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ABSTRACT

Passive wireless sensors provide an attractive technology in niche applications where battery powered sen-
sors are not applicable. Surface acoustic wave technology provides an optimum implementation of passive
wireless transducers acting as cooperative targets to short range radar systems: the signal carrying the infor-
mation is delayed beyond clutter, with a piezoelectric substrate converting the electromagnetic wave to an
acoustic wave whose properties are dependent on the environment. We have tackled the issue of short range
radar certification by considering a passive radar approach in which existing non-cooperative radiofrequency
sources are used to power the sensor, and the reader is made solely of passive receivers aimed at recording
the reference signal generated by the non-cooperative source and the backscattered signal returned by the
sensor. A passive radar approach only requires a cross-correlation between the reference and surveillance
signals to identify the time delay between the incoming and backscattered signals and hence the recovery
of the physical quantity sensed by the acoustic transducer through acoustic velocity modulation. Practical
sources do exhibit some short term correlation. Hence, strong copies of the reference signal with delays
shorter than the one introduced by the sensor must be canceled by the receiver to allow for the weak sensor
response to be extracted. This classical problem is called Direct Signal Interference (DSI) suppression. In a
post-processing approach with little computation time limitation, this problem is solved using a least square
error optimization approach. In the context of real time sensor measurement using a Field Programmable
Gate Array (FPGA) implementation, data recording, frequency transposition and decimation are readily
implemented in the gate array matrix. DSI removal appears as the limiting factor for a full FPGA imple-
mentation of the short range passive radar reader. We address the challenge by the iterative process of DSI
suppression using Orthogonal Matching Pursuit (OMP) algorithm, and additionnally consider the FPGA-
friendly Stochastic Gradient Descent (SGD) approach to try to recover DSI coefficients from a pipelined
algorithm using streams of measurement data.

Keywords: Passive sensor, surface acoustic wave, short range passive RADAR, orthogonal matching pur-
suit, stochastic gradient descent, interference suppression

1. INTRODUCTION

Passive RADAR provides an attractive solution to multiple remote sensing issues including not relying on
a dedicated emitter to illuminate targets bathed in electromagnetic smog,1 and being able to detect signals
returned by a cooperative target whose signature is representative on a physical quantity (identification,
temperature, strain ...).2 The basic signal processing principle of passive RADAR is to collect on the one
hand a reference signal of the pseudo-random signal – most passive radar systems use existing commercial
communication or navigation signals with appropriate random properties – illuminating the target, and on
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the other hand the surveillance signal reflected by the target, possibly frequency shifted by a Doppler offset
frequency if the target is moving3 (Fig. 1). Unlike active RADAR, the emitted continuous signal is not
known so that must be observed by a reference channel (or reconstructed when a single receiver is used4)
rather than locally memorized. The emitted signal might leak on the surveillance channel, inducing a strong
background correlation signal that might be broad enough to overwhelm the signals reflected by the targets.

ADC

ADC
sur

RF NCO

DSI

xcorr PS

PL

ref
125 MS/s

Redpitaya platform: Zynq7010

Figure 1. Left: data acquisition and processing principle: a Redpitaya board based Zynq System on Chip collects data
from 125 MS/s analog to digital converters (ADC) following a radiofrequency to baseband frequency transposition
(hardware mixer and filters). The sampled data are frequency transposed and filtered for adjacent WiFi channel data
collection by the Programmable Logic (PL) part of the Zynq. At the moment, the resulting data are transferred to
the Processing System (PS) to be sent to the host computer for further processing, limiting the measurement refresh
rate. The present work aims (red) at including the DSI suppression and correlation in the PL. Right: experimental
setup using an 8-patch antenna array as receiver for direction of arrival computation, making the DSI suppression
load even heavier when probing multiple sensors. The antenna array (background) to sensor (foreground) distance is
1 m. The inset on the left is a screenshot of the computer display on the right exhibiting the azimuth-range map with
the sensor echo delays (representative of the physical quantity) along the verical axis and the azimuth for spatially
separating the sensor response along the horizontal axis.

The context of this study focuses on probing one particular case of targets designed as passive wireless
sensors with echoes delay by 1 to 3 µs. A cooperative target illuminated by a non-cooperative emitter returns
echoes whose delays are dependent not only on the bistatic range but also on some physical quantities of
the sensor environment. Such a result is achieved by converting the incoming radiofrequency signal into
an acoustic wave by patterning electrodes on a piezoelectric substrate in the classical Surface Acoustic
Wave (SAW) transducer operation.5 By a differential measurement in which multiple echoes induced by
the acoustic transducer and returned by the sensor are sampled, subtracting delays between multiple echoes
gets rid of the bistatic range delay dependence and provides means for remote sensing physical quantities
using passive, cooperative targets probed by a passive RADAR receiver. The design of the SAW transducer
aims at delaying echoes beyond clutter and environmental reflections: considering the receiver sensitivity,
delaying echoes by 1 to 2 µs (150 to 300 m monostatic range) guarantees that the sensor response is well
beyond any non-cooperative target reflection (Fig. 2).

Since the classical estimator for detecting echoes in a RADAR signal is the correlation, passive RADAR
target identification heavily relies on correlating an unknown but measured reference signal from a non-
cooperative illuminator with the surveillance signal collected by an antenna (or antenna array in our case)
directed towards the sensor. However, any structure in the illuminating signal as often found in communi-
cation signals will depart from the random structure whose correlation would be a Dirac function and will
introduce some long term memory effects with strong correlation side lobes. Thus, even if clutter has faded
out by the time the sensor echoes are detected, the illuminating signal source autocorrelation might still
overwhelm the sensor signal as will be demonstrated in the case of WiFi. This Direct Signal Interference
(DSI) removal is the core requirement to extract the target (here cooperative with the sensor designed on
purpose) signature from the correlation between the reference signal and the cleaned surveillance signal.

The classical approach to suppress this DSI signal is to use a least square weighing approach where time
shifted copies of the reference signal are sought in the surveillance signal.6 Assuming the echoes generated
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Figure 2. Surface Acoustic Wave (SAW) reflective delay line scattering coefficient response, bottom in the frequency
domain and top in the time domain as computed through the inverse Fourier transform of the frequency domain
characterization. Echoes are delayed by 1 to 2.5 µs beyond clutter of short range RADAR readers, while the actual
delays encode an 8-bit identifier. The precise time delays between echoes informs on the sensor temperature through
the acoustic wave velocity. The narrow bandwidth (35 MHz) was selected on purpose as representative of the passive
RADAR bandwidth despite preventing the separation of two of the echoes.

by targets – whether non-cooperative or cooperative sensor targets for which the echoes are designed to lie
beyond clutter – are delayed by more than a minimum time offset T , all copies of the reference signal delayed
between 0 and T in the surveillance signal with estimated weights are subtracted before cross-correlating the
reference and the surveillance signal to identify target. Practically, this operation is achieved by creating a
matrix X with time delayed copies of the reference signal ref and identifying the weight w of the time-delayed
copies of ref in the surveillance signal sur as

X =


ref1 0 0 ... 0
ref2 ref1 0 ... 0
ref3 ref2 ref1 ... 0
... ... ... ... ...

refN refN−1 refN−2 ... refN−T

 : w = pinv(X) · sur (1)

where the pseudo-inverse pinv(X) is (XH ·X)−1 ·XH with H the conjugate transpose of the matrix. In
this definition of X, signals before the first sample (ref1) are assumed to be zero. A typical case is N large
(numerous samples to improve signal to noise ratio) and T small (e.g. in a cooperative target short range
RADAR system sampling the baseband at 100 MHz, removing clutter delayed by up to T = 200 ns (30 m
monostatic range) is achieved with discrete delays from 0 to 20). The challenge of practically achieving this
computation (Eq. 1) is that XH · X is an (T + 1) × (T + 1) matrix which must be inverted before being
multiplied by the (T + 1) ×N XH matrix, resulting in a (T + 1) ×N matrix multiplied by the N element
long surveillance signal to yield the T + 1 weights w of the contribution of the delayed reference signal in
the surveillance (Fig. 3). Subtracting the delayed reference from the surveillance is finally achieved with
sur − X · w. For example,7 uses a Cholesky decomposition to compute the inverse, and hence does not
benefit from the history of the matrix assembly.

One initial approach to reduce the computational burden is to reduce the number N of samples by
selecting a random subset of N ′ lines: the resulting under-sampled copy of X is named X ′. This number
of sub-samples is dependent on the targeted accuracy and rises as the logarithm of the number of delays
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Figure 3. Passive RADAR interrogation of the SAW sensor characterized in Fig. 2 using a WiFi non-cooperative
source, with the removal, from top to bottom, of none or 1 (sensor signal hidden under the sidelobes of DSI), 2 (sensor
signal becoming visible between 1 and 3 µs), 3 (rejection of DSI and only sensor response left) and 4 (no improvement
with respect to 3-sampling time delay subtraction) sampling delay copies of the normalized reference signal from the
normalized surveillance signal. Such few delayed copies is consistent with the systematic analysis shown in Fig. 5.
Note that, in the top three figures, the peaks at about 3.2 µs are generated by the properties of WiFi signal.

involved in the DSI.8,9 In the experimental dataset shown in Fig. 3, only 3 time-delay copies (or 93 ns
considering our sampling rate of 125/4=31.25 MS/s) of the reference signal need to be removed from the
surveillance signal for the sensor to become dominant in the correlation between the reference and cleaned
surveillance signal, while considering additional delays (Fig. 3, bottom chart) does not improve the sensor
signal. Hence, only very few weights need to be computed to cancel DSI and allow for the sensor response
to be analyzed.

Fig. 4 illustrates the strategy followed in this paper based on the
DSI matrix representing the time-delayed copies of the reference signal
sought in the surveillance signal. Here only positive delays are involved,
but the practical algorithms consider positive as well as negative delays
to account for correlation in the non-random reference signal. On the
one hand a measurement set of the surveillance and reference channels
has been collected and time-delayed copies of the reference are sought in
the surveillance: the number of samples (lines) is fixed and the Orthog-
onal Matching Pursuit (OMP) algorithm iterates along the columns to
sequentially identify and subtract the weighted copy of each time-delayed
reference. On the other hand, the number of delayed copies of the refer-
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
Figure 4: Direct Signal Interference
matrix shaped by delaying the ref-
erence signal and search for the T
weights (one for each column) of each
copy in the surveillance signal.

ence signal is set and as more data are collected, the weights associated with each time-delayed copy of the
reference are updated with the new observations: the Stochastic Gradient Descent (SGD) operates along the
lines for a fixed number of delays (columns). Both algorithms aim at removing the computation burden of
the matrix pseudo-inverse classically used to identify the weight of each time-delayed copy of the reference
in the surveillance signal.
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This approach was used in10 to demonstrate passive RADAR measurement of passive cooperative tar-
gets illuminated by a WiFi signal. However, the measurement update rate is limited by DSI suppression:
the data acquisition, frequency transposition and filtering are processed in a pipeline running in the Field
Programmable Gate Array (FPGA) of the Zynq system on chip (Fig. 1). Due to the computational burden
of DSI suppression, the current implementation transfers the resulting reference and surveillance vectors to
the host computer in charge of running the DSI suppression and cross-correlation. Since cross-correlation is
readily achieved as a pipelined algorithm on an FPGA, running the full processing algorithm on FPGA for
increased data acquisition rate requires solving the DSI suppression following an algorithm compatible with
a pipelined approach applicable to a gate array.

2. ORTHOGONAL MATCHING PURSUIT FOR DIRECT SIGNAL
INTERFERENCE REMOVAL

The computational burden of inverting the matrix remains high since it requires collecting the whole dataset
before performing the DSI suppression. Here we consider the iterative subtraction process of subtracting
sequentially the heaviest contributions of the reference signal in the surveillance channel, using the OMP
algorithm.11 Based on compressive sensing (CS) theory,9 the DSI can be estimated by OMP algorithm with
under-sampled measurement, which can help to reduce the computational complexity. Indeed, OMP imple-
mentation on FPGA has been demonstrated already12–14 with reasonable computational power requirement
with respect to those provided by the Zynq 7010 system on chip fitted on the Redpitaya platform we are
using on our experiment.

In this algorithm, the contribution of each time delayed copy of X ′ in the under-sampled surveillance
signal sur′ is computed as (X ′)H · sur′ (Fig. 5). The time delay with highest contribution is selected at
index p1 and its weight is computed as pinv(X ′(p1)) ·sur′, where X ′(p1) is the p1th column of X ′ (appendix,
first listing). Notice that in this first iteration, p1 is a scalar so that X ′(p1) is a vector and

pinv(X ′(p1)) · sur′ =
< sur′, X ′(p1) >

||X ′(p1)||22
∈ C (2)

with <,> the dot product
∑
n sur

′
n ·X ′(p1)∗n since pinv(X ′(p1)) = (X ′(p1)H ·X ′(p1))−1 ·X ′(p1)H and

X ′(p1)H ·X ′(p1) = ||X ′(p1)||22.

In the next step of the OMP algorithm, the surveillance signal cleaned from this initial contribution of
the reference signal sur′1 = sur′ −X ′(p1) · (pinv(X ′(p1)) · sur′) is then again analyzed for finding the next
heaviest contribution of X ′ in sur′1. This requires searching for the next heaviest contribution p2 of X ′ in
sur′1 as the column for which (X ′)H · sur′1 is maximized. It is known that subtracting only column p2 of
X ′ from sur′1 will only converge to cleaning sur′ from time delayed copies of the reference if p1 and p2 are
different enough for the contributions to be independent. Practically, we expect the strongest contributions
of the reference signal in the surveillance to lie at time delays close to 0 and not to be independent from
each other. Hence, a global weight computation must be addressed by aggregating p1 and p2 in a vector p
and identifying the optimal weight of both columns as pinv(X ′(p)) · sur′. This computation will grow in
complexity towards the initial problem since p will grow as more contributions of the reference signal are
sought in the surveillance. However in this iterative approach, pinv(X ′(p)) can be deduced from the previous
iteration by considering the block-wise inverse following the Sherman-Morrison formula:

(X ′(p)H ·X ′(p))−1 =

(
X ′(p1)H

X ′(p2)H

)
·
(
X ′(p1) X ′(p2)

)−1
=

(
X ′(p1)H ·X ′(p1) X ′(p1)H ·X ′(p2)
X ′(p2)H ·X ′(p1) X ′(p2)H ·X ′(p2)

)−1
(3)
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Figure 5. Experimental dataset analysis exhibiting the normalized weights of the delayed copies (delay in sample
number as abscissa) of the reference in the surveillance channel. Notice that, as expected, weights are negligible in
the negative delay and sharply drop to negligible values in the positive delays above 5 timesteps, consistent with Fig.
3.

2.1 Block matrix inversion

Since the new matrix inverse results from a previous iteration with the addition of one more vector from
the reference signal to be subtracted from the surveillance, the problem of finding this new inverse can be
expressed with the following shaped matrices:

(
A B
BH C

)−1
=

(
A−1 + 1

kA
−1BBHA−1 −1

k A
−1B

−1
k B

HA−1 1
k

)
(4)

where k = C−BHA−1B. Hence, in this equation A−1 is already known from the previous iteration, and
only matrix products remain, no inversion (appendix, second listing).

The next section will compare both the least square estimate of the weights of the time-delayed copies
of the reference signal in the surveillance signal using the pseudo-inverse (appendix listing 1) and the result
of iterative inverse matrix computation (appendix listing 2) in which no explicit matrix inversion is needed
but only matrix products. The data have been collected from an experimental WiFi passive RADAR
setup with an 8-path antenna array receiver so that eight independent measurements of the the surveillance
signals are analyzed.2 The reference signal will either be used to synthesize known surveillance signals for
algorithm assessment, or will be compared with experimental measurements of surveillance signals for sensor
characteristics extraction.

2.2 Experimental demonstration

Using OMP and the iterative matrix inversion implementation, the DSI is indeed suppressed as shown in
Fig. 6. In this figure, the result of DSI suppression using the pseudo-inverse (top) is favorably compared
with the OMP result (middle) as emphasized by the difference between the two curves (bottom).

Thus, the iterative matrix inversion implementation of OMP is functional as an algorithm for extracting
sensor echoes from the correlation between the DSI-cleaned surveillance signal and the reference signal. The
implementation remains computationally intensive and requires keeping a memory of the whole reference and
surveillance signals, using most resources on the low-end FPGAs (e.g. Zynq-7010 fitted on the Redpitaya
board) considered for assembling an embedded reader with real time sensor echo detection capability.

3. STOCHASTIC ITERATIVE GRADIENT DESCENT WITH HARD
THRESHOLDING

The OMP approach aims at identifying which time-delayed copy of the reference signal lies in the surveillance
signal through an iterative process on the time delays, removing from the strongest to the weakest copy of
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Figure 6. Comparison of the weight estimated through the pseudo inverse function (top) and through OMP (middle)
for time delays ranging from -16 to +16 sampling intervals (-0.5 to +0.5 µs) for all 8 antenna measurements. The
difference between the two results is shown as the bottom chart. In all cases the echoes of the sensors are visible on
all 8-antenna signals between 1 and 3 µs, with some leftover DSI in the 0.5 to 1 µs delay range that does not impact
our ability to recover the sensor measurement. The correlation peak at 3.2 µs is intrinsic to the WiFi signal structure
and not part of the sensor response.

the reference signal in the surveillance signal. Thus, OMP assumes that the whole surveillance and reference
datasets have been collected and stored in memory. Such an approach is poorly suited to FPGA implemen-
tation which is best designed for pipelined processing of new samples as they are collected. Furthermore,
the iterative matrix inversion algorithm depicted earlier, despite removing the need for matrix inversion, still
requires computing the scalar inverse 1/k, a challenging operating on an FPGA.

Thus, such an approach does not address the practical measurement issues that 1/ the time delays and
weights of the reference signal copies in the surveillance signal hardly vary from one measurement to another
considering the fast (radiofrequency) sampling rate and 2/ data from the surveillance and reference channels
are continuously streamed from the two analog-to-digital converter channels. Hence, as shown in Fig. 4,
rather than addressing the DSI suppression issue along the time-delay (matrix column) direction, we consider
the challenge of identifying time-delayed copies of the reference signal in the surveillance signal along the
acquisition (matrix lines) dimension.

The SGD method15 aims at solving the least-squares problem using an iterative optimization scheme
which avoids matrix inversions and can proceed incrementally, yielding a highly scalable algorithm. In our
setting, identifying the weights of the time delayed copies of the reference signal in the surveillance signal
can be rephrased as a least squares problem

min
w∈CT+1

1

2
‖sur −Xw‖22 (5)

The SGD algorithm16 performs gradient steps by updating the weight vector w of the form
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w(l+1) = w(l) + α(l)XH
i (suri −Xt

iw
(l)) (6)

where i is randomly selected among the observed time indices. Standard choices for the learning rate α(l)

include the constant step strategy and the α(l) = 1/
√
l schedule. Throughout these investigations we have

selected α ranging from 5 ·10−3 to 3 ·10−2 on synthetic data (Fig. 7) and α = 10−2 on experimental datasets
(Figs. 8 and 9).

Our new approach to the problem combines the stochastic gradient scheme (6) with the Iterative Hard
Thresholding Scheme of17 by setting to 0 the weights below a given threshold defined as a fraction of the
maximum of the weight values to accelerate the convergence of the algorithm.

w(l+1) = Tλ(l)

(
w(l) + α(l)XH

i (suri −Xt
iw

(l))
)

(7)

where Tλ is the thresholding operator that sets all values below the threshold λ to zero and λ(l) is chosen so
as to select the values below 1% of the largest in absolute value.

Not only does the thresholded stochastic gradient descent method provide the weights of the DSI co-
efficients for future subtraction, it also allows for identifying the sensor echoes if a long enough horizon is
allowed for the algorithm search. The assumption for stochastic gradient descent though is the sparsity of
the weights, assuming few echoes in the returned signal (a well met hypothesis) spaced apart (an hypothesis
to be discussed).
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Figure 7. Left: stochastic gradient descend (SGD) applied to the synthetic dataset described in the text, with a hard
threshold of λ = 0.05 times the maximum weight value. The red and blue circles indicate the complex weights applied
to the delayed copies of the reference signal to synthesize the surveillance signal, emphasizing the excellent match
between the targeted value and the weights identified by SGD. Right: evolution of the relative error (logarithmic
scale) as a function of iteration number (abscissa – logarithmic scale) for various values of α. The iterations were
stopped when the relative error variation reached 10−8, indicating no evolution of the weights during the gradient
descent iterations.

Fig. 7 demonstrates the application of the stochastic gradient method (appendix, listing 3: note the
real implementation of the proposed method for complex values) to synthetic surveillance data generated
by adding time delayed copies of experimental WiFi reference signals. In these examples, the time delays
introduced were -60, -30, 0, 50 and 70 with arbitrary complex weights of representative of typical SAW echo
delays since at a rate of 125/4=31.25 MS/s, an echo delayed by 1 to 2 µs is located at sample numbers 32
to 64. Fig. 7 (right) emphasizes the dependency of the convergence rate on the free parameter α which is
here selected arbitrarily to yield convergence as quickly as possible: a rationale approach18 to identifying α
will be part of further investigations.
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Hence, in the case of the iteratively thresholded stochastic gradient method, the objective might no longer
DSI suppression to allow for the cross correlation, but sparse distributions of delayed copies of the reference
signal in the surveillance signal position and weight identification. However, we have observed that sensor
echoes are too weak to be identified by the SGD algorithm and are cancelled by the hard thresholding due
to their low power with respect to the DSI. Indeed with a echoes 25 to 50 times weaker than DSI (Fig. 3),
either the threshold λ is too high and cancels the weight of the sensor echo copies of the reference signal
in the surveillance, or λ is too small at the level of the noise and prevents SGD from converging. Hence,
the demonstration on experimental data remains on DSI weight identification (Fig. 8) followed by DSI
subtraction and cross-correlation of the cleaned surveillance signal with the reference signal (Fig. 9) for
sensor echo extraction.
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Figure 8. Stochastic Gradient Descent (SGD) applied to experimental WiFi passive RADAR signals collected as a
SAW sensor was illuminated by a non-cooperative emitter. Left: the weights of DSI identified by SGD match the
least-square (LS) analysis found by applying the pseudo-inverse of the time delayed copies matrix to the surveillance
signal. Right: relative error (logarithmic scale) as a function of iteration number (logarithmic scale) demonstrating
convergence in about 2000 iterations.

Fig. 8 demonstrates convergence of the SGD algorithm in about 2000 iterations. At a sampling rate of
125/4=31.25 MS/s or 32 ns/cycle, convergence will require 64 µs of data acquisition, well below typical time
constants for temperature or chemical sensing using passive wireless SAW sensors. Furthermore, for faster
physical quantities such as strain sensing,19 the sensor environment is expected not to vary significantly over
sub-100 µs durations and the DSI identification using SGD considered to be still valid for extracting sensor
echoes whose phase is representative of stress levels in the sensor.

Fig. 9 (left) compares the cross-correlation of the cleaned surveillance signal with the reference signal
either using the least-square solution (LS) obtained by applying the pseudo-inverse of the time-delayed copies
of the reference signal matrix to the surveillance signal, or using the SGD algorithm. While both results
exhibit excellent match, the SGD algorithm is well suited for implementation in an FPGA. In all these
demonstrations, the classical random selection of the sample in the dataset when applying SGD is replaced
with a sequential selection of each element of the dataset (cyclic buffer with the sample index selected
modulo the dataset length – 32768 samples in these examples) representative of a continuous stream of
data collected by the analog to digital converters connected to the surveillance and reference channels of the
passive RADAR receiver. Running a C++ implementation of 2000 iterations of the SGD algorithm on the
Cortex-A9 ARM processing system of the Zynq-7010 fitted on the Redpitaya board lasts 33.5 ms (168 ms
for 10000 iterations), emphasizing the need for an FPGA implementation to achieve the 500-fold speed gain
targeted for real time processing (Fig. 9, right).
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Figure 9. Left: comparison of the normalized cross-correlation of the raw surveillance signal and reference signal
in which the sensor response is hidden below interference and WiFi autocorrelation structure, surveillance signal
cleaned from DSI using the least square (LS, pseudo-inverse matrix calculation) classical technique and the proposed
Thresholded SGD algorithm. Excellent match is observed on the sensor echoes using the latter techniques. Right:
FPGA SGD with Hard Thresholding implementation principle. Colours refer to the line numbers in Listing 3 in the
appendix. Iteration control logic is not shown on this chart focusing on arithmetic processing.

4. CONCLUSION

We have addressed the issue of real time direct signal interference removal in a passive RADAR setup de-
signed to measure passive sensor responses. Since radiofrequency datastreams are collected using a field
programmable gate array, algorithms compatible with such architectures are considered, namely with min-
imal memory consumption and lack of matrix inversion. We have demonstrated that an iterative matrix
inversion applied to Orthogonal Matching Pursuit will remove the need for matrix inversion in the FPGA
and restrict computations to vector multiplications. However, a scalar value inverse remains to be computed,
a potentially challenging task in the FPGA hardly supporting division. As an alternative, we have explored
the Stochastic Gradient Descent algorithm with Hard Thresholding which demonstrates comparable perfor-
mance with an algorithm suitable for processing streams of data and adapting continuously the weights of the
Direct Signal Interference for subtraction and correlating the cleaned surveillance signal with the reference
signal.
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[14] Polat, Ö. and Kayhan, S. K., “High-speed FPGA implementation of orthogonal matching pursuit for
compressive sensing signal reconstruction,” Computers & Electrical Engineering 71, 173–190 (2018).

[15] Frotzscher, A. and Fettweis, G., “A stochastic gradient LMS algorithm for digital compensation of Tx
leakage in Zero-IF-Receivers,” in [VTC Spring 2008-IEEE Vehicular Technology Conference ], 1067–
1071, IEEE (2008).

[16] Bertsekas, D. P., “Incremental gradient, subgradient, and proximal methods for convex optimization:
A survey,” Optimization for Machine Learning 2010(1-38), 3 (2011).

[17] Blumensath, T. and Davies, M. E., “Iterative hard thresholding for compressed sensing,” Applied and
computational harmonic analysis 27(3), 265–274 (2009).

[18] Chrétien, S., Gibberd, A., and Roy, S., “Hedging parameter selection for basis pursuit,” arXiv preprint
arXiv:1805.01870 (2018).

[19] Goavec-Merou, G., Chrétien, N., Friedt, J.-M., Sandoz, P., Martin, G., Lenczner, M., and Ballandras,
S., “Fast contactless vibrating structure characterization using real time field programmable gate array-
based digital signal processing: Demonstrations with a passive wireless acoustic delay line probe and
vision,” Review of Scientific Instruments 85(1), 015109 (2014).

Appendix

OMP algorithm implementation using GNU/Octave’s pinv() pseudo-inverse function:

Listing 1. Explicit matrix pseudo-inverse computation least square method

1 function [x,Ind]=omp(PSI_und,y,iter_max)

2 % PSI is the pre-defined under-sampled dictionary (delayed copies of the reference signal)

3 % y is the under-sampled received signal

4 % x is the coefficients of the selected column of PSI

5 % Ind is the index of the selected column of PSI

6 x=zeros(size(PSI_und,2),1);

7 res=y;Ind=[];

8 for iter=1:iter_max

9 ll=PSI_und’*res; % 1) Matched filter

10 lg=abs(ll); % T+1 long vector

11



11 [~,IX]=max(lg); % 2) Column selection

12 Ind=[Ind’ IX]’; % iter long vector

13 Psi=PSI_und(:,Ind); % 3) Least square: length(PSI_und) x iter matrix

14 weights=pinv(Psi)*y % pinv() /!\ iter long vector

15 res=y-Psi*weights; % 4) Residual update

16 end

17 x(Ind)=weights;

OMP algorithm implementation (GNU/Octave) using block inversion function:

Listing 2. Iterative matrix inversion orthogonal matching pursuit method

1 function [x,Ind]=omp(PSI_und,y,iter_max) % see parameter definition above

2 x=zeros(size(PSI_und,2),1);

3 res=y;Ind=[];

4 for iter=1:iter_max

5 ll=PSI_und’*res; % 1) Matched filter

6 lg=abs(ll); % T+1 long vector

7 [~,IX]=max(lg); % 2) Column selection

8 Ind=[Ind’ IX]’; % iter long vector

9 if (iter==1)

10 Psi=PSI_und(:,IX);

11 invA=1/(Psi’*Psi); % save 1/A

12 weights=(Psi’*y)/(Psi’*Psi) % this matches xx=pinv(Psi)*y

13 else

14 A=Psi’*Psi; % |Psi(n-1)|

15 b=Psi’*PSI_und(:,IX); % b=concatenation of new vector to old matrix

16 c=abs(PSI_und(:,IX)’*PSI_und(:,IX));

17 k=1/(c-b’*invA*b); % actually 1/k

18 invA=[invA+k*invA*b*b’*invA -invA*b*k ; -k*b’*invA k]; % newA=[A b; b’ c];

19 Psi=PSI_und(:,Ind);

20 weights=(invA*Psi’)*y % 3) Least square

21 end

22 res=y-Psi*weights; % 4) Residual update

23 end

24 x(Ind)=weights;

SGD method with Iterative Hard Thresholding (IHT):

Listing 3. Stochastic Gradient Descent implementation for complex datasets

1 % assumes vector x to be reference channel and vector y to be surveillance -- returns w1 weights

2 for k = 1:number_of_iterations % typically 1000-10000

3 i = mod(k,N-2*p-1)+1; % should be random, but systematic iteration simulating datastream

4 i = i+p; % allow for negative delays

5 xx = [real(x(i-p:i+p)).’,-imag(x(i-p:i+p)).’;...

6 imag(x(i-p:i+p)).’,real(x(i-p:i+p)).’];% real and imaginay

7 e = [real(y(i));imag(y(i))] - xx*w1; % real and imaginary, since weights w1 are complex

8 w1 = w1 + alpha * xx.’ * e; % gradient descent

9 w1_real = w1(1:end/2);

10 w1_imag = w1(end/2+1:end);

11 w1_com = w1_real +1j * w1_imag;

12 I = find(abs(w1_com)<threshold*max(abs(w1_com))); % hard thresholding @ threshold*max(weights)

13 w1_com(I) = 0;

14 w1 = [real(w1_com);imag(w1_com)];

15 end

12


