithm, and far-field 
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pseudo-polar format algorithm (FPFA) [5]. For MIMO array 

based radar, these algorithms can be adopted with simple 

modifications [6-7]. Compared with other imaging algorithms, 

despite being only applicable in the far field, FPFA has the great 

advantage of computation complexity, especially when the 

aperture length is comparable to the range resolution [8-9].  

Since only 1D aperture is synthesized, GBSAR can only get 

a two-dimensional (2D) focused SAR image. In such a case, the 

3D scene is projected onto a 2D imaging plane, resulting in 

some information losses. Normally, for the applications of 

GBSAR to dam and landslide monitoring, an accurate digital 

elevation model (DEM) is needed for the accurate positioning 

of targets that have large displacements [1]. However, the 

unambiguity requirement always makes the projection of the 

2D GBSAR image onto the DEM a complicated task. Moreover, 

an accurate DEM is not always available. Therefore, a GBSAR 

system that can get the 3D focused image is desired, which 

requires a 2D synthetic aperture. Two simple ways are possible 

to get a 2D aperture: 1) mechanically move the transceiver on a 

2D scanner, and 2) similarly with the MIMO-SAR system [10-

11], using a linear MIMO array moved on a mechanical rail. 

However, the data sampling time of these two approaches is 

normally too long for many applications.  

In this paper, we present a 3D volumetric imaging GBSAR 

system with a 2D cross-MIMO array. Compared with other 2D 

MIMO configurations, cross-MIMO is easier to implement in 

practice. According to the signal model in far-range condition, 

we established a pseudo-polar spherical coordinate, based on 

which the FPFA algorithm is extended to its 3D version for 

effective 3D imaging. When the imaging scene is sparse, i.e. 

only several targets have significant reflection coefficients, we 

proposed a tensor compressive sensing (T-CS) [12-13] based 

imaging algorithm to shorten data acquisition time, reduce 

memory usage, and improve imaging quality. Furthermore, a 

tensor based iterative adaptive approach [14-16] (T-IAA) is 

proposed to solve the T-CS problem efficiently and accurately. 

Experiment results are presented to show the effectiveness of 

the designed radar system and the proposed algorithms.   
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II. RADAR SYSTEM AND SIGNAL MODEL 

The configuration of the designed radar system is shown in Fig. 

1, which mainly includes a vector network analyzer (VNA) to 

generate the frequency stepped continuous wave (FSCW) 

signal, four 1×8 switches to realize the time-divided signal 

transmitting and receiving, two micro-controllers used to 

control the switches, a uniform receiving array with 16 Vivaldi 

antennas, a uniform transmitting array with 16 spiral antennas, 

and a processing PC used to save and process the VNA data and 

to remotely control the micro-controllers and the VNA.  

 

  
Fig. 1.  Configuration of the 3D imaging radar system. 

 

The imaging geometry of the designed system is shown in 

Fig. 2, where the i-th receiver is at (xi, 0, 0), the j-th transmitter is 

at (0, 0, zj), i=1,2,…,16, and j=1,2,…,16. With a target located at (x0, 

y0, z0), the distance between the i-j-th sampling point and the 

target is given by  
0 2 2 2 2 2 2

, 0 0 0 0 0 0( ) + ( )i j i jR x x y z x y z z                  (1) 

 

 
Fig. 2.  Imaging geometry of the designed radar system. 

 

Then, with the FSCW transmitted signal, the received signal 

at i-j-th sampling point and q-th frequency can be expressed as 
0

0 0 , 0( , , ) exp( j2 / ) ( , , )q i js i j q f R c n i j q                   (2) 

where fq=f0+(q-1)Δf, q=1,2,...,Q, f0 is the start frequency, ∆f is 

the frequency step, α0 is the reflection coefficient of the target, 

c is the velocity of light, and 
0( , , )n i j q  is the additive noise.  

Therefore, the received signal from the whole illuminated 

scene is given by  
,j2 ( , , ) /

( , , ) ( , , ) d d + ( , , )q i jf R x y z c
s i j q x y z e x ydz n i j q








          (3) 

where , ( , , )i jR x y z  is the distance between the target at (x, y, z) 

and i-jth sampling point, ( , , )x y z  is the reflection coefficient, 

and   denotes the illuminated scene.  

According to [4], the reflection coefficient of target at (x, y, 

z) can be estimated by the BP algorithm as follows: 

,+j2 ( , , ) /

1 1 1

( , , ) ( , , ) q i j

QI J
f R x y z c

i j q

x y z s i j q e



  

                (4) 

However, the estimation of the entire illuminated scene using 

(4) has a high computation complexity, which prevents it from 

practical applications. Therefore, a faster algorithm is needed.  

III. FAST 3D IMAGING ALGORITHM 

A. 3D Pseudopolar coordinate 

In Fig. 2, let 2 2 2

0 0 0 0R x y z    denote the distance from the 

center of radar system to the target, θ0 denote the angle between 

op and the y-o-z plane (i.e. azimuth angle), and φ0 denote the 

angle between op and the x-o-y plane (i.e. elevation angle), we 

have 
0 0 0sinx R   and 

0 0 0sinz R  . Based on the cosine 

theorem, the distance between i-j-th sampling point and the 

target located at far field can be approximated as  
0

, 0 0 02 sin sini j i jR R x z                              (5) 

Therefore, the reflection coefficient of the target at (R, θ, φ) 

can be estimated by  

, ,

sin sin2 j2 j2j2 j

1 1 1

( ) ( , , ), ,
i jq

i j qc c

RQI J x zf
c

i j q

R s i j q e e e e

 
    

 


  

    (6) 

where , , 2 (sin sin ) /i j q i jq
f x z c     , q cq

f f f  , 
cf  is the 

center frequency, and /c cc f   is the wavelength.  

The absolute value of , ,i j q  in (6) is bounded by  

, ,

(sin sin )
2 (sin sin ) /

4

x z
i j q i jq

L L
f x z c

R

  
   


  


    (7) 

where / 2R c B  is the range resolution, B is the bandwidth, Lx 

and Lz are the synthetic aperture length in x direction and z 

direction, respectively. As analyzed in [9], if , ,i j q  satisfies the 

condition (8), the last exponential term of (6) can be ignored. 

max max
, ,

( sin sin )
 1

2 2

x z
i j q

L L

R

  



  


                (8) 

For the designed radar system, 
max max( sin sin )x zL L   is 

close to 2 R . Besides, since the mean value of xi (zj) is zero 

and due to the factors sinθ and sinφ, , ,i j q is smaller than those 

given in (8) [8]. Therefore, the reflection coefficient of the 

target at (R, θ, φ) can be approximately estimated by  
sin sin2 j2 j2j2

1 1 1

( ) ( , ,, ),
i jq

c c

RQI J x zf
c

i j q

s i j q e eR e

 
 

   
 

  

         (9) 

It can be observed that the exponential terms in (9) form the 

kernel of a 3D Fourier transform. Therefore, a 3D pseudopolar 

spherical coordinate ( , , )    is defined as  

2 / ,     sin / ,     sin /c cR c                       (10) 

Based on this pseudopolar coordinate, the received signal 

cube and the 3D FPFA algorithm can be formulated as the 

following multilinear expression: 

1 1 2 2 3 3   S F F F                           (11) 

and  

 H H H

1 1 2 2 3 3 3DFFT     S F F F S               (12) 

where (·)H denotes conjugate transpose,   denotes the mode-

  tensor by matrix product [17], S  is the received signal cube, 

  is the reflection coefficient tensor of the imaging scene, F1, 
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F2, and F3 are the Fourier transform matrices.  

 Compared to (4) and (6), the proposed 3D FPFA focusing 

algorithm (12) can significantly reduce the computational cost 

by using the fast Fourier transform (FFT). However, due to the 

intrinsic limitation of Fourier transform based methods, high-

level sidelobes will be generated by (12), which will blur the 

weak targets and thus introduce negative influence on the 

following displacement estimation.  

B. Tensor based IAA 

When the imaging scene is sparse, i.e. only few strong targets 

exist, T-CS based method can be used for 3D imaging as shown 

in (13), which can reduce the sidelobe level and achieve higher 

resolution than Fourier transform based imaging methods [12].  

0 1 1 2 2 3 3=min || ||    s.t. || ||F       S F F F          (13) 

where   denotes the noise level, ||·||0 denotes the number of 

nonzero elements in a vector or a tensor, and the Frobenius 

norm of a tensor Y is defined as 
1 2 31 2 3

2

, ,|| || | |F i i ii i i
y  Y . 

One advantage of T-CS based imaging method is that it can 

still work well with under-sampled data, which can help to 

reduce the data acquisition time, the computation complexity, 

and the memory usage of (13). For the designed radar system, 

to reduce the spatial sampling points in x and z directions, a data 

acquisition program is used to control the switches to randomly 

turn on several transmitter-receiver pairs of the cross MIMO 

array. Since the frequencies of the FSCW signal cannot be 

randomly generated by VNA, the frequency under-sampling is 

realized in the data processing step. The random selection of 

frequencies by using a discrete frequency synthesizer driven by 

a set of random indication numbers is under study.  

The under-sampled signal model, i.e. the compressive 

measurement of target reflection coefficient tensor, is shown in 

Fig. 3, where
un

S is the under-sampled received signal cube, 1

un
F ,

2

unF  and 3

unF are the under-sampled Fourier transform matrices.  

 

 
Fig. 3. Compressive measurement of the target reflection coefficient tensor. 

 

Then, the focused image of targets can be obtained by  

0 1 1 2 2 3 3=min || ||    s.t. || ||
un un un un

F       S F F F     (14) 

Eq. (14) is NP-hard but can be solved by some efficient 

algorithms, such as the Kronecker-orthogonal matching pursuit 

(Kron-OMP) algorithm and the N-way Block OMP algorithm 

(NBOMP) in [13], and the 3D smoothed l0 norm algorithm (3D-

SL0) in [12]. However, Kron-OMP and NBOMP need to know 

the number of targets or the noise power, which is commonly 

unknown in practice. For 3D-SL0 algorithm, several parameters 

need to be tuned, which requires a lot of efforts in some cases. 

Therefore, based on the principle of IAA algorithm [14] and its 

efficient 2D version [15], we propose a nonparametric and user 

parameter-free algorithm, called T-IAA algorithm, to solve (14). 

Conventionally, to fit the classical CS theory,   is vectorized 

and estimated by the following 1D minimization problem. 

0 2=min || ||    s.t. || ||un    s                     (15) 

where 3 2 1

un un un   F F F , ( )
unun vecs S , ( )vec  ,   

denotes Kronecker product, and vec(·) denotes the vectorization 

operation. IAA attempts to solve (15) by minimizing the 

following weighted least-squares cost function.  

1

2min || ||
b

un
b b b    

Q
s                           (16) 

where b is the b-th element of  , b  is the b-th column of  , 

1

2 H 1|| ||
b

b



Q
x x Q x , 2 H| |b b b b    Q R , and R  is the covariance 

matrix of 
un

s . The minimization of (16) yields 
H 1 H 1= un

b b b b

    R s R                              (17) 

Due to the unknown R, IAA algorithm operates iteratively to 

get (17). For most practical applications, convergence occurs 

after no more than 10-15 iterations [15]. The initialization of 

IAA algorithm is 
0

H H= un
b b b b   s , and the o-th (o=1,2,…,O) 

iteration is carried out by  
H 1 H 1 H 1 H 1= ( ) ( )

o
o un o

b b b b

          s               (18) 

where 
1

1 2{| | }
o

o diag


    and (·)-1 denotes matrix inverse.  

Based on the Capon filter property, the vector form of (18) is 

given by [14] 

1 H 1 H 1 1 H 1( )
o

o o un o o          s u            (19) 

where 1 1 H 1( )o o un   u s  is obtained by conjugate gradient 

(CG) algorithm to reduce the computation cost.  

Assuming 
11 2| |

oo 
  , it can be derived that  

 
11 { ( )}

oo diag vec
                              (20) 

where diag(⋅) denotes diagonalization. 

Therefore, based on 3 2 1

un un un   F F F  and the properties 

of Kronecker product and Hadamard product, we can obtain  
1 1 H H H

1 1 2 2 3 3( [ ( ) ( ) ( ) ])
o o o un un unvec

 
    U F F F      (21) 

where 
1o

U is the tensor form of 1ou  that can be obtained by the 

tensor version of CG algorithm, as shown in Table. 1, (·)∗ 

denotes conjugate, and denotes Hadamard product.  

TABLE I. TENSOR BASED CG ALGORITHM. 

Input: 
un

S , 1

un
F , 2

un
F , 3

un
F , 

1o
 , and the iterations number T. 

1) Initialization: 0

00 00, 0, , 0
un

U R P   S , 2

00 | |FR  , and 1t  ; 

2) Update: 
1 H H H

1 1 11 1 1 2 2 3 3

2 1 21 1 2 2 3 3 1 1

2

1 21 1 1 1

,  [ ( ) ( ) ( ) ],

,  / ,

,  ,  | | ,  / .

o un un un

t t t tt

un un un

tt t

t t t tt t t t t F t t t

P R P T P

T T P T

U U P R R T R



 

     



 



 

   

     

    

     



 F F F

F F F  

3) Iteration: 1t t  , if t T  go back to 2), otherwise, stop. 

Output: 1o T
U U . 

Since ( )
o o

vec  , the tensor based IAA algorithm can be 

derived as shown in Table. 2, in which the initialization step is 

f

x z

2R/c

sin / c 

sin
/ c




1 1 1
un Q I JC  S

L M NC  

1

1

Q Lun C F

1

2

I Mun C F

1

3

J Nun C F
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obtained by making use of the minimum l2-norm solution and 
†( ) denotes pseudo-inversion. 

TABLE II. TENSOR BASED IAA ALGORITHM. 

Input: un
S , 

1

un
F , 

2

un
F , 

3

un
F , and the iterations number O and T. 

1) Initialization: 
0

† † †

1 1 2 2 3 3( ) ( ) ( )
un un un un    S F F F , 

00 2| |  ,  

and 1o  ; 

2) Estimation: with un
S ,

1

un
F , 

2

un
F , 

3

un
F  and 1o

  as inputs, use 

Tensor based CG to estimate 1o
U  within T iterations;  

3) Update: 1 1 H H H

1 1 2 2 3 3[ ( ) ( ) ( ) ]
o o o un un un 
     U F F F  and 2| |

oo
  ;  

4) Iteration: 1o o  , if o O  go back to 2), otherwise, stop. 

Output: 
O

  . 

IV. EXPERIMENT RESULTS 

In this section, we present some experiment results to illustrate 

the effectiveness of the designed system and the proposed 

imaging algorithms. It should be pointed out that, to improve 

the imaging quality, the antenna direct coupling signal of the 

designed system is measured in an anechoic chamber and then 

subtracted from the real measurement data. The working 

frequency of the designed system is from 4.75 to 5.25 GHz with 

201 frequency steps, giving a range resolution of 0.3 m. Due to 

the antenna size limitation, the inter-element spacing of the 

transmitting array and the receiving array are set to be 5 cm and 

6 cm, respectively, giving an unambiguous angle about 60 

degrees. The resolution in x direction is about 0.067 rad, and the 

resolution in z direction is about 0.080 rad. The point spread 

function of the designed cross-MIMO radar system for a target 

located at (10, 0, 0) can be obtained as shown in Fig. 4.  

 

 
Fig. 4.  Point spread function of the designed system for a target at (10, 0, 0). 

 

 
Fig. 5.  Experiment with two trihedral corner reflectors as targets. 
 

Firstly, two trihedral corner reflectors (CRs) with size 40 cm 

and 30 cm are used as the point targets. They are located at (0, 

6.5, 0) m and (1, 9.5, 0.5) m approximately. The experiment 

setup is shown in Fig. 5 and the focused images obtained by BP 

algorithm, 3D FPFA algorithm, 3D FPFA algorithm together 

with spatially variant apodization (SVA) [18] approach, and T-

IAA algorithm (for which we set O=T=10) with 1/8 data are 

shown in Fig. 6, where the coordinate is same as Fig. 2 and the 

dynamic range is 20 dB.  

It can be seen from Fig. 6 (a) that two CRs can both be 

effectively imaged. Compared with BP algorithm, the proposed 

3D FPFA algorithm can achieve similar result, as shown in Fig. 

6 (b), but with much reduced computing time. Besides, by using 

the SVA method, the high-level sidelobes can be effectively 

suppressed without reducing the resolution, as shown in Fig. 6 

(c). With 64 randomly selected pairs of transceivers and 101 

frequencies, the imaging result of the proposed T-IAA 

algorithm is shown in Fig. 6 (d), from which it can be observed 

that the sidelobes are much reduced. Furthermore, measured by 

TIC and TOC instructions in MATLAB and averaged by 50 

trials, the running time of BP algorithm, 3D FPFA algorithm, 

3D FPFA algorithm with SVA approach, and T-IAA algorithm 

are 7.76 s, 0.12 s, 0.48 s, and 1.50 s, respectively. This indicates 

that BP algorithm is most time-consuming and the proposed 

algorithms can reduce the computing time. Besides, since only 

1/8 data is used by the proposed T-IAA algorithm, the memory 

usage is also reduced.  

 

  
     (a)                                                          (b) 

  
     (c)                                                          (d) 

Fig. 6.  Focused images obtained by (a) BP algorithm, (b) FPFA algorithm, (c) 

FPFA algorithm with SVA, and (d) T-IAA algorithm with 1/8 data. 

  
Fig. 7.  Focused images obtained by (left) Kron-OMP algorithm and (right) 

NBOMP algorithm with 1/8 data.  

 
Fig. 8.  Displacement estimation results obtained by different algorithms. 

 

Apart from the proposed T-IAA algorithm, other T-CS 

algorithms can also be used to solve (14). For example, the 

imaging results obtained by Kron-OMP algorithm and NBOMP 
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algorithm [13] with 1/8 data are shown in Fig. 7. By comparing 

with Fig. 6 (d) and Fig. 7, it can be observed that the results of 

these three T-CS algorithms are similar, strong sidelobes can be 

effectively reduced. However, as mentioned in Section-III, 

OMP-type algorithms need to get the target number or the noise 

level to terminate the iterations, which is difficult to estimate. 

On the contrary, the T-IAA algorithm is nonparametric and can 

always converge within 10-15 iterations. Therefore, T-IAA 

algorithm maybe more suitable in practical applications.  

Then, one of the CRs, which is mounted on a linear scanner, 

as indicated by the solid red circle in Fig. 5, is moved away from 

the radar system from 2 mm to 20 mm with a 2 mm step along 

the line of sight (LOS). The displacement estimation results 

obtained by BP algorithm, FPFA algorithm, and T-IAA 

algorithm are shown in Fig. 8. It can be learned that all these 

methods can achieve accurate displacement estimates. We note 

that, due to the influence of random selection, the joint T-IAA 

algorithm, which can be easily derived from the joint 2D IAA 

algorithm proposed in [16], is used in this case.  

At last, a building with four floors is used as the target, as 

shown in Fig. 9. The purpose of this experiment is to validate 

the imaging performance of the designed system for distributed 

target 3D imaging. The imaging result obtained by BP 

algorithm and 3D FPFA algorithm with SVA approach are 

shown in Fig. 10 with a dynamic range of 25 dB. For BP 

algorithm, strong sidelobes make the imaging result difficult to 

understand. However, by using SVA approach, four layers and 

main parts of the building can be clearly observed by 3D FPFA 

algorithm. This result further demonstrates the effectiveness of 

the designed C-band cross-MIMO radar system and the 

proposed imaging algorithm.  

 

 
Fig. 9.  Experiment with a four-floor building as target. 

 

 
Fig. 10.  Focused image of the building as distributed target obtained by (left) 

BP algorithm and (right) 3D FPFA algorithm with SVA approach. 

CONCLUSIONS 

A new methodology for real time 3D imaging and 

displacement measurement based on GBSAR interferometry 

has been presented. It is based on a 2D cross-MIMO radar 

system which allows an effective 2D aperture synthesis and a 

fast data acquisition. The SAR focusing algorithm is based on 

a pseudo-polar spherical coordinate. Experiments have been 

carried out to prove the concept of the proposed methodology 

using a C-band prototype. The advantages of the proposed 

methodology in terms of focusing accuracy has been studied 

using trihedral corner reflectors (CRs) deployed in the scene. 

The proposed cross-MIMO radar has also been tested in an 

interferometric configuration to measure the displacements of 

CRs, using the proposed focusing algorithms, and comparing 

the results with those provided by other traditional focusing 

algorithms. Future work will be devoted to the application of 

the cross MIMO prototype and focusing algorithms to the 

monitoring of structures, glaciers and landslides.  
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