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ABSTRACT

In this paper, an adaptive phononic crystal slab based on the combination of metallic parts and highly dissipa-
tive polymeric interfaces is designed. Cylindrical pillars are composed of shape memory polymer and aluminum
deposited periodically on the aluminum slab. The mechanical properties of the polymer depend on both tem-
perature and frequency and can radically change from glassy to rubbery state, with various combinations of
high/low stiffness and high/low dissipation. A 3D finite element model of the cell is developed for the design of
the metamaterial. The shifted-cell operator technique is used to correctly handle damping effects in the disper-
sion analysis. In order to validate the design and the adaptive character of the metamaterial, results issued from
a full 3D model of a finite structure embedding an interface composed by a distributed set of the unit cells are
presented. Various driving temperatures are used to change the behaviour of the system, and numerical results
obtained on the adaptive structure are compared to experimental ones. Two states are obtained by changing the
temperature of the polymeric interface: at 25◦C a bandgap is visible around a selected resonance frequency, and
it doesn’t exist anymore above the glass transition temperature, where the phononic crystal slab tends to behave
as an homogeneous plate. Numerical and experimental results show energy propagation along the borders of the
slab in the bandgap.

Keywords: Periodic structures, Metamaterial, Dispersion, Dissipation, Vibroacoutics.

1. INTRODUCTION

A metamaterial is an artificial multiscale architectured material designed to control and manipulate waves in
gases, liquids or solids. This paper focuses on elastic wave porpagations. In the case of elastic waves, metamateri-
als can exhibit particular elastodynamic properties that are not found in a natural material. The term appeared
in 1999. However, physics governing their behavior was developed in the 1960s by physicist Viktor Veselago.1 It
was not until the 2000s that the first experimental realization2,3 was achieved. Mechanical metamaterials have
been recently hailed as a new class of structural concept able to bring novel multifunctionalities4 by changes
of compliance, shape, or by embedding oscillators or smart material inserts. Some examples (to name a few)
are multiscale architecturally structured topologies,5 zig-zag folded sheets,6 pentamodal lattices,7 systems with
distributed resonators,8,9 smart/magnetic materials,10 tunable connectivity,11 phononic stubbed plates,12 flat
lenses (super lenses),13 3D tunable phononic crystals,14 tunable metamaterial beam with shape memory alloy
resonators,15,16 auxetic periodic structure (with negative Poisson ratio)17,18 and nonlinear auxetic dampers.19
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A phononic crystal is a metamaterial with a periodic structure, that exhibits spatial periodicity. Historically,
they have been introduced in order to extend to the domain of elastic waves phenomena highlighted during the
propagation of electromagnetic waves in photonic crystals. When photonics and phononics effects cross and there
is a change in the propagation of elastic and optical waves, the term phoXonic crystal is used.20

The control of the elastic waves can be performed by combining Bragg’s bandgap21 (wave interferences),
resonant’s bandgap (resonance of a component embedded in the unit cell), damping and/or active control. The
first occurs when the wavelength is near with the characteristic length of the periodic network. The local
resonance phenomenon occurs when the frequency of the wave corresponds to the resonance frequency of the
resonator. The periodic structures can stop the wave propagation, but can also lead to other properties such as
confining waves or guiding waves in a particular direction or guiding along a chosen path of propagation. These
phenomena occur at a longer wavelength than the crystal period. The energy can then be reflected, transmitted,
damped, focused or confined in a specific zone of the structure. However, the practical realization of real-life
2D or 3D finite systems may lead to some situations where energy transfers are not in accordance with those
predicted by the infinite system considered in the design, because of reflections on the boundaries conditions of
the finite structure.

On the other hand, the study of periodic structures has a long history in the field of vibrations and acous-
tics.22 This topic has interested researchers over the years, and a growing activity on this field is observed on
the last decade, with the objective of designing structures exhibiting properties that conventional ones cannot
possess.17,23,24 The methods currently used are most of the time based on those derived from wave propagation
in crystals,25 where almost no dissipation occurs. Reaching the upper scale for structural dynamics implies that
damping effects have to be included in the analysis.

In this paper, first, some numerical tools for dispersion analysis of periodic structures are presented. The
classical Floquet-Bloch approach is presented, as a reference. This technique uses proper boundary conditions
on the unit cell, but dealing with damping is not easy for 2D or 3D cases. Secondly, the shifted-cell operator
technique is described. It consists of a reformulation of the partial differential equation (PDE) problem by shifting
-in terms of wavenumber- the space derivatives appearing in the mechanical behavior operator inside the cell,
while imposing continuity boundary conditions on the borders of the domain. Damping effects can be introduced
in the system. This strategy makes it possible to solve the problem with an arbitrary frequency dependency of
the physical properties of the cell. A focus is proposed on tools for the post-processing of dispersion diagrams
in damped configurations, e.g., group velocity. Third, an adaptive metamaterial based on the combination of
metallic parts with a highly dissipative polymeric interface is designed. In order to validate the design and the
adaptive character of the metamaterial, results issued from a full 3D model of a finite structure embedding an
interface made of a distributed set of the unit cells are presented. After this step, a comparison of the results
obtained using the tunable structure simulation and the experimental results is presented. Finally, a supercell-
based approach is proposed to handle finite system boundary conditions in order to be able to identify situations
in which energy transfer may arise because of reflections on the border of the elastic domain. Computations are
performed on a two-cell with adequate boundary conditions. The methodology is described and validated using
the full finite model and experimental tests on a 2D metamaterial structure.

2. NUMERICAL TOOLS FOR EFFICIENT SIMULATIONS OF WAVE
PROPAGATION IN DAMPED PERIODIC STRUCTURES

2.1 Reference structure

The reference structure used in this paper is presented in reference.26 The system consists of an infinite 3D
periodic bidirectional waveguide shown in figure 1a. It is a 1 mm thick plate with periodic cylindrical pillars
made of isotropic aluminium 6063-T83 (ν = 0.33, E = 69e9[Pa] and ρ = 2700[kg/m3]). The unit cell and the
corresponding first Brillouin zone are shown in figure 1b.

2.2 Classical method based on Floquet-Bloch theorem

The Floquet-Bloch approach is a method commonly used for the analysis of periodic structures. The material is
supposed to be linear, elastic and isotropic. For a 2D periodic structure, the harmonic homogeneous dynamical
equilibrium of the system is characterised by the following partial differential equation
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Figure 1. a) Infinite reference wave guide. b) Real and reciprocal lattices.

ρ(x)ω2u(x) +∇ [C(x).∇sym(u(x))] = 0, (1)

where u(x) ∈ R3 is the displacement vector, C(x) is the elastic tensor, ε(x) = ∇sym(u(x)) = 1
2 (∇uT (x) +

u(x)∇T ) is the strain tensor, ρ is the material density and ω is the circular frequency.

The periodicity is defined on the borders of the domain using the Floquet-Bloch boundary conditions, that
write uR = e−jkxr1uL and vR = e−jkyr2vL where uR (resp. vR) is the displacement on the right border and uL
(resp. vL) is the displacement on the left border in x (resp. y) axis, kx and ky are respectively the wavenumbers
in the x and y directions27,28 as shown in figure 1b. A parametric eigenvalue analysis is performed using the
Pardiso solver,29 two parameters (wavenumbers) are considered, namely kx = [0 π/r1] and ky = [0 π/r2]. The
eigenfrequencies are obtained by solving the problem. The wave’s dispersion curves of the undamped system are
plotted on the whole first Brillouin zone (figure 2a) and on the contours (figure 2b). The frequencies defining
the bandgaps can be found by considering only the contour of the irreducible Brillouin zone for non-singular
system.25 It is worth noticing that this property is extensively used in open literature, although no formal proof
of its validity is available, and therefore the results obtained need to be checked carefully.30 So, figure 2b is
sufficient to observe partial bandgaps along x direction and complete bandgap in all the directions. It appears
that the structure exhibits partial bandgaps for frequencies around 20 and 100 kHz in some specific directions
and a complete bandgap between 114 and 143 kHz. In this formulation, the wavenumbers are parameters of
the eigenvalue problem, the solutions being the frequencies. Therefore, handling frequency-dependency of the
mechanical properties is not easy, since it requires the resolution of a nonlinear and non polynomial eigenvalue
problem, or condensation procedures providing ill-conditioned matrices.31,32 Alternative procedures can be found
in the literature, such as ref.,33 where the damping provided by a generalized Maxwell model is included in the
stiffness matrix, and ref.,34 where an EBSM (Extended Bloch Mode Synthesis) with modal reduction is applied
for fast calculation. The next section recalls a suitable method for handling frequency-dependency in dispersion
analysis.
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Figure 2. a) Dispersion surfaces on the Brillouin zone. b) Dispersion curves on the contour of the Brillouin zone. Partial
bandgaps and complete bandgap respectively in blue and green.

2.3 Shifted-cell operator method

The shifted-cell operator, alternative formulation proposed by,35–37 is recalled in this subsection with details on
its numerical implementation and the link between left and right eigenvalue problems.

2.3.1 Numerical implementation

The shifted-cell operator37 technique consists of a reformulation of the PDE problem by shifting -in terms of
wavenumber- the space derivatives appearing in the operators inside the cell, while imposing continuity boundary
conditions on the borders of the domain. The formulation leads to the following eigenvalue problem :

[(K− ω2M) + λi(L− LT )− λ2
iH]φri = 0, (2)

where λi = jki is the i− th eigenvalue, φri is the right eigenvector associated to λi, M and K are respectively
the standard symmetric definite mass and symmetric semi-definite stiffness matrices, L−LT is a skew-symmetric
matrix and H is a symmetric semi-definite positive matrix for details). In this formulation, all matrices can
depend on ω. A parametric eigenvalue analysis is then performed where the pulsation ω and the wave propagation
angle θ (such that kx = k cos θ and ky = k sin θ) are fixed as real parameter, allowing introduction of damping
effects. The wavenumbers λi = jki and the associated right eigenvectors φri are computed by solving the
quadratic eigenvalue problem (equation 2).

For the computation of the group velocity that will be described in the next section, both left and right
eigenvectors of the non-symmetric eigenvalue problem are required. We propose to rewrite (equation 2), using
the state-space, as (

0 Id
(K− ω2M) L

)(
φri
λiφ

r
i

)
= λi

(
Id 0

LT H

)(
φri
λiφ

r
i

)
, (3)

which is denoted

A1(ω)ψri = λiA2(ω)ψri , (4)

where
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A1(ω) =

(
0 Id

(K− ω2M) L

)
, (5)

A2(ω) =

(
Id 0

LT H

)
, (6)

and

ψri =

(
φri
λiφ

r
i

)
. (7)

Conversely, a left-eigenvector for the same eigenvalue satisfies

ψli
T
A1(ω) = λiψ

l
i

T
A2(ω). (8)

Equation 8 can be developed to find the link between ψri and ψli. After a few steps the following relationship
is obtained :

ψli =

(
λi(H

Tφli)− LTφli
φli

)
=

(
λi(H

Tφr−i)− LTφr−i
φr−i

)
. (9)

Hence, by solving the right eigenvalue problem, the i-th mode (i ∈ N∗) is obtained, λi ∈ C being the eigenvalue
associated to the right eigenvector φri . For each mode i, a mode −i is associated with λ−i such that λ−i = −λi
and φr−i such that φr−i = φli. So, by solving the right eigenvalue problem, the adjoint solution is found too.

2.3.2 Group velocity

In this section, the expression of the group velocity is derived. It will be used in the next section, on the one
hand, as a sorting criterion for distinguishing a propagating wave from an evanescent wave and, on the other
hand, as an indicator for branch tracking.

For frequency-dependent systems, the estimation of the group velocity is not trivial.38,39

Equation 4 is differentiated and multiplied by the left eigenvector ψli
T

following the procedure proposed by38

such that

ψli
T ∂A1(ω)

∂ω
ψri +ψli

T
A1(ω)

∂ψri
∂ω

= ψli
T ∂λi
∂ω

A2(ω)ψri +ψli
T
λi
∂A2(ω)

∂ω
ψri +ψli

T
λiA2(ω)

∂ψri
∂ω

. (10)

According to equation 8,

ψli
T
A1(ω)

∂ψri
∂ω

= ψli
T
λiA2(ω)

∂ψri
∂ω

, (11)

hence

ψli
T ∂A1(ω)

∂ω
ψri = ψli

T ∂λi
∂ω

A2(ω)ψri +ψli
T
λi
∂A2(ω)

∂ω
ψri . (12)

After several steps, isolating the ∂λi

∂ω expression , the following formulation is obtained :

∂λi
∂ω

=
ψli

T
[
∂A1(ω)
∂ω − λi ∂A2(ω)

∂ω

]
ψri

ψli
T
A2(ω)ψri

. (13)
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In this case, the group slowness (see section 6 for details) is expressed as

Sg =
∂ki
∂ω

= −j
φli
T

[−2ωM + ∂K
∂ω − λi

∂LT

∂ω + λi
∂L
∂ω − λ

2
i
∂H
∂ω ]φri

φli
T

[−L+LT + 2λiH]φri
. (14)

The complex group velocity is the inverse of the group slowness

Cg =
1
∂ki
∂ω

=
1

−j φ
l
i
T [−2ωM+ ∂K

∂ω −λi
∂LT

∂ω +λi
∂L
∂ω−λ

2
i

∂H
∂ω ]φr

i

φl
i
T [−L+LT +2λiH]φr

i

. (15)

This expression is consistent with the estimation of the energy velocity v = I/E40 where I is the flow of
energy and E is the total mechanical energy density.

2.3.3 Sorting criteria for distinguishing a propagating wave from an evanescent wave

The problem being damped, all the wavenumbers are complex, and the distinction between ”propagative” and
”evanescent” waves becomes difficult. This is why sorting criteria are proposed in the following.

First of all, all the waves are shifted to the first irreducible Brillouin zone. Then, criteria are defined as:

• ratio between real and imaginary part of each wavenumbers

C1 = real(k)/imag(k); (16)

• ratio between real and imaginary part of the velocity of energy transport40 v = I/E where I is the flow of
energy and E the total mechanical energy density, approximated from the kinetic energy E = 2Ec

C2 = real(v)/imag(v); (17)

• ratio between real and imaginary part of the group velocity38

C3 = real(Cg)/imag(Cg). (18)

Only the waves corresponding to C1 > τ1; C2 > τ2 et C3 > τ3 are considered propagative. In practice, the
thresholds τ1, τ2 et τ3 are chosen such as τ1 = τ2 = 1; τ3 = 2. This is an arbitrary choice that provides good
results for the cases investigated by the authors. However, for others cases, alternative values of the thresholds
may be required.

2.3.4 Shifted-cell operator implementation validation for conservative case

The reference structure (figure 1a) is used. Figure 3 presents dispersion curves along the Γ−X (φ = 0◦) direction
obtained with the shifted-cell operator method for conservative case with raw results in black (unsorted results)
and sorted results in blue, the real part of wavenumbers is represented on the line from 0 to 1 and the imaginary
part of wavenumbers from 0 −1. Sorted results are obtained after the application of sorting criteria describe
above. No damping being used in the simulations, consequently, the propagating branches possess purely real
wavenumbers hence the blue points along the ordinate axis (imag(k) = 0).

A comparison between the results obtained using the method based on the Floquet-Bloch theorem and the
shifted-cell operator is first performed on a conservative structure to validate the implementation of the shifted-
cell operator technique. Figure 4a presents the dispersion curves obtained along the Γ − X direction when φ
is equal to zero. Shifted-cell operator and Floquet-Bloch results are respectively in blue dots and dotted lines.
Both methods lead to similar results and the shifted-cell operator method is thus verified.

It can be noted that around 70 kHz on the red dotted lines, the branches seem to get closer without crossing,
there is indeed a crossing from which a method of branch tracking is developed in the next subsection 2.3.5.
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2.3.5 Branch tracking

The dispersion diagrams being obtained point by point, the tracking of the branches is required to identify
automatically the curves corresponding to each physical mode. The group velocity constitutes a pertinent
indicator for the branch tracking from one computational point to another. In order to do that, an algorithm

allows to compare the computed group velocity
(
∂ω
∂ki

)
computed by equation 34 and the post-processed group

velocity
(

∆ω
∆ki

)
which is evaluated using finite difference.

Solutions for associating points on the basis of the nature of the displacement field to identify the branches
are proposed in the literature, MAC criteria or eigenvectors orthogonality.37 These methods need to store the
eigenvectors at each step, which may correspond to a lot of data. An alternative is proposed here on the basis
of the group velocity value. This indicator ensures the correct plotting of the dispersion diagram, particularly in
the case of crossing branches, veering or bifurcation.41

The indicator operates from left to right (figure 5) : starting from a (ω, k) point with known group velocity(
∂ω
∂ki

)
, the routine compares this velocity with all the post-processed group velocities by finite difference of the

right-hand points. A minimization is done to identify the point with the post-processed group velocity closest

to
(
∂ω
∂ki

)
. This point is defined as next point and step by step the branch is identified. The sorting algorithm

has been validated with damping.

k

ω

Starting point (ki,ωi,Cgi)

Δω2/Δk2 ≈ Cgi

Δω1/Δk1 < Cgi

Δω3/Δk3 > Cgi

Δω4/Δk4 > Cgi

Δω6/Δk6 ≈ Cg2

Δω5/Δk5 < Cg2

Δω7/Δk7 > Cg2

Δω8/Δk8 > Cg2

Figure 5. Scheme of the branch tracking routine

For example, in figure 6, around 70 kHz, there is a cross between the light blue branch (n◦6) and the green
branch (n◦5). The branches on this diagram are determined from the figure 7, showing the evolution of the
group velocity with a color code corresponding to the dispersion diagram of the figure 6. It can be seen that the
group velocity goes to zero near the upper or the lower frequency of the band gaps, meaning that the energy
distribution becomes stationary.
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3. DESIGN AND VALIDATION OF A TEMPERATURE-DRIVEN ADAPTIVE
PHONONIC CRYSTAL SLAB

3.1 Description of the concept

The structure presented in section 2.1 is modified in order to obtain an adaptive structure. As shown in figure 8,
the pillars are now made of combination between a highly dissipative polymer tBA/PEGDMA42 and aluminum
6063-T83.

As it will be shown in the next section, the polymer thickness has been chosen in order to open a reso-
nant bandgap around 40 kHz, which means below the Bragg bandgap frequency. The polymer has a density
ρpoly = 1004[kg/m3] and a Poisson ratio νpoly = 0, 37. The elastic properties are highly dependent on the
temperature and the frequency.

In the harmonic regime, the complex modulus of the polymer writes

E∗poly(ω, T ) = E′ + jE′′ = E′(1 + jtan(δ)), (19)

where tan(δ) = E′′/E′ is the loss factor, E′ is the storage modulus and E′′ is the loss modulus. In this work,
a fractional derivative Zener model is used. The expression of the elastic complex modulus is

9



10 mm 

(a)

Polymer
Aluminum

7 mm

3 mm 

(b)

Figure 8. a) Reference structure, 10 mm height aluminum cylinder. b) Metamaterial with 3 mm high polymeric interface
between base and 7 mm high aluminum cylinder.

Table 1. tBA/PEGDMA Zener parameters

E0poly [MPa] E∞poly [Mpa] α τ0
0.67 2211 0.78 0.91

E∗poly(ω, T ) =
E0poly + E∞poly(jωτ(T ))α

1 + (jωτ(T ))α
, (20)

where E0poly et E∞poly are respectively the static elastic modulus and the asymptotic value of the dynamical
modulus, τ is the relaxation time and α is the order of fractional derivative. The values of the four parameters
E0poly, E∞poly, α and τ is obtained by the fitting of experimental measurements43,44 (tableau 1).

The translation factor aT comes from the Williams-Landel-Ferry law (WLF),45 the temperature dependency
of aT is described by

log10(aT (T )) =
−C0

1 (T − T0)

C0
2 + (T − T0)

, (21)

with C0
1 et C0

2 the law constants for reference temperature T0 = 40◦C (C0
1 = 10, 87 and C0

2 = 32, 57 K). The
relaxation time τ is linked to the translation factor :

τ(T ) = aT (T )τ0. (22)

The storage modulus and the loss factor are plotted in figure 9a and figure 9b for two temperatures of interest,
namely 25◦C and 90◦C. At ambient temperature, the polymer is stiff and its loss factor is almost equal to zero.
At 90◦C, the loss factor is over 1.5 on the frequency range (0 to 100kHz), with a maximum value of 2.5 and the
stiffness is very low.
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Figure 9. Mechanical properties of the tBA/PEGDMA at 25◦C and 90◦C. a) Storage modulus. b) Loss factor.

3.2 Dynamical properties

3.2.1 Dispersion analysis

The shifted-cell operator technique is used to obtain the dispersion curves along the Γ−X direction. Damping
is included in the analysis using fractional derivative Zener model presented above.

Figures 10a to 10c show dispersion curves along the Γ−X direction obtained with the shifted-cell operator
method. A comparison between the results obtained using the reference structure and the adaptive structure is
presented. The two states are obtained by changing the temperature of the polymeric interface: at 25◦C, the
resonant bandgap is visible around the selected frequency (40 kHz), as defined during the design of the resonator.
Above the glass transition of the polymer, the phononic crystal slab tends to behave as an homogeneous damped
plate.

The group velocity associated to dispersion curves along the Γ −X direction at ambient temperature 25◦C
and 90◦C respectively, using branch tracking shown in the subsection 2.3, is plotted figure 11a and 11b.

At this step, we have used dispersion analysis to design the temperature-driven adaptive phononic crystal
slab, which is expected to follow the physical behaviour described by the diagrams. The purpose of the next
section is to check the validity of the design when the crystal is embedded in a finite structure.
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Figure 10. Dispersion curves along the Γ − X direction obtained with the shifted-cell operator method. a) Reference
structure, all in aluminum. b) Metamaterial at ambient temperature 25◦C. c) Metamaterial at 90◦C and aluminum
plate. Grey shapes represent bandgaps.
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Figure 11. Group velocity associated to dispersion curves a) at 25◦C, b) at 90◦C. Grey shapes represent bandgaps.

3.2.2 Embedding of the crystal in a finite structure : numerical modelling

The crystal (7× 7 cells) is used as interface between two plates, as shown in figure 12. Cell size is 1× 1 cm2, the
total size of the structure is 21× 7 cm2.

PZT

IN

OUT

Figure 12. Finite structure with an interface composed by 7 × 7 unit cells distributed. Piezoelectric patch (PZT) for
excitation in the bottom left corner.

A finite element model of the structure is build (with quadratic Lagrange elements). The structure is free.
A piezoelectric patch (transversal excitation) with harmonic voltage (|U | = 100 V ) is included in the model
in order to be close to the experimental set up and covers all the frequency range from 0 to 50 kHz. Figure
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13 shows numerical frequency responses obtained with the finite elements model for the two temperatures of
interest. Squared velocity amplitudes |V z|2 are averaged on the domain of the input plate (IN) and the output
plate (OUT). Blue and red curves are numerical frequency response at ambient temperature 25◦C for the input
plate (IN) and the output plate (OUT), respectively. Yellow and purple curves correspond to the same quantities
at 90◦C. The grey shape represents the bandgap predicted by the dispersion analysis at ambient temperature.
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Figure 13. Numerical frequency responses. Average squared velocity amplitude |V z|2 on the domain of the input plate
(IN) and the output plate (OUT) at ambient temperature 25◦C respectively in blue and red. At 90◦C, respectively in
yellow and purple. The grey shape represents the bandgap predicted by the dispersion analysis at ambient temperature.

At ambient temperature 25◦C, an output attenuation around 40 kHz is observed. Its width (about 3.1 kHz)
is smaller than the frequency range predicted by the bandgap (∆f = 8.9 kHz). At 90◦C, after the glass
transition, the output attenuation is not visible anymore.

In order to understand this unexpected bandgap width reduction, the vibration field is investigated at 4
frequencies of interest, illustrated in figure 14 : a first point below the bandgap (34.4 kHz), two points in the
expected bandgap (39.2 kHz, 43.3 kHz) and the last one above the bandgap (at 50.0 kHz). The corresponding
operational deflections are shown in figures 15a, 15b, 15c and 15d.

As expected, energy can propagate through the lattice at 34.4 kHz (figure 15a) and 50.0 kHz (figure 15d),
these two frequencies being outside of the predicted bandgap. At 39.2 kHz (figure 15b), inside the bandgap, the
attenuation is clearly visible, all the energy is confined in the input plate (IN) : the stop band effect is obtained.

However, at 43.3 kHz (figure 15c), the lattice is not efficient despite the fact that the frequency of interest
is located inside the predicted bandgap. The operational deflection field clearly shows that in the central part
of the crystal the vibration level is close to zero while the energy propagates along the edges of the periodic
lattice : this phenomenon can not be predicted by the dispersion analysis. This phenomena is experimentally
investigated in the next section.
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39.2 kHz

43.3 kHz
50.0 kHz

34.4 kHz

Figure 14. Zoom on numerical frequency responses. Average squared velocity amplitude |V z|2 on the domain of the
input plate (IN) and the output plate (OUT) at ambient temperature 25◦C respectively in blue and red. The grey shape
represents the bandgap predicted by the dispersion analysis at ambient temperature.

(a) num - 34.4 kHz (b) num - 39.2 kHz

(c) num - 43.3 kHz (d) num - 50.0 kHz

Figure 15. Several points are selected with corresponding deformed shapes a) at 34.4 kHz, b) 39.2 kHz, c) 43.3 kHz and
d) 50.0 kHz.

3.2.3 Experimental validation

Figure 16 shows the structure which has been tested. Polymer parts are realised by laser cutting and metallic
parts by classical mechanical processing. The metamaterial is assembled in two steps by bonding parts together.
The polymer cylinders are glued on the support aluminum plate. After drying and loading processes, at ambient
temperature during 24 hours, aluminum cylinders are glued on the polymer cylinders. A piezoelectric patch
(sintered ceramic PI, d31 effect, 8× 7× 0.2 mm3) provides the harmonic excitation up to 50 kHz.

Figure 17a shows the experimental facility composed by the metamaterial with its mounting bracket, a
thermal chamber, a 3D vibrometer, a piezoelectric amplifier and a thermocouple.

The metamaterial is suspended to reproduce free boundary condition as shown in figure 17b. The mounting
bracket is introduced in a thermal chamber which presents a glass wall allowing 3D vibrometer measurements.
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Figure 16. Metamaterial after several manufacturing steps.

(a) (b)

Figure 17. a) Experimental facility; b) focus on the test structure with free boundary conditions.

The white noise generator provides random input voltage (5 V ) between 500Hz and 50kHz, this signal
is amplified 20 times by the piezoelectric amplifier. Temperature in the thermal chamber is controlled by a
thermocouple. A 3D vibrometer is used to measure the velocity, and frequency responses are calculated with H1
estimator.46

Experimental results at 25◦C

Figure 18a presents numerical and experimental frequency responses at ambient temperature 25◦C. Curves
need to be compared by pairs (yellow-blue and purple-red). Yellow and blue curves correspond, respectively,
to experimental and numerical spatially averaged squared velocity/voltage amplitude (after ×20 amplification)
|V z|2/U2 for the input plate (IN). Purple and red curves correspond, respectively, to experimental and numeri-
cal spatially averaged squared velocity/voltage amplitude |V z|2/U2 for the output plate (OUT). In the bandgap
region, the attenuation predicted by numerical simulation is around 100dB, which corresponds to a ratio be-
tween output and input squared velocity amplitude of the order of 105. Numerical amplitudes in this area are
considerably lower than experimental amplitudes taking into account the experimental environment limitations.
Reaching such a dynamic range in the measurement is not possible with the used experimental setup. However,
the noise level estimation is performed and the green curve shows the background noise generated by the sur-
rounding equipments (acquisition chain, room fan, etc.). It is hence impossible to measure vibration levels below
this limit. The general trends (yellow-blue and purple-red) are similar except in the areas where the measurement
is close to ambient noise.

Additionally to the velocity/voltage transfer functions presented in figure 18a, transmissibility functions
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Figure 18. a) Numerical and experimental frequency responses at ambient temperature 25◦C. Experimental spatially
averaged squared velocity/voltage amplitude |V z|2/U2 on the domain of the input plate (IN) and the output plate
(OUT) respectively in blue and red. Numerical ones respectively in yellow and purple. The green curve shows the noise
measurement. The grey shape represents the bandgap predicted by the dispersion analysis at ambient temperature. b)
Numerical and experimental transmissibility functions IN/OUT at ambient temperature respectively in blue and red. Red
areas show when velocity are in the same order of magnitude as noise.

IN/OUT are presented in figure 18b. This transfer is defined, for both experimental and numerical data, as
follows:

H = 20× log10

(
Σout(|V z|2/U2)

Σin(|V z|2/U2)

)
, (23)

where Σout(|V z|2/U2) and Σin(|V z|2/U2) are, respectively, the average squared velocity amplitude |V z|2 on
the domain of the input plate (IN) and the output plate (OUT).

Red areas show when velocity are in the same order of magnitude as noise. These results confirm that the
transmissibility is well estimated by the model, however the bandgap is not clearly observed in the experiments.

Next, the experimental analysis is focused on the 4 frequency points pointed out in the numerical part.
Figures 19 show experimental deformed shapes at 33.4 kHz, 38.2 kHz, 42.2 kHz and 50.0 kHz corresponding
to numerical deformed shapes (Figure 14). The experimental mesh is not as fine as the finite element one,
however the patterns can clearly be identified. Shapes are similar between numerical and experimental results.
In particular, it can clearly be observed in figure 19c that the energy is transported along the borders at 42.2 kHz.
This observation being experimentally validated, the section 4 aims will propose a new methodology to predict
such configurations using cell-based computation.

Experimental results at 90◦C

In order to switch to the second state of the crystal, the structure is heated at 90◦C. Figure 20a presents
the corresponding numerical and experimental frequency responses. Curves need to be compared by pairs
(yellow-blue and purple-red). Yellow and blue curves correspond, respectively, to experimental and numerical
spatially averaged squared velocity/voltage amplitude |V z|2/U2 on the domain of the input plate (IN). Purple and
red curves correspond, respectively, to experimental and numerical spatially averaged squared velocity/voltage
amplitude |V z|2/U2 on the domain of the output plate (OUT). A good coherence is observed between the
numerical and experimental results. Additionally to the velocity/voltage transfer functions presented in figure
20a, transmissibility functions IN/OUT are presented in figure 20b.
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(a) exp - 33.4 kHz (b) exp - 38.2 kHz

(c) exp - 42.2 kHz (d) exp - 50.0 kHz

Figure 19. Experimental deformed shapes a) at 33.4 kHz, b) 38.2 kHz, c) 42.2 kHz and d) 50.0 kHz corresponding to
numerical deformed shapes (Figures 14).
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Figure 20. a) Numerical and experimental frequency responses at ambient temperature 90◦C. Experimental spatially
averaged squared velocity/voltage amplitude |V z|2/U2 on the domain of the input plate (IN) and the output plate
(OUT) respectively in blue and red. Numerical ones respectively in yellow and purple. b) Numerical and experimental
transmissibility functions IN/OUT at 90◦C respectively in blue and red.

The effect related to the periodicity is no longer observed at this temperature. The aluminum pillars are
completely decoupled from the plate and the polymer still plays a damping role. Frequency response functions
are smoothed at this temperature.

The prediction of the resonances at low frequencies is excellent. The discrepancies increase with frequency,
the numerical model being stiffer than the real structure (no model updating has been performed). Resonance
levels are quite well estimated A poor damping model probably should explains the difference. Anyway, the
physics is well captured by the model and the structure behaves as expected.

4. SUPERCELL ANALYSIS TO HANDLE FINITE BOUNDARY CONDITION

In this section, a supercell analysis is performed in order to predict the propagation of waves along the borders
of the finite structure, without requiring the modelling of the full finite structure, which could induce high
calculation costs. The principle consists in considering a set of seven connected cells in the analysis, as shown in
figure 21. Boundary conditions are as follow:
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• in the x direction, classical Floquet-Bloch conditions are used, namely uR = e−jkxruL where uR is the
displacement on the right border and uL is the displacement on the left border in y axis,

• in the y direction, the left and right borders use the effective boundary conditions (free end in our case).

uL

uR

Fr
ee

Fr
ee

x

y
Figure 21. Boundary conditions of the 7-cell system.

Figure 22a shows dispersion curves along the Γ−X path of the Brillouin zone obtained with the shifted-cell
operator method at ambient temperature (25◦C) for the 1-cell (classical Bloch analysis) and 7-cell systems. The
blue curve corresponds to the 1 cell dispersion curve (figure 10b). The dispersion for the 7-cell system is plotted
in yellow, two branches appear in the bandgap and the corresponding deformed shapes are visible in the figures
22b and 22c. Energy can propagate in the x direction along the free border. The interference effect leads to a
non vibrating bulk and vibrating edges, which propagate vibration energy.

The proposed methodology hence allows identification of propagating waves along the borders inside the
bandgap, cancelling the expected stop band effect. This method can highlight that the attenuation frequency
range in finite structures is smaller than predicted by the bandgap (figure 13).
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Figure 22. a) Dispersion curves along the Γ−X path of the Brillouin zone obtained with the shifted-cell operator method
for the 1 cell and 7-cell system. b) Deformed shape at 40.1 kHz, c) Deformed shape at 40.2 kHz.

5. CONCLUSION

In this article, numerical tools for the dispersion analysis in periodic damped structures are used, with a focus
on the ability of the shifted-cell operator method to deal with the dissipative behaviour of the system. An
adaptive metamaterial based on aluminum pillars glued on a dissipative polymer interface is designed. The
mechanical properties of the polymer depend on the frequency and the temperature, they change radically at
the glass transition. The viscoelastic behavior of tBA/PEGDMA is approximated by a fractional Zener model.
Two states are obtained by changing the temperature of the polymer interface to ambient temperature, the
bandgap predicted by the dispersion diagram is visible around the selected frequency. The attenuation in the
finite structure is not as important as that predicted by the bandgap in the infinite structure. Energy propagates
along each edge of the periodic lattice. This point is confirmed through experimental measurements, and the
dispersion analysis can not predict this effect. Finally, a supercell-based approach is used to handle finite system
boundary conditions in order to identify situations where energy transfer may arise because of reflections at the
border of the domain.
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6. ANNEX: GROUP VELOCITY

In this section, the details for the expression of the group velocity is given. Equation 2.3.2 gives the expression
of the group slowness using λi = jki

∂ki
∂ω

= −j
ψli

T
[
∂A1(ω)
∂ω − λi ∂A2(ω)

∂ω

]
ψri

ψli
T
A2(ω)ψri

. (24)

The matrices A1(ω) and A2(ω) are used

∂ki
∂ω

= −j
ψli

T

(
0 0

∂(K−ω2M)
∂ω − λi ∂L

T

∂ω
∂L
∂ω − λi

∂H
∂ω

)
ψri

ψli
T
(
Id 0
LT H

)
ψri

. (25)

The expression left-eigenvector (ψli) and right-eigenvector (ψri ) are replaced in the following expression

∂ki
∂ω

= −j
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λi(φ

l
i
T
H)− φli

T
L φli

T
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i

) , (26)

after the multiplication of the matrices, the expression of the slowness is found

Sg =
∂ki
∂ω

= −j
φli
T

[−2ωM + ∂K
∂ω − λi

∂LT

∂ω + λi
∂L
∂ω − λ

2
i
∂H
∂ω ]φri

φli
T

[−L+LT + 2λiH]φri
. (27)

The group velocity is the inverse of the group slowness

Cg =
1
∂ki
∂ω

=
1

−j φ
l
i
T [−2ωM+ ∂K

∂ω −λi
∂LT

∂ω +λi
∂L
∂ω−λ

2
i

∂H
∂ω ]φr

i

φl
i
T [−L+LT +2λiH]φr

i

. (28)

For frequency-independent cases, a simplification is possible

Cg =
1

−2jωφl
i
TMφr

i

[φl
i
T (L−LT )φr

i−2λiφl
i
THφr

i ]
.

(29)

In the particular case of on homogeneous cases where the frequency dependency is characterized by a Young’s
modulus such that E = f(ω)E0 and a constant Poisson’s ratio. Hence K = f(ω)K0, H = f(ω)H0 and
L = f(ω)L0. The equivalent quadratic eigenvalue problem is

[f(ω)(K0 + λi(L0 −LT0 )− λ2
iH0)− ω2M ]φri = 0 (30)

In this case, the slowness is expressed as
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Sg =
∂ki
∂ω

= −j
φli
T

[−2ωM + ∂f
∂ω (K0 + λi(L0 −LT0 )− λ2

iH0)]φri

φli
T

[f(ω)(−L0 +LT0 + 2λiH0)]φri
. (31)

Using the expression of the quadratic eigenvalue problem[
∂f

∂ω
(K0 + λi(L0 −LT0 )− λ2

iH0)

]
φri =

[
∂f

∂ω

ω2M

f(ω)

]
φri , (32)

so, the slowness can be written as
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∂ki
∂ω

=
jφli

T
[ω2
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Therefore, the group velocity is expressed as
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1
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