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Comments Responses 

1 

a) It is not clear to the 

reviewer why a stochastic 

analysis is used; the force 

is limited to a point load is 

I guess the same 

conclusions of the study 

may have been obtained 

using a deterministic force. 

Isn't it? If not please 

explain. 

b) It would have been more 

illuminating if a distributed 

random force such as a 

Rain on the roof, a Diffuse 

acoustic field or a 

Turbulent boundary layer 

was used. Please 

comment. 

a) Generally speaking, when dealing with non deterministic 

vibrating systems, a non deterministic (stochastic, for instance) 

analysis should be made to evaluate some quantities of interest. In 

Ref [42], chapter 10, the authors wrote “Real engineering systems 

include some levels of uncertainty that cannot be captured by the 

available deterministic analysis methods”. 

In our case, the excitation is stochastic (non deterministic excitation), 

therefore the system responses will be characterised in statistical 

way, the root mean square response, for instance. 

Besides, the proposed optimization strategy (based on a stochastic 

analysis) has been compared to other optimization strategies based 

on deterministic analysis (Den Hartog, APE) and the results were 

different.  

b) In the presented work, the focus has basically been on the ability 

of the TMD devices to efficiently control the coupled modes that 

are either dominated by structure mode or by cavity mode.  

Since the present manuscript is relatively huge, it can be extended to 

*Revision Notes



 

 

Page 2 / 9 

 
 

deal with other excitation types in a future work.  

2 

I understand the argument of 

the authors that a control at a 

single location is the cavity is 

used to mimic a driver's ear 

in an automobile… However, 

the studied problem is far 

from the one of an 

automobile (different 

excitations, geometry, 

damping: absorbing materials 

are usually used and must be 

accounted for even if the 

firewall is the targeted 

panel…).  I suggest that the 

authors at least monitor 

global indicators such as the 

space averaged quadratic 

velocity (plate) and pressure 

(cavity). Even for the 

automobile problem, not sure 

the pressure filed is 

controlled, say at the 

passenger's ear! An 

alternative will be to show an 

example wherein the control 

targets two or more locations 

in the cavity. 

Thank you for your careful work. The proposed optimization strategy is 

appropriate when dealing with the sound control at a particular 

location inside an enclosure. The proposed optimization strategy can 

be categorized in the first group of optimization approaches as it has 

been defined in Refs [50, 51, 54]. Indeed, the first one being the 

sound pressure level at one or more specified points basically utilized 

for closed domains. The second group, utilized in open domains, 

considers the emitted sound power as objective function. The third 

group considers the transmission loss while the fourth one considers 

all the other objective functions.  

 

Optimizing the TMD parameters using an objective function based 

on space averaged quadratic velocity (plate) and pressure (cavity) or 

on the PSD averaged (over multiple points) yields to different results. 

Indeed, because of the large variability of the PSD responses at 

different locations (please see Figures R1-R3 below), the results of 

the optimization will not guarantee optimal control at the desired 

location inside the enclosure. 

 

Nevertheless, numerical investigations have been made and good 

performance of the TMD devices have been observed at locations 

other than the one that has been used for the optimization. 

Figures R1-R3 below show the PSD responses obtained at different 

locations inside the cavity and when the TMD is optimized at 

microphone location [0.35, 010, -0.875]. 

Although the results in Figs. R2-R3 don’t correspond to optimal 

performance, one can see that the TMD device performs well at 

locations [0.25, 0.15, -0.15] and [0.1, 0.25, -0.25] in spite of the fact 

that the TMD has been optimized at location [0.35, 010, -0.875]. 

 
Figure R1: PSD response  at Microphone location [0.35 0.10 -0.875]; the TMD 

is optimized at microphone location [0.35 0.10 -0.875] 
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Figure R2: PSD response  at Microphone location [0.25  0.15  -0.15]; the TMD 

is optimized at microphone location [0.35 0.10 -0.875] 

 

Figure R3: PSD response  at Microphone location [0.1  0.25  -0.25]; the TMD is 

optimized at microphone location [0.35 0.10 -0.875] 

Figures R4-R6 show the PSD responses obtained at different 

locations inside the cavity when the five TMDs are optimized at 

microphone location [0.35, 0.10, -0.875]. The Optimal solution S26 

is considered. 

 

Figure R4: PSD response  at Microphone location [0.35 0.10 -0.875]; the five 

TMDs are optimized at microphone location [0.35 0.10 -0.875] 
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Figure R5: PSD response  at Microphone location [0.25, 0.15, -0.15]; the five 

TMDs are optimized at microphone location [0.35 0.10 -0.875] 

 

Figure R6: PSD response at Microphone location [0.1, 0.25, -0.25]; the five 

TMDs are optimized at microphone location [0.35 0.10 -0.875] 

The obtained results show that the five TMDs perform well at 

location [0.25, 0.15, -0.15] but does not at location [0.1, 0.25, -

0.25], especially in the vicinity of the frequency 312 Hz.  

To improve the performance of the TMDs at location [0.1, 0.25, -

0.25], an optimization, at this location, should be performed. 

The discussions made above (performance at different locations) 

were not included in the manuscript to avoid the cumbersome (the 

manuscript is already relatively huge!). 

Once again, thank you very much for your comment and suggestion. 

3 

a) Why use an absolute 

value in the definition of 

indicator G1? It is difficult 

to assess gain or loss: its 

sign is thus important. By 

the way this indicator is 

not used in the discussion. 

Idem for indicator G2.  

b) I would have defined it 

a) Yes you have completely reason, thank you for your valuable 

advice. The indicator G1 is modified in the revised version 

(please, see on page 16). In addition, the indices are explicitly used 

in the discussion (please, see on pages: 19, 20, 23, 24, 29, and 32). 

b) Yes, it’s possible to define the indicator G1 in a way that 

values closer to 100% indicate high performance. In this case G1 

can be written as follows:
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the other way around to 

make sure values closer to 

100% indicate high 

performance.  

c) And for both 

narrowband and broadband 

control, I would have 

frequency band averaged 

these indicators (over the 

frequency band of interest) 

to show the global 

performance which is 

more representative. Please 

comment? 

 with TMD

1

( ) max ( )
100

( )

i

i

PSD PSD
G

PSD


 




  ;  when

 with TMDmax ( ) 0PSD


  , 1 100%G  . 

Nevertheless, such performance index will be less visible on figures 

(Fig.4, Fig.5, …) where it’s likely more suitable to represent the 

gain/loss in terms of magnitudes expressed in dB (as it’s shown in 

these figures). 

c) The aim of the sub-section 4.3 is to analyze (by means of the 

indices G1 and G2) the performance of the TMD device if one of 

the two strategies (narrowband & broadband controls) is used. The 

outcome of the analysis is to decide which of the two strategies is 

more suitable to control a given resonant coupled mode. For 

example, it has been found that a broadband control is more 

suitable to use when a well separated coupled mode, dominated by 

plate mode, is to be controlled.  

Consequently we think that it’s not judicious to consider a frequency 

band averaged because the designer has to make a particular choice 

(narrowband or broadband control). The evaluation of the global 

performance of the TMD device is made using the index G2.    

4 

I agree with the majority of 

the conclusions and physical 

interpretations of the results. 

I suggest however that an 

example be presented 

wherein the TMD are 

undamped (which 

corresponds to  the classical 

use and application) 

Thank you for your advice. An example has been added in the 

revised version. Please, see on page 18 (sub-section 4.3.1) and on 

page 22 (sub-section 4.3.2). 

 

The example (added in the revised version), shows the optimzation 

results corresponding to the target frequency 1 108.59 Hz  , when 

an undamped TMD is optimized; thsese results have been 

compared with those obtained in our work (damped TMD). The 

results show that, for both cases (undamped and damped), the 

optimal frequencies and locations corresponding to  2Hzf   are 

roughly the same which is predictable since an optimized damped 

TMD with  
* 0.01%T   is, in practical front, an undamped TMD. 

 

In Table R1 (below), are also shown the optimization results for 

broadband control ( 40Hzf  ) when both cases (undamped and 

damped TMD) are considered. Unlike the narrowband control (

2Hzf  ), the optimal frequencies are significantly different 

leading to different performances as shown in Figure R7. 

Indeed, we can see in Figure R7 that the performances of the 

undamped and damped TMD are roughly the same when a 

narrowband control is performed ( 2Hzf  ) whereas they are 
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completely differents when 40Hzf  . As we can see, the best 

performance is achieved when the TMD is damped and a broadband 

control ( 40Hzf  ) is performed. 

 (%)*
T  )Hz(*

Tf  )m(*
TMDx  )m(*

TMDy  

Damped (2Hz) 0.01 110.897 0.240 0.150 

Undamped(2Hz) ------ 111.001 0.242 0.149 

Damped (40Hz) 13.45 110.919 0.253 0.151 

Undamped(40Hz) ------- 119.449 0.259 0.151 

Table R1: Optimization results,  , 1 108.59 Hz   

 
 

 
Figure R7: PSD responses (optimized undamped TMD);  

1 108.59 Hz   

Table R2 shows a second example (has not been included in the 

revised version) of optimization results for the target frequency 

2 159.52 Hz   (frequency corresponding to a mode dominated by a 

cavity mode). The comparison of the optimal frequencies and 

locations corresponding to the optimized undamped and damped 

TMD, shows that they are roughly the same for 40Hzf   and that 

they are not for 2Hzf  .  

 (%)*
T  )Hz(*

Tf  )m(*
TMDx  )m(*

TMDy  

Damped (2Hz) 0.693 155.554 0.192 0.147 

Undamped(2Hz) ------ 166.105 0,235 0,150 

Damped (40Hz) 0.010 184.877 0.275 0.156 

Undamped(40Hz) ------- 185.072 0.275 0.155 

Table R2: Optimization results,  , 2 159.52 Hz   
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The performances of the optimized TMD (undamped and damped) 

are also shown in Figure R8. The inspection of Figure R8 shows that 

the PSDs responses are roughly the same when 40Hzf   and that 

they are, as expected, different when 2Hzf  .  

 

 

Figure R8: PSD responses (optimized undamped TMD); , 

2 159.52 Hz   

From these examples, one can conclude that the performances of an 

optimized undamped TMD are similar to those obtained using a 

damped TMD for which the damping ratio is very small. 

5 

Finally, on the practical front, 

one issue with using TMD is 

the added mass (and thus 

number and location of TMD 

for distributed excitations for 

instance) and robustness of 

the system.  These are the 

same issues faced when using 

"metamaterials" based on use 

of resonant systems (mass-

springs) added to a panel for 

vibration and radiation 

control. Any comments ? 

Yes you have reason, thank you for your valuable comment. Indeed, 

the use of TMD devices (or metamaterials based one resonant 

systems) to control vibrations and/or acoustic radiations belongs to 

the category of passive control techniques. The use of such devices is 

sometimes limited by technological constraints such as the low 

amount of space available (for the mount) or the induced structural 

modifications that could violate weight limitations; such 

modifications are required for the added masses and/or for the mount 

of these devices.  

Although the TMD devices present such weight and robustness 

limitations, their use remains particularly interesting for several 

advantages. Indeed, compared to other control techniques such as 

active techniques, the TMD are low cost, easy to design and reliable 
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devices.     

Other minor comments 

1 

Add a quick justification of 

the selected optimisation 

algorithm (NSGA-II). 

Thank for your valuable advice. A justification is added.  

Please, see on pages: 13, 27, 30 and 34. 

2 

Any reasons for the selected 

excitation and receiver 

locations? 

The locations of the excitation and the receiver are completely 

arbitrary. Numerical investigations have shown similar results when 

different locations have been considered. Thank for your valuable 

comment. 

3 

Explain how the frequencies 

of the coupled modes are 

obtained 

The frequencies of the coupled modes are obtained by means of 

modal analysis. The coupled mass and stiffness matrices M and K, 

respectively, are firstly built after truncation Ns=21 and Na=102. To 

obtain the matrices M and K, we can use Eq. (14) and remove the 

terms (rows and columns) corresponding to the TMDs devices. Then 

the eigenfrequencies are obtained using the eigen values solver of 

Mtalab.  

4 

What is the effect of any of 

the TMD on the frequencies 

of the coupled modes. 

Thank for your valuable comment. In the present work, the TMD 

devices specifically deal with the coupled modes rather than dealing 

with structural (plate) modes as it’s usually done in the literature. 

Consequently, the obtained results (reduction in PSDs responses) are 

the effects of the TMDs on the coupled modes.       

5 

Explain why the constant 

pressure mode of the cavity 

lowers rather than increases 

the first mode of the panel. 

Thank for your valuable work. The constant pressure mode of the 

cavity increases the first mode of the panel only if the system is 

modeled in terms of just one uncoupled fluid mode (the first cavity 

mode) and one uncoupled structural mode (the first plate mode). In 

this situation, and as explained by Fahy and Gardonio (please see in 

Ref [32], p.422-424), the first mode of the panel increases.  

In our case, the two first modes (of plate and cavity) are also coupled 

to the other modes via the matrix nmC  and the coupling effects have 

lowered the first mode of the panel.  

 

_____________________________________________________________________ 

Additional comments from the authors: 

A complete revision of the manuscript has been done in an attempt to clarify some 

statements and improve the original manuscript. The authors are grateful to the Editor 

in Chief and Reviewers for their valuable comments and interest in improving their 
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manuscript, and hope that the revisions will satisfy the requirements to ensure the 

publication of their paper in “MSSP journal”. 
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Abstract 

The present work deals with the passive control of interior sound pressure induced by randomly vibrating 

structure coupled to an enclosure filled with air. The control in the low frequency range is achieved using 

a Tuned Mass Damper (TMD) device. In order to guarantee an optimal performance of the TMD device, a 

stochastic acoustic optimization strategy is proposed. In the later, the objective function is the root mean 

square acoustic pressure measured at a given location inside the cavity. Assuming linear behavior of the 

vibro-acoustic system, the modal interaction approach is used and the objective function is evaluated by 

means of spectral analysis. The effectiveness of the proposed strategy is investigated and compared with 

others from the open literature. 

The capability of the proposed optimization strategy to deal with multimodal control of interior sound has 

also been addressed. To this end, multiple TMDs have been used. The optimal TMD parameters have been 

obtained using a multi-objective optimization approach and the results that have been gathered show 

significant attenuations in all target resonant modes. 
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mass damper; multimodal control of interior sound. 
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 Multi-objective optimization is used along with multiple TMDs; 

 The optimization strategy is able to handle multimodal control of interior sound.  
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1. Introduction 

Nowadays, industrial structures have become increasingly complex and their design is subject to an 

important number of requirements and constraints in view of improving their performance. In this context, 

the control of the interior sound has been considered by several research works and as a matter of fact, 

several techniques have been presented in the recent years. In the automotive sector [1], the comfort of the 

passengers is of the utmost importance and efforts have been made to reduce the interior noise induced by 

several sources like the engine and the tyres, among others. In the aerospace sector [2-7], C. Howard [2] 

reported that the excessive interior sound in the payload bays of launch vehicles causes 60% of the first 

day satellite failure; consequently an interior sound control of such a structure is of vital interest to 

minimize the failure probability. 

1.1 Overview of the existing techniques for internal noise control 

Depending on the specificities of the studied structures, the interior sound control can be achieved by 

different kinds of strategies [5, 7-11]: the active structural acoustic control (ASAC), the active noise 

control (ANC) and the passive control. Unlike the ASAC and the ANC methods, where additional sources 

of energy are required to achieve the sound control, the passive control techniques don’t involve any 

external source of energy [12] and they only consist in the use of buffers, absorbers, dampers, tuned 

vibration absorbers (TVA) [8, 13], and so on. For instance, the TVAs are very simple devices, composed 

by mass, damper and spring, that have been widely used in the field of structural vibration attenuations 

[14, 15]. Depending on the application, the TVAs can be used in two ways, resulting in different optimal 

criteria and design requirements [13, 16]: (1) they can be tuned to suppress the vibration at a specific 

troublesome excitation frequency and in this case the TVA referred to as a tuned vibration neutralizer 

(TVN); (2), they can be tuned to dampen the modal contribution from a specific troublesome natural 

frequency of the controlled vibrating structure, and in this case the TVA referred to as a TMD.  

For an optimal performance of the TVN, its natural frequency should be tuned to the excitation frequency 

and its damping should be as low as possible [17]. The optimal performance of the TMD device is reached 

when an appropriate optimization is performed allowing obtaining an optimal natural frequency, slightly 

lower than that of a targeted mode of the vibrating structure, and an optimal damping ratio [17].  

The TMDs are particularly useful when the excitation has a broad frequency spectrum and they are used to 

dampen a particular resonance peak of the frequency response function relating the structural response to 

the excitation [16]. The potential of the TMD devices, in structural vibration mitigation, are recognized 

and well established since the pioneer work of Den Hartog [18]. Since a few years, the performance of the 

TMD devices, in sound control, has been investigated [19] and satisfactory results have been established 

particularly for the thin-walled enclosure cavity systems [2, 20-23]. 

Although the capability of the TMD device has been shown, in the interior sound control, the use of such 

device is very often associated with the use of a Helmholtz resonator [4, 20, 24-26], which constitutes the 

acoustic equivalent TMD device. Indeed, when dealing with flexible vibrating structures weakly coupled 

to an enclosure cavity, the obtained resonant coupled modes are either controlled (or dominated) by 

structure modes or by cavity modes [27, 28]. When the acoustic coupled resonant modes are controlled by 

the structure, TMDs attached to the flexible structure are tuned to these modes. On the contrary, if the 
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acoustic resonant modes are controlled by the cavity, Helmholtz resonators, placed into the cavity, are 

used to achieve the interior sound control. Recently, authors in Ref. [2] used a single device constituted by 

a combination of the two devices (called a passive vibro-acoustic device); the combined devices are 

installed on the walls of the fairing of the payload bay of a space launch vehicle and the reduction of the 

internal sound is achieved. 

Eventhough the TMD devices present suitable solutions to structural vibration reductions, their uses in a 

context of interior sound control remains relatively weak due to the engineers’ perception that such 

devices could be used only for structural vibration mitigations. Indeed, Wright and Kidner in [8] wrote : 

“Surprisingly few installations of vibration absorbers for interior noise control have been realized, and we 

believe this is due to the pervasive belief in industry that vibration absorbers can only be applied to 

control resonant, not forced behavior in a structure”. 

The review of the literature shows that the “pervasive belief in industry”, as has been reported in Ref. [8], 

is actually not very surprising because of the lack of specific design criteria dedicated to the TMD’s 

parameters optimization in a context of interior sound control. In this framework, one of the contributions 

of this paper is to propose a specific optimization criterion dealing with the TMDs parameters 

optimization in a context of interior sound control.  

1.2 Optimization strategies of the TMD parameters for internal sound attenuation   

Since the work of Den Hartog [18], the TMD has mainly been used for the passive control of structural 

vibrations. The performance of these devices deeply depends on their parameters that should be carefully 

assigned by performing judicious optimizations. Depending on the nature of the external excitation and 

the structural response parameters [29-31], several optimization strategies can be found in the literature, 

and one can distinguish the strategies that are deterministic (where the excitation is deterministic) and 

those that are stochastic (i.e. random external excitation). 

A classical tuning of TMD parameters is the one proposed by Den Hartog [18] and is obtained by 

performing deterministic optimization strategy. The optimal TMD parameters proposed by Den Hartog are 

the natural frequency 
*

T  and the damping ratio 
*

T  defined by )1(*

effT    and  

)1(83*

effeffT   ; where   is the targeted frequency and eff  is the effective mass ratio as 

defined by Warburton in [29, 30]. 

Unlike Den Hartog, who considered harmonic excitation, Warburton [29, 30] considered random 

excitation applied to a vibrating structure and deduced the optimal TMD parameters given by 

)1()2/1*
effeffT    and )2/1)(1(4)4/31(*

effeffeffeffT   . Similarly to 

Warburton, Korenev and Reznikov [4, 6, 32] have considered a vibrating structure submitted to a wide 

band random excitation and developed an easy-to-use formula providing the optimal TMD parameters 

given as   *
T  and 

3* )1(4)75.01( effeffeffT   . 

Although the aforementioned optimal tuning parameters are suitable in structural vibration mitigations, 

their use in a context of interior sound control [4] could be inappropriate. Indeed, when dealing with 

interior sound control, the fluid-structure coupling effects should be taken into account. Besides, such 
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optimal TMD parameters, based on structural responses, are basically valid for the mitigation of the 

resonant coupled modes that are controlled by the vibrating structure; the use of a TMD device with 

resonant modes that are controlled by the cavity may not be possible because it’s possible that there is no 

corresponding structural resonant mode.        

In contrast with the aforementioned optimization strategies, where only structural responses have been 

considered to deduce optimal TMD parameters, Fuller et al. [5] and Howard et al. [20] used cost functions 

related to the interior Acoustic Potential Energy (APE) to deduce optimal TMD parameters. Eventhough 

the APE based strategies used in [2, 5, 20] constitute acoustic criteria based optimizations, they can be 

categorized as deterministic optimization strategies since they consider a harmonic loading applied to the 

vibro-acoustic system; consequently, such criteria could be inappropriate when dealing with random 

mechanical loading applied to a vibro-acoustic system. 

1.3 Main contributions and organization of the present work 

In the work presented here, a flexible thin structure weakly coupled to an enclosure cavity is considered 

and the interior sound pressure is controlled, in the low frequency range, using TMDs. The considered 

flexible structure is submitted to stochastic mechanical excitation and a stochastic acoustic optimization 

criterion is proposed to obtain the optimal parameters of the TMDs devices.  

In the proposed optimization strategy, the objective function is the root mean square acoustic pressure at a 

given location inside the cavity. The evaluation of the objective function is performed using spectral 

analysis by assuming linear behavior of the vibro-acoustic system; thus the modal interaction approach 

[33] can be used and the optimization is carried out.  

The effectiveness of the proposed strategy is demonstrated when dealing with the control of single 

coupled modes by performing single-objective optimizations. The obtained results show that a TMD 

device, alone, can always be used to control both kinds of coupled modes (i.e. those that are controlled by 

the structure and those controlled by the cavity); thus there is no need to use a Helmholtz resonator as it’s 

usually proposed in the literature. Besides, comparisons with other optimization strategies have been 

carried out and the superiority of the proposed strategy is highlighted. 

To show the capability of the proposed optimization strategy to deal with multimodal control of interior 

sound, multiple TMDs devices have been used to control the interior sound pressure. Rather than 

performing single-objective optimization, the optimal TMDs parameters are obtained using a multi-

objective optimization [31, 34-40] and the obtained results show significant attenuations of the interior 

sound pressure in the vicinity of the targeted coupled modes. 

The present paper is organized as follows: in section 2, the governing equations describing the dynamic of 

the vibro-acoustic system are presented. In section 3, the proposed stochastic acoustic optimization 

strategy is formulated. In section 4, a numerical example is analyzed and the performance of the proposed 

strategy is investigated. Eventually, some relevant conclusions are drawn in section 5.                  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

5 

 

2.   Governing equations  

Consider the acoustic-structural system shown in Fig. 1. In this system, a simply supported plate is 

coupled to a cavity filled with air (light fluid). The acoustic cavity has five rigid walls and the flexible 

plate is submitted to a point force zF  modelled as a stationary zero mean Gaussian white noise. In order to 

control the interior noise in the low frequencies range, multiple TMD’s devices are attached to the 

vibrating plate (Fig. 1). The force location is defined by coordinates  T, FFF yxr  whereas the TMDs 

locations are defined by  T,
jjj ccc yxr , }21{ ,..,N,j  , the superscript in 

T(*)  denotes the transpose, 

and N  is the total number of TMDs. Besides, the mass of a TMD is 
jTm , its damping coefficient is 

jTc  

and its stiffness is 
jTk . The cavity has dimensions xl  , yl  and zl , whereas the plate has dimensions xl  and 

yl  as shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

Assuming linear behavior of the entire system, the modal coupling approach can be used. In the following 

sub-sections, the governing equation of the plate-cavity sub-system is first derived and then the effects of 

the TMDs devices are incorporated. 

2.1 Plate-cavity modal coupling 

The governing equations describing the dynamic of the plate-cavity system have been established in 

several references in the literature and readers are referred to Ref. [33, 41], for further details. Let )( sm r  

be the in-vacuo 
thm mode shape of the plate, calculated at vector location sr , and denote m  its 

corresponding natural frequency. The plate displacement (deflection) at a given time t  can be written in 

terms of a summation over the in-vacuo normal modes as follows: 

Fig. 1: Plate-cavity system with the attached multi-TMDs devices  
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



Ns

m

smms twtw
1

)()(),( rr  ,                (1) 

where Ns  is the number of elastic modes considered in the analysis, and )(twm  is the modal participation 

factor of the 
thm mode shape of the plate. 

For the simply supported plate considered in the present work, the natural frequencies can be obtained as 

follows [42]: 
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hEhmm


 ,      (2) 

where 1m  and 2m  are the modal indices along the axes x  and y ; E , s ,   and h   are the Young’s 

modulus of the plate, the plate material mass density, the Poisson’s ratio and the plate thickness, 

respectively. 

The mode shapes of the plate calculated at vector location 
T),( yxs r  can be expressed as follows [14, 

41, 42]: 
























 y

l

m
x

l

m
yx

yx

mm


 21

),( sinsin),(
21

.        (3) 

Similarly to the plate, at a certain vector location 
T),,( zyxa r , the acoustic pressure ),( tp ar  inside the 

cavity can be expressed in terms of a summation of its modal participation factors )(tpn  multiplied by the 

thn  acoustic modes (with rigid boundaries) )( an r , corresponding to its natural frequency n . Hence, 





Na

n

anna tptp
1

)()(),( rr  ,         (4) 

where Na  is number of acoustic modes considered in the analysis. The natural frequencies of the 

rectangular cavity, with rigid-walls boundaries, is calculated as follows: 

     23

2

2

2

10321 ),,( zyxn lnlnlncnnn        (5) 

where 1n , 2n  and 3n  are the modal indices along the axes x , y  and z ; 0c  is the speed of sound in air. 

The acoustic mode shape functions are given by: 
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     zyxnnn lxnlxnlxnyx  321),,( coscoscos)0,,(
321

 .     (6) 

Assuming proportional damping; for a given mode m , the equation of motion of the plate coupled with 

the enclosure cavity can be written in modal coordinates as follows [33, 41, 43]: 








Na

n

mmnmn

m

mmmmmm FCp
S

www
1

22   ,      (7) 

where m  is the damping ratio of the 
thm  plate mode, S  is the coupling surface, yx llS  , m  is the 

modal mass of the plate, mF  is the modal force applied to the structure for the 
thm  mode shape and nmC  

is the dimensionless coefficient describing the coupling between the 
thm  plate mode and 

thn  cavity 

mode. For a simply supported plate, the modal mass is given by 4/yxsm lhl  [41] whereas the modal 

force is ),( FFmzm yxFF  , zF  is the magnitude of the force applied at ),( FF yx , as shown in Fig. 1. 

The coupling coefficient nmC  for the simply supported plate is given by [41]: 
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,      (8) 

In the absence of modal acoustic source excitation and assuming proportional damping [27, 44] in the air 

cavity, the modal response )(np , obeys to the following coupled equation: 



















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m

nmm

n

nnnnnn Cw
Sc

ppp
1

2
0022 


 ,       (9) 

where n  is the damping ratio of the 
thn  cavity mode, 0  is the density of air , and the modal volume n  

is expressed as follows [41]: 

 
321 nnnn V  ,          (10) 

where zyx lllV   and 1n  if 0n  , and 2/1n  if  0n  . 

2.2 Multiple TMDs-plate-cavity coupling 

When a TMD is attached to the flexible plate at location  
jj cc yx , , }21{ ,..,N,j  , the equation of motion 

of the attached mass in physical coordinate is given by [45]: 
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      0 wφwφ
jjjjjjjj cTTcTTTT zkzczm  ,      (11) 

where 
jTz , 

jTz  and 
jTz are the displacement, the velocity and the acceleration of the attached mass of a 

TMD, respectively; w  and w  are the )1( Ns  vectors of the modal participation factor and their time 

derivative, respectively; 
jcφ  is the )1( Ns  vector of the plate mode shapes calculated at a TMD location

 
jj cc yx , . 

The reaction force of a TMD device applied to the plate is    wφwφ
jjjjjj cTTcTTjTMD zkzcf  

,  

which can be expressed in modal coordinates as follows: 

    wφwφφφ
jjjjjjjj cTTcTTcjTMDcjTMD zkzcfF  T

,
T

,       (12) 

The total reaction forces of the multiple TMD’s devices, applied to the plate, can be expressed in modal 

coordinates and in matrix form as follows: 

    wΦzKwΦzCΦφ cTTcTTc

N

j

jTMDcTMD fF
j
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,     (13) 

where  TTT ...
1 Nccc φφΦ  , 
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Rearranging Eqs. (7) and (9) in matrix form and letting  TTT ,, Tzpwq   be the vector of modal 

coordinates, where p  is the )1( Na  vector of the acoustic modal participation factor. The insertion of the 

expression of the modal force TMDF  into Eq. (7), yields the coupled equation of the TMD-plate-cavity 

system that can be expressed as follows [14, 20]: 

zFT
ΦKqqDqM   ,          (14) 

where q  and q  are the time derivatives of q ;  00ψφΦ F , Fφ  is the )1( Ns  vector of the plate 

mode shapes computed at force location  FF yx ,  and 0ψ  is a )1( Na vector of zeros; 
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and nmC  is the coupling matrix containing the coupling elements nmC . 

2.3 Spectral analysis 

When dealing with stochastic loading applied to a vibro-acoustic system, the random analysis theory can 

be used [46], where it’s usual to characterize the responses by means of the power spectral density (PSD) 

functions [47] and/or by means of the covariance responses. In the present work, it’s assumed that the 

multiple TMDs-plate-cavity system behaves linearly and the plate is excited by stationary zero mean 

Gaussian white noise. Consequently, the acoustic pressure response, in a given location ar  inside the 

cavity, is also a zero mean Gaussian process that can be characterized by its PSD and/or its root mean 

square value. 

Let )(~ q , )(~ w , )(~ p  and )(~ Tz  be the finite Fourier transform of q , w , p  and  Tz , respectively. 

Similarly to Eqs.(1) and (4), the Fournier transform of  ),( tw sr  and ),( tp ar  can be expanded in terms of 

)(~ w , )(~ p  and written in vector form as follows: 

)(~)(),(~  wrφr ssw   and  )(~)(),(~  prψr aap  ,      (15) 

where )( arψ  is the )1( Na  vector of the acoustic mode shape calculated at location ar .Besides, let zF
~

 

be the Fourier transform of the excitation force zF . The application of the Fourier transform for both sides 

of Eq. (14) yields the following expression:  

  zFj
~~ T12

ΦKDMq


  ,         (16) 

and the modal acoustic pressure )(~ p  is deduced as follows: 

zF
~

)(~ T
YΦp  ,           (17) 

where Y  is the )( NNaNsNa   sub-matrix extracted from the matrix   12 
 KDM  j  by taking 

the Na  rows corresponding to the modal acoustic pressure )(~ p .  

Using Eq. (17), the PSD matrix [7, 48] of the modal acoustic pressure )(~ p  can be obtained as follows: 
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    *T**T*
~~

~~

2

1
lim)(~)(~

2

1
lim)( ΦYYΦΦYYΦpppp FFzz

TT
SFFE

T
E

T
S 


 ,      (18) 

where (*) denotes the complex conjugate, .E  is the expectation operator and  *~~

2

1
lim zz
T

FF FFE
T

S


  is 

the constant PSD of the Gaussian white noise excitation applied to the plate. 

By making use of the expressions in Eqs. (15), (17) and (18), the PSD ),,(~~ FappS rr  of the acoustic 

pressure, at a given location ar  inside the cavity and for a force location Fr ,  is given by: 

  )()()()()()(),,(~),,(~

2

1
lim),,( T*T*

~~ aFFFFaFaFa
T

Fapp SppE
T

S rψYrΦrΦYrψrrrrrr  


.      (19) 

Denote )()()(),,( T
FaFaH rΦYrψrr   , the PSD of the acoustic pressure is finally given as: 

FFFaFapp SHS
2

~~ ),,(),,( rrrr   .             (20) 

It should be noted that the scalar quantity )()()(),,( T
FaFaH rΦYrψrr    represents the acoustic 

pressure Frequency Response Function (FRF) measured at location ar  for a given excitation applied to the 

plate at location Fr . The expression obtained in Eq. (20) is the classical relationship between the input-

output PSDs ( FFS  and ),,(~~ FappS rr ) in the random analysis theory [46]. Similarly to the pressure FRF, 

the plate displacement FRF at force location can be obtained from )()(ˆ)(),,( T
d FaFaH rΦYrψrr   , 

where )(ˆ Y  is the )( NNaNsNs   sub-matrix extracted from the matrix   12 
 KDM  j  by 

taking the Ns  rows corresponding to the modal participation factors )(~ w .      

Based on the expression of the PSD ),,(~~ FappS rr , one can also compute the root mean square acoustic 

pressure (RMSAP) ),( Fap rr  at a given location ar , which can be expressed as follows [49, 50]: 


u

l
dS FappFap




 ),,(),( ~~ rrrr ,             (21) 

where 
l  and 

u  are the lower and upper bounds of a certain bandwidth of interest [ , ]l uf     

centered at a given frequency  . 
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3. The proposed optimization strategies 

Generally speaking, different approaches can be used to formulate an objective function in a structural-

acoustic optimization for passive noise control. These approaches can be categorized into four groups [51, 

52], the first one being the sound pressure level at one or more specified points basically utilized for 

closed domains [52-55]. The second group, utilized in open domains, considers the emitted sound power 

as objective function. The third group considers the transmission loss while the fourth one considers all 

the other objective functions. 

As mentioned previously, under external random mechanical loading, the acoustic pressure inside the 

cavity, shown in Fig. 1, can be characterized by its PSD measured at a given location ar . In the low 

frequency range, the presence of resonant modes can be observed by the presence of PSD response peaks 

in the very close vicinity of the natural frequencies of the coupled vibro-acoustic system.   

In Fig. 2 a schematic representation of an acoustic PSD response and two peaks, corresponding to two 

resonant frequencies (
1  and 

2 ), are depicted. In order to mitigate these resonant responses, multiple 

TMDs (in this case two TMDs) can be used. The basic idea is to use one TMD device for each one of the 

resonant modes and the TMDs parameters will be carefully chosen based on a stochastic acoustic 

optimization strategy. 

 

Fig. 2 : schematic representation of two objective functions (i.e. the square roots of the shaded surfaces)       

In the present work, the proposed stochastic acoustic optimization strategy attempts to minimize the 

RMSAP evaluated, in the vicinity of a target frequency (i.e. 
1  or 

2 ), using Eq.(21). Since the 

objective function is related to a particular microphone location ar , the proposed optimization strategy 

belongs to the first group of optimization approaches, as described in Refs. [51, 52]. Such optimization 

strategy can be used to control the sound pressure at the position of the ear of a vehicle passenger/ driver 

[53, 55], for instance.   

Obviously, when dealing with multiple resonant peaks the use of multiple TMDs involves simultaneous 

minimization of the RMSAP evaluated in the vicinity of the targeted frequencies and in this case a multi-

objective optimization [34, 38, 39, 56] should be carried out. Figure 2 shows two schematic objective 

functions (the shaded area centered at the targeted frequencies) corresponding to resonant peaks. 

 

Frequency (Hz) 

P
SD

 o
f 

th
e 

ac
o

u
st

ic
 p

re
ss

u
re

 

(P
a2

.H
z-1

) 

 

1  l

1  
u

1  2  l

2  u

2  

Peaks  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

12 

 

Generally, there are three parameters by which a TMD device can be characterized [8]. The first parameter 

is the mass ratio platemm
jTj   which is the ratio between its mass and the mass of the plate (

plate sm S h    ), the others are its natural frequency 
jjj TTT mk  and its damping ratio 

jjjj TTTT mc  2 . Besides, since the performance of the TMD device strongly depends on its location 

jcr  at the vibrating plate [57], the TMD location will also be optimized.  

In the work conducted here, two optimization problems will be considered: the first one is the single-

objective problem where only one resonant peak is controlled using one TMD; and the second is the 

multi-objective problem involving multiple TMDs devices allowing a multimodal control of interior 

sound.   

3.1 The single-objective optimization strategy 

For the single-objective optimization, one TMD device is used to control a given resonant peak. For this 

problem the mass ratio will be taken constant (commonly assigned as 1 to 5%) and the optimization 

problem is formulated as follows: 

Find      
T),,( cTT rd   to minimize  

u

l
dS FappFap




 ),,,(),,( ~~ drrdrr       (22) 

Obviously, when a TMD is targeted to a particular resonant frequency, the optimal natural frequency of 

the TMD will be bounded in the vicinity of the frequency of interest and then the optimization problem 

will be constrained in frequencies. In addition, the design parameter cr  is bounded by physical limitations 

(plate dimensions) therefore the above optimization problem will also be constrained in TMD locations. 

For the optimization problem defined in Eq. (22), it’s also clear that the bandwidth parameter 

[ , ]l uf     defined in Eq. (21) plays an important role in the evaluation of the objective function. 

Depending on this bandwidth parameter, to be considered in the optimization loop, two kinds of control 

will be defined: (1) the first one is the narrowband control and, (2) the second one is the broadband 

control. A narrowband control is performed when the bandwidth parameter f  is small whereas when it’s 

large, the control is considered to be broadband. 

The proposed optimization problem can be categorized as a stochastic vibro-acoustic optimization 

problem, since the objective functions involve covariance term related to the acoustic pressure inside the 

cavity.   

3.2 The multi-objective optimization strategy  

Unlike the single-objective optimization case, the proposed optimization strategy for the multi-objective 

optimization strategy consists in finding the optimal design vector 
T

21 ),...,,( Ndddd  , where 

T),,,(
jjj cjTTj rd   , }21{ ,..,N,j  , which minimizes a vector of objective functions 
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T
21 ),...,,(),,( pNppFap drrσ  composed by the RMSAP ),,( iFapi drr  evaluated using Eq. (21).  

Each one of the considered objective functions will be separately evaluated in the vicinity of the targeted 

frequency of interest. 

The proposed optimization problem can be categorized as a stochastic vibro-acoustic multi-objective 

optimization problem, since the objective functions involve covariance terms related to the acoustic 

pressures inside the cavity.  The multi-objective optimization strategy can be formulated as follows : 

minimize  
T

21 ),...,,(),,( pNppFap drrσ  

subject to   adm

N

i i   1
                              (23) 

where adm  is a given mass ratio defined in a pre-design phase. Similarly to the single-objective case, the 

above optimization problem will also be constrained in TMD locations (
jcr ) and in frequencies ranges, 

since each of the TMD devices will be tuned in the vicinity of the targeted frequencies. 

Rather than obtaining a single optimal solution (i.e. for the single-objective optimization problem), a set of 

optimal solutions, called Pareto optimal solutions [34-36], is obtained in the case of a multi-objective 

optimization problem. Several methods can be found in the literature to solve such a problem [38] and in 

the work presented here, a controlled elitist Genetic Algorithm (GA), which is a variant of  the Non-

dominated Sorting Genetic Algorithm II (NSGA-II) [37, 39, 56], has been used. The algorithm is already 

implemented in Matlab and it has the advantage to favor individuals that can help increase the diversity of 

the population even if they have a lower fitness value. It should be noted that it’s important to maintain the 

diversity of population for convergence to an optimal Pareto front. 

The Pareto optimal solutions obtained using the controlled elitist GA constitutes a trade-off between the 

objective functions. In addition, it’s well known that the determination of a particular solution among the 

set of solutions is a difficult task, especially when dealing with a great number of objective functions 

(more than three dimensions). Several techniques can be found in the literature [34, 36, 58-60] to help the 

decision-maker, and among them one can find the Self-Organizing Maps (SOM) introduced by Kohonen 

[61, 62]. The SOM is an unsupervised neural network algorithm providing clusters based on similarities 

between the optimal solutions; these clusters are represented in two-dimensional maps allowing easier 

visualization of the Pareto data. The reader is referred to [61, 62] for further details about the SOM 

algorithm and its applications. In the work conducted here, the SOM toolbox available in Ref. [63] has 

been used. 

4.  Numerical example 

The aim of this section is to investigate the efficiency of the proposed optimization strategy in the sound 

attenuation of a plate-cavity system when it’s submitted to mechanical stochastic loading. The 

investigations are firstly performed when a single-objective optimization, involving the use of one TMD, 

is considered to separately control the resonant coupled modes; and secondly a multimodal sound control, 

involving multiples TMDs and multi-objective optimization, is also carried out.  
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The evaluations of the objective functions depend on the bandwidth parameter f defined in Eq. (21). 

Thus, one of the aims of the investigations, related to the single-objective optimization, is to determine 

what kind of control should be used. In other words, what values of f  should be assigned in order to 

effectively attenuate the resonant modes. If the obtained f  is large, the control is broadband, otherwise, 

it is narrowband. The obtained values of f , yielding good performance in the single-objective 

optimization, will then be used for the multimodal sound control using multiple TMDs.   

The considered vibro-acoustic system is that shown in Fig. 1 and the parameter values are taken equal to 

those presented by Howard and Cazzolato in Ref. [41]; the dimensions and the properties of the studied 

system are given in Table 1. In addition, it’s assumed that the observation location of the acoustic pressure 

(i.e. microphone location) in the cavity is located at the coordinates 
T)875.0,1.0,35.0( ar . 

For the introduced proportional damping in both plate and cavity, the damping ratio for a mode i   is set to  

2/2/ iii    [27], where   and   are two coefficients to be calculated by imposing a targeted 

value 0   for the two frequencies bounds of the range of interest. For the plate, the targeted damping ratio 

is set to %2plate
0   whereas it’s set to %5.0cavity

0   for the cavity. The PSD of the point force applied to 

the plate is set to 
-12 HzN 1.0 FFS .  

Parameter  Value  

xl (m)  0.5 m  

yl (m)  0.3 m  

zl (m)  1.1 m  

h (m)  0.003 m  

E (Pa)  Pa 1007 9  

s (unit)  -3kg.m 0270  

   0.3 

0 (unit)  -3kg.m .211  

0c (unit)  -1m.s 443  

Table 1: Numerical values of the parameters of the vibro-acoustic system 

Since the control of the acoustic pressure will be performed in the low frequency range, the frequency 

interval of interest is set to 0-400 Hz. Therefore only the coupled frequencies bellow 400 Hz have been 

considered in the analysis. The numerical investigations have shown that 21Ns   and 102Na   allow 

obtaining accurate results when evaluating the objective functions (i.e. the root mean square pressure). 

4.1 Modal analysis of the uncontrolled plate-cavity system 

Before performing control of sound inside the rectangular cavity, it’s important to analyze the plate-cavity 

system without the TMD devices. The analysis allows the determination of the resonant modes on which 

the TMDs will be tuned, on the one hand, and the determination of the modes involved in the coupling, for 

both plate and cavity, on the other. 
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Table 2 shows the natural frequencies of the in-vacuo plate and those of the rigid-walled cavity, compared 

with those of the coupled system. As described by Fahy and Gardonio in Ref. [27], we can see that the 

coupled frequencies are sometimes controlled (or dominated) by the plate modes and sometimes by the 

cavity modes. By taking into account the numerical values obtained for the coupling matrix nmC [64], one 

can also obtain the involved modes (i.e. in-vacuo and rigid-walled) for the coupled modes as shown in the 

last column of Table 2. 

The FRF for the forcing location  T05.0,05.0Fr are plotted in Fig. 3. In Fig. 3 (a) the acoustic pressure 

FRF is presented and Fig. 3 (b) shows the displacement FRF of the plate, at the forcing location. In Fig. 3, 

the resonant coupled modes with their corresponding modes involved in the coupling are also indicated. 

The results show that only five resonant modes, corresponding to the five peaks in Fig. 3 (a), have to be 

considered for the acoustic pressure control using TMDs, since the other modes don’t induce resonant 

peaks in the sound pressure at the observed location inside the cavity. 

Besides, as mentioned previously, one can distinguish between two kinds of resonant modes. The first 

kind corresponds to the modes controlled by the plate and those controlled by the cavity. The modes 

controlled by the plate are 1 108.59 Hz   and 4 343.8 Hz  . The other modes, controlled by the cavity, 

are 2 159.52 Hz  , 3 313.20 Hz   and 5 378.61 Hz  . 

In-vacuo plate  Rigid-walled cavity  Coupled plate-cavity 

Modes 
Frequencies 

(Hz) 
 Modes 

Frequencies 

(Hz) 
 

Frequencies 

(Hz) 

Mode  

controlled by 
Modes involved 

   (0,0,0) 0  0   

(1,1) 110.43     108,59 plate  (1,1)-(0,0,0) 

   (0,0,1) 156.36  159,52 cavity (1,1)-(0,0,1) 

(2,1) 198.12     196,52 plate  (2,1)-(1,0,0) 

   (0,0,2) 312.72  313,20 cavity  (3,1)-(0,0,2) 

(3,1) 344.27     343,80 plate  (3,1)-(0,0,2) 

   (1,0,0) 344.00  344,45 cavity (2,1)-(1,0,0) 

(1,2) 354.01     352,35 plate (1,2)-(0,1,0) 

   (1,0,1) 377.86  378,61 cavity (2,1)-(1,0,1) 

Table 2: Natural modes and frequencies of the uncoupled and coupled plate-cavity system 

4.2 TMD performance comparisons with other optimization strategies  

For the coupled modes controlled by the plate, the performance of the TMD device, when it’s tuned using 

the proposed strategy, will be compared with its performance if it were tuned using other strategies used in 

the literature.  In the present work, three optimization strategies will be considered: the first two strategies 

are those proposed by Korenev and Reznikov [4, 6], and by Den Hartog [18]; the third strategy is based on 

the time average APE [2, 4, 5, 65]. It should be noted that the first two strategies involve structural 

vibrations optimization criteria (stochastic and deterministic optimizations, respectively), whereas the last 

one constitutes an acoustic criterion. For the coupled resonant modes controlled by cavity modes, the 

performance of the proposed strategy will be compared only with the strategy based on the APE, since no 

resonant structural frequency can be associated to these coupled modes (i.e. controlled by cavity modes). 
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Let   be a given frequency, the time average APE can be expressed as follows [2, 4, 5] 

)(~)(~

4

1
)( *

2
00




 pΛp np
c

E  .  Consequently the optimization problem, involving an acoustic criterion, 

consists in finding 
T),,( cTT rd   minimizing ),,(~),,(~

4

1
),,( *

2
00




 drpΛdrpdr FnFFp
c

E  . It should 

be noted that the acoustic cost function, involving the APE, is used when a harmonic analysis 

(deterministic analysis) is conducted; therefore the optimization problem is considered as a deterministic 

one.  

In addition, in order to evaluate the performance of the TMD device, when it’s tuned using the proposed 

strategy, the PSDs responses of the acoustic pressure will be presented for each one of the targeted 

frequencies. For these PSDs responses, it has been assumed that the vibro-acoustic system has been 

submitted to band limited white noise covering the frequency range [0-400] Hz. The choice of the PSDs 

representations instead of the FRFs representations [66] or the APE representation is justified by the fact 

that the objective function is explicitly related to the acoustic PSD therefore the interpretations of the 

obtained results will be easier.  

The performance of the TMD device is evaluated using two indices:  

(1) the first index quantifies the TMD performance in the close vicinity of the target frequency i , 

{1,2,..,5}i   and it is expressed as follows:  
 1 10

with TMD

( )
dB 20log

max ( )

iPSD
G

PSD






 
 
 
 

; 

where ( )iPSD   is the value of the PSD response at the target frequency i  (peak of the PSD 

response without TMD) and with TMDmax ( )PSD


  is the maximum value of the PSD response (with 

TMD) measured in the close vicinity of the target frequency i . The higher the value of the 1G  index 

is, the better the performance of the TMD is. 

 

(2) the second quantifies the global performance of the TMD over the frequency range of interest and it is 

given as:  2 0 0(%) 100 TMDG      , where TMD  is the RMSAP of the controlled vibro-acoustic 

system (equipped by TMD), evaluated over the frequency range [0-400] Hz; 0  is the RMSAP of the 

uncontrolled vibro-acoustic system, evaluated over the frequency range [0-400] Hz. The lower the 

value of the 2G  index is, the better the global performance of the TMD device is. It should be noted 

that for  T05.0,05.0Fr  and 
T)875.0,1.0,35.0( ar , 0 1.36 Pa  . 

When comparing the performance of the proposed optimization strategy with the aforementioned 

strategies, three criteria are considered: 

 The attenuation in the close vicinity of the target frequency should be important; 

 When using the TMD device, two new peaks appear in the close vicinity of the target frequency; 

the magnitudes of these peaks should be as low as possible;  

 The increases on the PSD responses, on the off-target frequencies, should be as low as possible. 
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Fig. 3: FRF for the force location (0.05m, 0.05m); (a) Pressure response, microphone 

location (0.35 m, 0.10m, -0.875m); (b) displacement response at force location 

4.3 The single-objective optimization case 

In the following sub-section, resonant coupled modes are separately controlled using one TMD and thus a 

single-objective optimization has to be performed. The optimizations have been carried out using the 

sequential quadratic programming [5] routine available with Matlab, and considering multiple starting 

points. 

4.3.1 Control of the modes dominated by plate modes  

Tables 3 and 4 present the optimal TMD parameters when the target frequencies 1  and 4   are 

separately controlled, respectively. These tables are obtained for different bandwidth parameter 

 2f  and for different mass ratios. The optimal TMD parameters are also compared with those 

obtained using the tuning proposed by Korenev and Reznikov, Den Hartog and that based on the APE. It 

should be noted that for the Korenev’s and Den Hartog’s tuning, the TMD locations are taken equal to 

those obtained for 40Hzf , since both tuning cannot provide optimal placements of the TMD device. 

The forcing location on the plate is arbitrarily chosen as  T05.0,05.0Fr .  

The comparison of the optimal damping ratios presented in Table 4 with those presented in Table 3 shows 

that for the target frequency 1  the TMD acts as a reactive device (undamped TMD) [45] when a 

narrowband control is implemented, whereas it acts as a dissipative one when the target frequency 4  is 

controlled. In contrast, when a broadband control is performed, the TMD acts as a dissipative device for 

both controlled frequencies.  
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To show the fact that the TMD acts as an undamped device (reactive device) if 1  is targeted, and when a 

narrowband control is performed ( 2Hzf  ), the damping ratio T  of the TMD is set to 0% and an 

optimization is performed. The obtained results (for 2%  ) showed that the optimal undamped TMD 

parameters are 
* 111.001HzTf   and (

*
cx ,

*
cy ) =(0.242, 0,149); as we can see, these results are very close 

to those obtained in Table 3 (when 2%   and 2Hzf  ). Inaddition, looking at Fig. 4, one can see 

that the PSDs responses corresponding to narrowband control, for both cases (damped and undamped 

TMD), are roughly the same whereas they are completely differents when a broadband control (

40Hzf  ) is performed. It should be noted that similar results have been obtained for different values 

of the mass ratio  

 

Fig. 4 PSD responses of acoustic pressure for the damped and undamped TMD, =2%, 1 108.59 Hz   

Looking at the 2G  index values presented in Table 3, one can see that when a broadband control is 

performed ( 40Hzf ), the TMD device performs well overall the frequency range [0-400] Hz; this 

observation holds as the mass ratio increases. When a narrowband control is performed ( 2 Hzf  , for 

instance), positive values of the 2G  index are obtained which means undesirable global performance of 

the TMD. The comparison of the global performance of the TMD, optimized using a broadband control, 

with the others, shows that it is similar to those obtained using the Korenev's and the Den Hartog's tuning. 

The APE strategy yields the worst global performance. 

    TMD optimal parameters  
)Pa(*

p  
 

2 (%)G  (%)   )Hz(f   (%)*
T  )Hz(*

Tf  )m(*
cx  )m(*

cy    

2 

 2  0.01 110.897 0.240 0.150  0.0027  15.8 

 10  0.03 111.106 0.244 0.150  0.0320  15.6 

 20  1.16 110.694 0.244 0.150  0.1231  4.0 

 40  13.45 110.919 0.253 0.151  0.3284  -19.2 

 Korenev  12.97 110.425 *** ***  ***  -18.6 

 Den Hartog  16.66 102.248 *** ***  ***  -21.5 

 APE  0.96 108.529 0.232 0.108  ***  4.4 

3 
 2  0.01 111.739 0.235 0.149  0.0018  21.6 

 10  0.01 112.238 0.241 0.149  0.0209  23.9 
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 20  0.37 112.107 0.241 0.150  0.0715  31.3 

 40  14.96 110.612 0.252 0.151  0.2729  -22.8 

 Korenev  15.25 110.425 *** ***  ***  -23.0 

 Den Hartog  20.04 98.595 *** ***  ***  -25.1 

 APE  0.09 114.294 0.234 0.110  ***  -0.9 

4 

 2  0.01 112.405 0.229 0.149  0.0014  26.7 

 10  0.01 113.273 0.238 0.149  0.0155  16.8 

 20  0.17 113.304 0.238 0.149  0.0505  26.3 

 40  15.06 110.168 0.248 0.150  0.2301  -25.5 

 Korenev  16.94 110.425 *** ***  ***  -27.8 

 Den Hartog  22.74 95.197 *** ***  ***  -28.3 

 APE  0.45 108.554 0.146 0.160  ***  -15.8 

Table 3: Optimal TMD parameters for different mass ratio and with different bandwidth control, 1 108.59 Hz    

Unlike the target frequency 1 108.59 Hz  , which is well separated from the other resonant frequencies, 

one can see that the target frequency 4 344.45 Hz   is close to neighboring resonance frequencies [45, 

67] therefore more than one mode will be excited by the applied primary force at the target frequency 4 . 

This fact strongly affects the optimal frequencies of the TMD, given in Table 4, which are strongly 

varying when the bandwidth parameter f  is varying. 

The comparison of the obtained results with the other optimization strategies (Korenev, Den Hartog and 

APE) for different bandwidth shows that the Den Hartog’s optimal damping is always the highest, 

whereas its corresponding optimal frequency is always the smallest, except for 4  when  =3 and 4% . 

Besides, it is observed that the optimal tuning proposed by Korenev and Reznikov is the closest to the 

optimal tuning proposed in the present work, especially for the optimal frequencies. This remark holds for 

both targeted frequencies. The optimal TMD locations 
*
cx  and 

*
cy   are also given in Tables 3 and 4. The 

observation of Table 3 shows that optimal tuning is obtained when the TMD is placed roughly in the 

center of the plate which corresponds to the anti-node point of the plate mode (1,1); this result is 

predictable because the coupled mode is strongly dominated by the plate mode. In addition, the slight 

alteration, from exactly the position x=0.25 and y=0.15, of the obtained optimal locations is due to the 

coupling effects with the cavity mode (0,0,0) inducing distortion in the plate mode [27]. 

       TMD optimal parameters  
Pa)(*

p  
 

2 (%)G  (%)   )Hz(f   (%)*
T  )Hz(*

Tf  )m(*
TMDx  )m(*

TMDy    

2 

 2  2.234 337.493 0.031 0.097  4.66×10
-05

  4.1 

 10  2.053 338.687 0.047 0.067  1.04×10
-03

  9.9 

 20  1.984 340.100 0.051 0.061  4.13×10
-03

  10.9 

 40  3.588 334.259 0.055 0.064  2.29×10
-02

  5.2 

 Korenev  7.646 344.266 *** ***  ***  6.7 

 Den Hartog  9.509 335.966 *** ***  ***  4.7 

 APE  3.9861 331.598 0.049 0.079  ***  47.4 

3 

 2  2.930 333.262 0.035 0.088  4.46×10
-05

  4.7 

 10  3.617 331.804 0.041 0.079  1.12×10
-03

  6.2 

 20  1.923 340.319 0.051 0.057  2.94×10
-03

  6.7 

 40  3.316 335.858 0.053 0.061  1.71×10
-02

  5.8 
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 Korenev  8.202 344.266 *** ***  ***  6.8 

 Den Hartog  10.224 334.669 *** ***  ***  5.8 

 APE  4.5208 329.270 0.048 0.075  ***  17.7 

4 

 2  2,878 337.802 0.023 0.107  5.42×10
-05

  6.3 

 10  2,113 337.686 0.048 0.060  5.97×10
-04

  6.5 

 20  1,829 340.713 0.051 0.055  2.31×10
-03

  6.6 

 40  3,017 337.149 0.053 0.058  1.38×10
-02

  7.0 

 Korenev  9,199 344.266 *** ***  ***  7.6 

 Den Hartog  11,523 332.078 *** ***  ***  7.2 

 APE  0.120 342.984 0.049 0.053  ***  8.6 

Table 4: Optimal TMD parameters for different mass ratio and with different bandwidth control, 4 344.45 Hz   

For the frequency 4 , the optimal TMD locations given in Table 4 are close to the primary force location, 

especially for broadband control, and they are relatively far away when a narrowband control is 

performed. 

The comparison of the PSD responses shown in Fig. 5 and 6 shows that a broadband control, for both 

targeted frequencies, yields more suitable and satisfactory performances of the TMD device.  Indeed, for 

the target frequency 1  a reduction of G1=27.34 dB is achieved for a broadband control and G1=47.51 dB 

when broadband control is applied to the target frequency 4 . The appearance of new undesirable peaks 

shown in Fig. 5, when a narrowband control is implemented, implies that such a control is not suitable and 

one had to use a broadband control (i.e. Hz 40f ) to effectively attenuate the resonant mode 

corresponding to the frequency 1 .      

In addition, although the reduction in the PSD responses for the target frequency 4  is more significant 

when a narrowband control is performed, the performance of the TMD in the vicinity of the off-target 

frequencies is less suitable. Therefore a broadband control is more appropriate. 

The results of the global performance index 2G  stated in Table 4 show that the RMSAP has increased 

when the TMD is used; these results are predictable considering the PSD responses in Fig. 6 where 

undesirable increases of the PSD responses are observed in the vicinity of the off-target frequencies. The 

obtained results hold for all optimization strategies; also here the APE strategy yields the worst 

performance. The Korenev’s and Den Hartog’s tuning provide global performance similar to that of the 

proposed strategy.    

In Fig. 7 and 8, the performance of the TMD device when it’s tuned using the proposed strategy is 

compared, with its performance if it is tuned using the tuning proposed by Korenev and Reznikov, Den 

Hartog and the APE strategy; for these last strategies the mass ratio is set to %4 . The bandwidth 

parameter is set to Hz 40f  and three values of the mass ratio are considered.  

The results show that the best performance is achieved for the largest mass ratio ( %4 ), for which the 

Korenev’s tuning is the closest to the proposed tuning, especially for the well separated target natural 

frequency 1 . 
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For the target frequency 1  (Fig. 7), a reduction of G1=30.96 dB in the PSD response can be achieved 

when the proposed strategy is applied, whereas two undesirable peaks have shown up (in the vicinity of 

the target frequency) when the APE strategy is used. 

Besides, although the APE strategy yields good performance (for the target frequency 4 ) with a 

reduction of G1=99.70 dB in the very close vicinity of the targeted frequency, the appearance of a new 

peak in the vicinity of the off-target frequency 312 Hz, diminishes the global performance of the APE 

strategy. Using the proposed optimization strategy a reduction of G1=56.1 dB can be achieved (as shown 

in Fig. 8) and no significant effects have been observed on the off-target frequencies. 

   

Fig. 5: PSD responses of acoustic pressure for narrowband and broadband control, =2%, 1 108.59 Hz   

 

Fig. 6: PSD responses of acoustic pressure for narrowband and broadband control, 4 343.8 Hz   
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Fig. 7: PSD responses of acoustic pressure for a broadband control (fHzanddifferent mass ratios

1 108.59 Hz   

    

Fig. 8: PSD responses for a broadband control (f=40Hz) and different mass ratios;, 4 343.8 Hz   

4.3.2 Control of the modes dominated by cavity modes 

Tables 5-7 give the optimal TMD parameters when the modes corresponding to the frequencies 2 , 3  

and 5  are controlled.  These results are obtained for different values of the bandwidth parameter and for 

different values of the mass ratio. The obtained results are also compared with those established when the 

strategy based on APE is applied. The examination of the obtained optimal damping ratios (presented in 

Tables 5-7) shows that the TMD acts as a reactive device for both kinds of control (narrowband and 

broadband). Indeed, one can see that the optimal damping ratios are very small (less than 3%) and for 

some values of f , they are equal to 0.01% which means that the device acts as an undamped TMD . This 

result is coherent with other results found in the literature [3] where the greatest acoustic pressure 

reduction occurs when the TMD device acts as a highly reactive device and the effect of the dissipation 

process [45] is reduced to zero. For these coupled modes dominated by cavity modes, the TMD device 

acts like as a neutralizer [13, 16].   
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     TMD optimal parameters  
4* 10p (Pa) 

 
2 (%)G  (%)   )Hz(f   (%)*

T  )Hz(*
Tf  )m(*

TMDx  )m(*
TMDy    

2 

 2  0.693 155.554 0.192 0.147  77.094  -33.8 

 10  0.676 153.279 0.141 0.132  725.867  -21.5 

 20  0.010 175.472 0.261 0.156  1249.856  -8.3 

 40  0.010 184.877 0.275 0.156  2103.574  -19.7 

 APE  0.6708 155.794 0.176 0.172  ***  -8.6 

3 

 2  1.043 152.277 0.184 0.146  38.186  -38.0 

 10  1.026 150.374 0.151 0.136  365.339  -30.1 

 20  0.010 175.424 0.247 0.157  883.536  -26.4 

 40  0.010 183.097 0.256 0.157  1408.895  -19.7 

  APE  0.519 163.519 0.222 0.157  ***  -21.9 

4 

 2  1.341 149.323 0.180 0.145  19.371  -41.1 

 10  1.355 147.578 0.158 0.139  189.293  -36.5 

 20  1.185 146.967 0.146 0.132  503.278  -32.0 

 40  0.010 178.974 0.243 0.158  1028.770  -39.9 

 APE  3.324 166.133 0.217 0.182  ***  -25.4 

Table 5: Optimal TMD parameters for different mass ratio and with different bandwidth control, 2 159.52 Hz   

The optimal TMD locations given in Tables 5 (control of the target frequency 2 ) show that they are 

roughly in the vicinity of the anti-node of the plate mode (1,1). The fact that the TMD locations are not 

exactly at the anti-node (for narrowband control) is due to the coupling effects with the cavity mode 

(0,0,1) and with the plate mode (2,1) which has an anti-node at coordinate (0.125, 0.15). The effect of the 

coupling with the plate mode (2,1) is gradually increasing as the mass ratio   increases. Indeed, the TMD 

location is moving towards the anti-node of the mode (2,1). For the broadband control, one can see that 

the TMD locations are around the anti-node of the plate mode (1,1). 

The optimal TMD locations, when the frequency 3  is controlled, are given in Table 6 where it has been 

observed that for narrowband and broadband control, the optimal locations were in the vicinity of the anti-

node point of the plate mode (3,1). 

    TMD optimal parameters  
4* 10p (Pa) 

 
2 (%)G  (%)   )Hz(f   (%)*

T  )Hz(*
Tf  )m(*

TMDx  )m(*
TMDy    

2 

 2  0.022 321.830 0.417 0.173  0.789  28.3 

 10  0.090 320.331 0.426 0.168  21.580  8.1 

 20  0.186 318.665 0.431 0.162  74.52473  8.2 

 40  0.366 307.183 0.066 0.093  254.940  8.9 

  APE  0.159 309.059 0.046 0.081  ***  0.3 

3 

 2  0.010 325.745 0.446 0.163  1.215  9.6 

 10  0.010 325.621 0.446 0.164  19.427  8.8 

 20  0.010 325.750 0.445 0.166  65.375  7.9 

 40  0.464 305.144 0.062 0.093  165.545  14.1 

  APE  0.194 307.598 0.043 0.082  ***  5.6 

4 

 2  0.010 328.523 0.456 0.158  1.382  9.5 

 10  0.010 328.386 0.456 0.159  19.187  8.6 

 20  0.010 328.903 0.454 0.163  63.263  7.7 

 40  0.551 302.808 0.059 0.092  125.255  19.2 
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  APE  0.065 313.775 0.060 0.051  ***  5.0 

Table 6: Optimal TMD parameters for different mass ratio and with different bandwidth control,  3 313.20 Hz   

The optimal TMD locations corresponding to the control of the frequency 5  are also presented in Table 

7. The results show that they are in the vicinity of the forcing location and they are relatively far away 

when a broadband control is performed. 

    TMD optimal parameters  
4* 10p (Pa) 

  

(%)   )Hz(f   (%)*
T  )Hz(*

Tf  )m(*
TMDx  )m(*

TMDy    
2 (%)G  

2 

 2  2.163 365.795 0.064 0.071  0.242  2.8 

 10  2.173 366.019 0.067 0.067  7,077  14.6 

 20  2.122 378.299 0.048 0.104  27.392  25.1 

 40  1.915 366.677 0.062 0.070  63.377  27.5 

 APE  0.854 371.300 0.080 0.046  ***  2.7 

3 

 2  2.143 363.097 0.057 0.071  0.187  20.7 

 10  2.310 374.864 0.092 0.035  12.680  13.9 

 20  2.128 377.796 0.041 0.104  24.377  17.5 

 40  1.744 416.471 0.040 0.134  63.690  15.3 

 APE  2.624 360.625 0.060 0.072  ***  13.9 

4 

 2  2.216 366.139 0.070 0.049  1.122  22.2 

 10  2.177 363.564 0.064 0.056  5.292  13.9 

 20  2.134 362.738 0.061 0.060  14.528  19.8 

 40  1.923 363.275 0.057 0.064  42.348  12.1 

 APE  0.990 381.270 0.028 0.111  ***  15.1 

Table 7: Optimal TMD parameters for different mass ratio and with different bandwidth control,  5 378.61 Hz   

The results of the 2G  index stated in Table 5 show that good global performance of the TMD device is 

achieved when a narrowband control is performed ( 2 Hzf  ). Indeed, for 4%  , the obtained 

reduction in the RMSAP is G2=-41.1% while it is -25.4% when the APE strategy is applied. 

In Tables 6 and 7 the obtained values of the 2G  index are also shown for different bandwidth and for 

different mass ratio. The results show that the best global performances of the TMD are achieved when 

the APE strategy is applied. 

The pressure PSD responses of the vibro-acoustic system, for different bandwidth parameters, are shown 

in Fig. 9-11. The inspection of the obtained curves shows that when the frequencies 2  and 5  are 

controlled, satisfactory performance can be achieved when a narrowband control ( Hz2f ) is performed 

for which reductions of G1=17.64 dB and 172.91 dB are achieved, respectively. In contrast, when the 

frequency 3  is controlled, a broadband control ( Hz40f ) performs well and a reduction of G1=58.41 

dB is obtained; for the narrowband control, undesirable effects occur in the vicinity of the off-target 

frequencies (as shown in Fig. 10) and an increase of 23.86 dB (G1=-23.86 dB) has been recorded in the 

peak’s magnitude of the off-target frequency 344.45 Hz. These magnitude increases in the vicinity of the 

off-target frequencies are the main cause of the high values of the 2G  index stated in Table 6. 
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Besides, although a significant reduction of G1=33.82 dB is obtained when a broadband control is 

performed ( Hz40f ) for the target frequency 2  , the appearance of a high magnitude peak in the 

vicinity of the frequency 185Hz, is an undesirable result. The appearance of a new peak with relatively 

high magnitude can be explained by the very small optimal damping ratio stated in Table 5. 

 

Fig. 9: PSD of acoustic pressure for narrowband and broadband control, , 2 159.52 Hz   

The comparison of the performance of the proposed strategy with that based on APE ( %4 ) is shown 

in Fig. 12- 14, considering different values of the mass ratio. The results show that in the close vicinity of 

the target frequencies, the proposed strategy performs better than that based on APE. For instance, Fig. 12 

shows that a reduction of G1=31.61 dB, in the pressure PSD, can be achieved with the proposed 

optimization strategy when the mass ratio is set to %4 , whereas only 16.36 dB are achieved when the 

strategy based on APE is applied. Nevertheless, Looking at the effects on the off-target frequencies when 

3  and 5  are controlled, the tuning based on APE strategy yields better global performance. These 

undesirable effects on the off-target frequencies are the main cause of the obtained values of the 2G  index 

(stated in Tables 6 and 7) where the better global performance of the TMD is achieved when the APE 

strategy is applied.  

Even though the APE strategy yields good performance (compared to the one proposed) above the target 

frequencies corresponding to some modes dominated by cavity mode (Fig. 12 and 13), the proposed 

optimization strategy, using a suitable bandwidth f , remains superior to the APE strategy. Indeed, 

considering the criteria established in sub-section 4.2, we can see that significant attenuations along with 

relatively low magnitudes of the new peaks (in the PSD responses) can be obtained in the close vicinity of 

the target frequencies. The undesirable effects on the off-target frequencies (for example, in the vicinity of 

the frequency 380 Hz, in Fig. 13) observed when the proposed strategy is applied are, in our opinion, 

acceptable. 
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Fig. 10: PSD responses of acoustic pressure for different bandwidth parameter f,  3 313.20 Hz   

 

 

Fig. 11: PSD of acoustic responses for different values f,  5 378.61 Hz  
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Fig. 12: PSD responses of the acoustic pressure for different mass ratio; f=2Hz; 2 159.52 Hz   

 

Fig. 13: PSD of acoustic responses for different mass ratio , f=40Hz; 3 313.20 Hz   

 

Fig. 14: PSD responses of acoustic pressure for narrowband control (f=2Hz) for different values of the mass ratio; 

5 378.61 Hz   
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4.4 The Multi-objective optimizations case, a multimodal control 

The aim of the following sub-section is to demonstrate the capability of the proposed optimization strategy 

to address multimodal control of interior sound using multiple TMDs. The force and microphone locations 

are maintained at  T05.0,05.0Fr  and 
T)875.0,1.0,35.0( ar  , respectively. 

4.4.1 Control of two coupled resonant modes  

To illustrate the ability of the proposed optimization strategy to deal with multimodal control, the first two 

resonant modes at 1 108.59 Hz   and 2 159.52 Hz   are chosen to be controlled using two TMDs. 

Therefore, ten parameters need to be optimized (i.e. five parameters for each of the TMD devices). The 

first resonant mode is controlled by a plate mode, consequently, taking into account the results obtained in 

the previous section, a broadband control should be used ( Hz40f ) for the evaluation of the first 

objective function. In addition, a narrowband control corresponding to Hz2f  is used to evaluate the 

objective function related to the second resonant mode, controlled by the cavity.  

The TMD parameters optimization has been performed using the controlled elitist GA implemented in 

Matlab and the initial population size is taken equal to 400. The other algorithm parameters are taken as 

those set by default in Matlab. 

Fig. 15 shows the Pareto front, composed by 140 solutions, obtained after 1000 generations. In order to 

help the decision-making, the SOM are presented in Fig. 16 where the optimized TMD parameters and 

both objective functions have been used for the training of the SOM. The results in Fig. 15 show the 

conflicting aspect of the obtained optimal solutions, where for very small values of the objective function 

one (mode 1 108.59 Hz  ), the objective function two has high values and vice versa. In addition, one 

can see that the obtained solutions are evenly distributed except for the region where the objective 

function one has values between roughly 0.2 and 0.24, and the region near to 0.17 where a slight gap can 

be observed.  

The observations made in Fig. 15 can also be seen in Fig. 16 (a) depicting the Unified distance matrix, (U-

matrix) [60, 61] where the gaps are represented by red hexagonal lattices.  

 

Fig. 15: Pareto front (two objective functions) 
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(a) (b) (c) 

Fig. 16: SOM; (a) U-matrix map, (b) Objective function one component map; (c) Objective function two component map 

The conflicting aspect of the obtained optimal solutions is also highlighted in Fig. 16 (b) and (c). Indeed, 

one can see that for small values of the objective function one (lower left corner in Fig. 16 (b)), the values 

of the objective function two are, on the contrary, at their highest values (lower left corner in Fig. 16 (c)). 

Also, the examination of Fig. 16 (b) and (c) demonstrate that one can define four clusters of optimal 

solutions represented by the four solutions S8, S60, S79 and S99. The optimal TMD parameters 

corresponding to these solutions are stated in Table 8. 

The results given in Table 8 demonstrate that the optimal mass ratios of the second TMD (TMD 2) are 

always greater than those of the first TMD, for all the four solutions. Besides, one can also see that the 

optimal natural frequencies of the first TMD is roughly constant for all four solutions, whereas they are 

different for the second TMD. The values of the 2G  index stated in Table 8 are obtained when both TMD 

devices are mounted at the plate. The values of the global performance index 2G  show that the best 

performance is obtained when the solution S8 is used.     

When a designer has to make a particular choice of TMD parameters, he has to make it among the 

solutions belonging to one of these clusters and in order to help the decision-making, the performances of 

the selected set of solutions (S8, S60, S79 and S99) are investigated using the PSD responses plotted in 

Fig. 17. 

        TMDs optimal parameters  
*
pi (Pa) 

  

TMDs 
 Optimal  

solution 

 (%)*
T  )Hz(*

Tf  )m(*
TMDx  )m(*

TMDy  (%)*
T    

2 (%)G  

TMD 1 

 S8  8.451 99.279 0.185 0.140 3.038  0.201  -62.7 

 S60  6.505 99.483 0.209 0.147 3.184  0.100  0.9 

 S79  7.257 99.417 0.202 0.146 3.092  0.112  -26.4 

 S99  8.333 99.370 0.193 0.142 3.061  0.152  -50.2 

TMD 2 

 S8  2.065 142.276 0.175 0.138 3.991  0.067   

 S60  3.785 130.691 0.257 0.152 3.834  0.413   

 S79  4.024 130.778 0.229 0.151 3.937  0.302   

 S99  4.221 138.563 0.208 0.146 3.963  0.169   

Table 8: Optimal parameters of the two TMDs for different optimal solutions 
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Fig. 17: PSD responses of the four selected optimal solutions (sound control using two TMDs)  

The results in Fig. 17 show that the “best” performance is obtained for the solutions belonging to the first 

cluster containing the representative solution S8. This result is coherent with the obtained 2G  index 

corresponding to the solution S8 for which a reduction of 62.7% (G1=-62.7%) is achieved.  

Besides, one can see (in Fig. 17) that a reduction of G1=29.9 dB is achieved for the first mode and 

G1=34.9 dB for the second mode; for the off-target modes, no significant changes of the PSD responses 

are observed, except in the vicinity of the frequency of 200 Hz where a new peak appears due to the 

coupling effect between the TMDs and the plate-cavity mode corresponding to 196.52 Hz. 

The obtained result, for the “best” solution, is relatively unexpected since generally speaking one had to 

make a certain compromise and select a solution among the clusters represented by solutions S79 or S99 

and not a solution belonging to a cluster where a given objective function is very high and the other is too 

low.  

This result can be explained looking at the component maps of the optimized damping ratios shown in 

Fig. 18. Indeed, the results in Fig. 18 (b) show that small values of the damping ratio of the second TMD, 

tuned to the second resonant mode, occur only at the higher left corner of the map corresponding to the 

cluster containing the optimal solution S8.  

  

(a) (b) 
Fig. 18: Component maps of the optimized damping ratios (a) first TMD tuned to the first mode, (b) second TMD tuned to 

the second mode 
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Considering previous conclusions about the single-objective optimization carried out on resonant modes 

controlled by the cavity, the obtained result is thus well justified because the best performance of a TMD 

occur when it acts as a reactive device therefore having small value of the damping ratio.  

4.4.2 Control of the five coupled resonant modes  

In the frequency range of interest, [0-400] Hz, five resonant modes have been observed therefore five 

TMDs should be used to control the sound field in the cavity. The number of objective functions is five 

and the total number of parameters, to be optimized, is 25 (five parameters for each of the TMDs); thus, 

it’s clear that the optimization problem, dealing with the control of five modes, is more complicated than 

the one dealing with the control of two modes. 

Preliminary investigations performed during the preparation of the present work showed that carrying out 

the optimization with the controlled elitist GA, implemented in Matlab, is very computationally expensive 

and that the convergence is not guaranteed with a reasonable number of generations. Indeed, the results 

(Pareto front) after more than 2000 generations have not been satisfactory.  

To overcome this problem, a hybrid approach [39, 68-70] combining the controlled elitist GA with 

another local search algorithm can be used. In the work conducted here, the controlled elitist GA has been 

combined with the goal attainment method [71] implemented in the “fgoalattain” function of Matlab and 

the obtained results have been satisfactory.   

For the evaluations of the five objective functions, the bandwidth parameters are chosen based on the 

previous conclusions from the single-objective optimizations problems. For the modes controlled by the 

plate (i.e. 1 108.59 Hz   and 4 343.8 Hz  ) the bandwidth is taken Hz40f . For the other modes 

controlled by the cavity, the bandwidth is taken Hz2f  except for the mode corresponding to 

3 313.20 Hz   for which numerical investigations have shown that a bandwidth Hz10f , instead of 

Hz40f , allows obtaining satisfactory results. The initial population size has been set to 800 and the 

other algorithm’s parameters are taken as those set by default in Matlab. After 150 generations, with 

387244 function evaluations, the solver has converged to 38 optimal solutions. 

Similarly to the previous case with two controlled modes, the obtained solutions and their corresponding 

optimized objective functions are used in the training of the SOM and then projected onto the two-

dimensional maps depicted in Fig. 19. The U-matrix in Fig. 19 reveals that the obtained solutions are not 

evenly distributed and it seems that the Pareto front presents several gaps. Indeed one can observe the 

presence of two clusters of data (indicated by two red circles in the U-matrix) surrounded by green and red 

lattices, which means that the Pareto solutions are not evenly distributed. 

This result is actually predictable considering the optimization technique that has been used involving 

hybridization, in which the local search method (i.e. the goal attainment method) doesn’t guarantee the 

diversity of the obtained optimal solutions. 
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Fig. 19: SOM: the U-matrix and the five objective functions 

Fig. 19 also presents the maps of the five objective functions; here too, the conflicting aspect is less 

highlighted for the same reason related to the diversity of the obtained solutions. Indeed, one can observe 

a main cluster (indicated by dashed black rectangles in the figure) presenting simultaneously low values of 

the five objective functions. Consequently, the decision-maker has to choose one solution belonging to 

this cluster. 

Table 9 presents the TMD optimal parameters for the five TMDs and for the four solutions S26, S19, S16 

and S14, marked in Fig. 19 by red circles. The results in Table 9 show that for the first TMD (TMD 1), the 

optimal parameters of the four solutions are very close whereas for the other TMDs, the optimal 

parameters present relatively large fluctuations, especially in the optimized damping ratios of TMD 2 and 

TMD 3 which are both dedicated to control two modes that are controlled by the cavity. The same 

observation can be made for the fourth TMD, dedicated to control the fourth mode corresponding to 

Hz45.3444  ,  where it is acting as dissipative device (relatively high value of the damping ratio) for the 

solution S26, whereas it behaves as a reactive device for the other solutions (very low values of the 

damping ratios). 

The PSD responses of the plate-cavity system equipped by the five TMDs tuned using the obtained 

optimal solutions S26, S19, S16 and S14 are shown in Fig. 20. The analysis of the obtained PSD 

responses in Fig. 20 yields that they are roughly the same for the two well separated target frequencies 1  

and 2 . This observation doesn’t hold for the closely spaced targeted frequencies (i.e. 3 , 4 , 5 ) 

where significant fluctuations can be observed. 

This result can be explained by the fact that for closely spaced targeted frequencies, the coupling effects 

between the TMDs devices and the vibro-acoustic system is more significant therefore involving 

important variability of the PSD responses. 
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    TMDs optimal parameters  
*
pi (Pa) 

 

2 (%)G  TMDs 

 

 Optimal  

solution 

 (%)*
T  )Hz(*

Tf  )m(*
TMDx  )m(*

TMDy  (%)*
T    

TMD 1 

( 1 ) 

 S26  8.829 98.250 0.205 0.151 1.346  0.264  -67.0 
 S19  8.360 98.217 0.203 0.147 1.363  0.268  -65.5 
 S16  9.008 98.260 0.204 0.147 1.699  0.247  -65.6 
 S14  8.708 98.322 0,206 0.146 1.730  0.239  -63.2 

TMD 2 

( 2 ) 

 S26  11.638 128.512 0.195 0,152 1.328  0.056   

 S19  5.320 128.580 0.195 0,151 0.918  0.061   

 S16  4.184 128.508 0.209 0,151 0.649  0.040   

 S14  5.456 128.391 0.208 0,150 0.851  0.039   

TMD 3 

( 3 ) 

 S26  22.032 282.972 0.318 0.134 2.925  0.043   

 S19  34.786 282.951 0.020 0.025 0.100  0.039   

 S16  0.026 282.947 0.270 0.160 0.502  0.026   

 S14  0.001 282.926 0.322 0.107 1.518  0.032   

TMD 4 

( 4 ) 

 S26  2.280 311.472 0.386 0.115 0.454  0.046   

 S19  0.010 311.401 0.301 0.119 4.000  0.015   

 S16  0.010 311.418 0.310 0.118 3.790  0.027   

 S14  0.010 311.337 0.300 0.123 2.595  0.030   

TMD 5 

( 5 ) 

 S26  0.559 342.640 0.057 0.090 0.877  0.004   

 S19  2.535 342.754 0.066 0.117 0.549  0.039   

 S16  2.804 342.610 0.075 0.111 0.289  0.007   

 S14  5.633 343.263 0.080 0.112 0.236  0.011   

Table 9: Optimal parameters of the five TMDs for different optimal solutions 

Looking at the values of the 2G  index in Table 9, the optimal solution S26 will be, in our opinion, “the 

best one” for which significant reductions of the PSD response have been recorded for all target 

frequencies. Indeed, for the first targeted mode, a reduction of G1=29.12 dB is reached, whereas it has 

been 38.95 dB, 33.62 dB, 26.47 dB and 36.14 dB, respectively, for the other targeted frequencies as 

shown in Fig. 20 . All these values of the PSD responses attenuation prove the capability of the proposed 

optimization strategy to handle multimodal control of interior sound under stochastic loading. 
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Fig. 20: PSD responses for four optimal solutions (sound control using five TMDs) 

5. Conclusions  

In the work presented, a vibro-acoustic control of random interior sound pressure inside a cavity is 

proposed. The control of the interior sound pressure has been performed using TMD devices attached to a 

flexible plate driven by a primary point force with Gaussian white noise characteristics. The plate is 

attached to a rectangular rigid-walled cavity.  

In order to derive the optimal TMD parameters, a strategy based on an acoustic criterion is suggested. The 

strategy is to reduce the root mean square acoustic pressure in a given location inside the cavity. By 

making use of a numerical example, the efficiency of the proposed strategy has been investigated and 

comparisons with other optimization strategies, involving structural and acoustic criteria, have been 

discussed. 

The obtained results show that for the target modes that are dominated by plate’s modes, a broadband 

control can achieve good performance and significant reduction in the PSD responses can be reached 

when a relatively high mass ratio is used for the TMDs. When a narrowband control is performed, the 

obtained results show that for well separated target frequencies, undesirable resonant peaks appear and the 

global performance of the TMD device is limited. On the contrary, when the target frequency is closely 

spaced to its neighboring resonant frequencies, the appearance of the new resonant peaks is less 

significant because of the coupling that occurs between the TMD device and the neighboring frequencies. 

Indeed, for closely spaced natural frequencies, not only the target frequency is affected by the TMD 

device, but also its neighbors. 

For the coupled modes that are controlled by cavity modes, the numerical investigations have shown that a 

narrowband control can achieve good performance especially for well separated targeted frequencies. For 

the target frequencies that are closely spaced, a narrowband control can generate undesirable effects on the 
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off-target frequencies; a broadband control has significantly improved the global performance of the TMD 

device. 

Except for the coupled mode dominated by a plate mode (with a natural frequency separated from its 

neighboring), the optimal damping ratios obtained for both modes that are either controlled by the plate or 

by the cavity, have been relatively small. This result, particularly observed for narrowband control, is in 

fact coherent with the results obtained in the literature where the TMD device should act as a highly 

reactive device instead of dissipative device in order to guarantee a maximum sound reduction. 

The performance of the proposed strategy is also compared with others, taken from the literature, and the 

obtained results show its effectiveness and its superiority, for both kinds of coupled modes (i.e. that are 

dominated by the plate and that are dominated by the cavity). Although the APE strategy shows good 

performance on the off-target frequencies (for some target frequencies dominated by cavity modes), the 

obtained results show that it is not suitable concurrently for both kinds of resonant modes, especially in 

the close vicinity of the target frequencies.  

In order to prove the capability of the proposed optimization strategy to deal with multimodal control of 

interior sound, two TMDs devices have been used to control two resonant coupled modes. The 

optimization of the TMDs parameters has been performed using a controlled elitist GA and, unlike the 

single-objective optimization problem where a single optimal solution is obtained, a set of optimal 

solutions is obtained in a Pareto front. To help the designer in the decision-making, the SOM have been 

used to visualize the obtained solutions that have been clustered into four clusters allowing easier choice 

of an acceptable optimal solution. The numerical investigations have shown that an acceptable optimal 

solution allowed obtaining significant attenuations in PSD responses. 

Unlike the case of control of two resonant modes where the controlled elitist GA has been used, the 

extension of the internal sound control to five resonant modes has required a hybridization method 

involving the controlled elitist GA along with the goal attainment optimization method. The hybridization 

has allowed obtaining satisfactory solutions with reasonable computational CPU time. 

Similarly to the previous case of control of two modes, the SOM technique has been used and the 

optimized solutions, obtained for the five targeted modes, have been clustered allowing obtaining 

acceptable solutions. The numerical investigations have shown that good control attenuations of the 

interior sound can be achieved for all targeted modes.  
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Parameter  Value  

xl (m)  m 5.0  

yl (m)  m 3.0  

zl (m)  m .11  

h (m)  m .0030  

E (Pa)  Pa 1007 9  

s (unit)  -3kg.m 0270  

   0.3 

0 (unit)  -3kg.m .211  

0c (unit)  -1m.s 443  

Table 1: Numerical values of the parameters of the vibro-acoustic system 

  

Table



 

In-vacuo plate  Rigid-walled cavity  Coupled plate-cavity 

Modes 
Frequencies 

(Hz) 
 Modes 

Frequencies 

(Hz) 
 

Frequencies 

(Hz) 

Mode  

controlled by 
Modes involved 

   (0,0,0) 0  0   

(1,1) 110.43     108,59 plate  (1,1)-(0,0,0) 

   (0,0,1) 156.36  159,52 cavity (1,1)-(0,0,1) 

(2,1) 198.12     196,52 plate  (2,1)-(1,0,0) 

   (0,0,2) 312.72  313,20 cavity  (3,1)-(0,0,2) 

(3,1) 344.27     343,80 plate  (3,1)-(0,0,2) 

   (1,0,0) 344.00  344,45 cavity (2,1)-(1,0,0) 

(1,2) 354.01     352,35 plate (1,2)-(0,1,0) 

   (1,0,1) 377.86  378,61 cavity (2,1)-(1,0,1) 

Table 2: Natural modes and frequencies of the uncoupled and coupled plate-cavity system 

  



 

    TMD optimal parameters  
)Pa(*

p  
 

2 (%)G  (%)   )Hz(f   (%)*
T  )Hz(*

Tf  )m(*
cx  )m(*

cy    

2 

 2  0.01 110.897 0.240 0.150  0.0027  15.8 

 10  0.03 111.106 0.244 0.150  0.0320  15.6 

 20  1.16 110.694 0.244 0.150  0.1231  4.0 

 40  13.45 110.919 0.253 0.151  0.3284  -19.2 

 Korenev  12.97 110.425 *** ***  ***  -18.6 

 Den Hartog  16.66 102.248 *** ***  ***  -21.5 

 APE  0.96 108.529 0.232 0.108  ***  4.4 

3 

 2  0.01 111.739 0.235 0.149  0.0018  21.6 

 10  0.01 112.238 0.241 0.149  0.0209  23.9 

 20  0.37 112.107 0.241 0.150  0.0715  31.3 

 40  14.96 110.612 0.252 0.151  0.2729  -22.8 

 Korenev  15.25 110.425 *** ***  ***  -23.0 

 Den Hartog  20.04 98.595 *** ***  ***  -25.1 

 APE  0.09 114.294 0.234 0.110  ***  -0.9 

4 

 2  0.01 112.405 0.229 0.149  0.0014  26.7 

 10  0.01 113.273 0.238 0.149  0.0155  16.8 

 20  0.17 113.304 0.238 0.149  0.0505  26.3 

 40  15.06 110.168 0.248 0.150  0.2301  -25.5 

 Korenev  16.94 110.425 *** ***  ***  -27.8 

 Den Hartog  22.74 95.197 *** ***  ***  -28.3 

 APE  0.45 108.554 0.146 0.160  ***  -15.8 

Table 3: Optimal TMD parameters for different mass ratio and with different bandwidth control, 1 108.59 Hz    

  



 

       TMD optimal parameters  
Pa)(*

p  
 

2 (%)G  (%)   )Hz(f   (%)*
T  )Hz(*

Tf  )m(*
TMDx  )m(*

TMDy    

2 

 2  2.234 337.493 0.031 0.097  4.66×10
-05

  4.1 

 10  2.053 338.687 0.047 0.067  1.04×10
-03

  9.9 

 20  1.984 340.100 0.051 0.061  4.13×10
-03

  10.9 

 40  3.588 334.259 0.055 0.064  2.29×10
-02

  5.2 

 Korenev  7.646 344.266 *** ***  ***  6.7 

 Den Hartog  9.509 335.966 *** ***  ***  4.7 

 APE  3.9861 331.598 0.049 0.079  ***  47.4 

3 

 2  2.930 333.262 0.035 0.088  4.46×10
-05

  4.7 

 10  3.617 331.804 0.041 0.079  1.12×10
-03

  6.2 

 20  1.923 340.319 0.051 0.057  2.94×10
-03

  6.7 

 40  3.316 335.858 0.053 0.061  1.71×10
-02

  5.8 

 Korenev  8.202 344.266 *** ***  ***  6.8 

 Den Hartog  10.224 334.669 *** ***  ***  5.8 

 APE  4.5208 329.270 0.048 0.075  ***  17.7 

4 

 2  2,878 337.802 0.023 0.107  5.42×10
-05

  6.3 

 10  2,113 337.686 0.048 0.060  5.97×10
-04

  6.5 

 20  1,829 340.713 0.051 0.055  2.31×10
-03

  6.6 

 40  3,017 337.149 0.053 0.058  1.38×10
-02

  7.0 

 Korenev  9,199 344.266 *** ***  ***  7.6 

 Den Hartog  11,523 332.078 *** ***  ***  7.2 

 APE  0.120 342.984 0.049 0.053  ***  8.6 

Table 4: Optimal TMD parameters for different mass ratio and with different bandwidth control, 4 344.45 Hz   

  



 

    TMD optimal parameters  
4* 10p (Pa) 

 
2 (%)G  (%)   )Hz(f   (%)*

T  )Hz(*
Tf  )m(*

TMDx  )m(*
TMDy    

2 

 2  0.693 155.554 0.192 0.147  77.094  -33.8 

 10  0.676 153.279 0.141 0.132  725.867  -21.5 

 20  0.010 175.472 0.261 0.156  1249.856  -8.3 

 40  0.010 184.877 0.275 0.156  2103.574  -19.7 

 APE  0.6708 155.794 0.176 0.172  ***  -8.6 

3 

 2  1.043 152.277 0.184 0.146  38.186  -38.0 

 10  1.026 150.374 0.151 0.136  365.339  -30.1 

 20  0.010 175.424 0.247 0.157  883.536  -26.4 

 40  0.010 183.097 0.256 0.157  1408.895  -19.7 

  APE  0.519 163.519 0.222 0.157  ***  -21.9 

4 

 2  1.341 149.323 0.180 0.145  19.371  -41.1 

 10  1.355 147.578 0.158 0.139  189.293  -36.5 

 20  1.185 146.967 0.146 0.132  503.278  -32.0 

 40  0.010 178.974 0.243 0.158  1028.770  -39.9 

 APE  3.324 166.133 0.217 0.182  ***  -25.4 

Table 5: Optimal TMD parameters for different mass ratio and with different bandwidth control, 2 159.52 Hz   

  



 

 

    TMD optimal parameters  
4* 10p (Pa) 

 
2 (%)G  (%)   )Hz(f   (%)*

T  )Hz(*
Tf  )m(*

TMDx  )m(*
TMDy    

2 

 2  0.022 321.830 0.417 0.173  0.789  28.3 

 10  0.090 320.331 0.426 0.168  21.580  8.1 

 20  0.186 318.665 0.431 0.162  74.52473  8.2 

 40  0.366 307.183 0.066 0.093  254.940  8.9 

  APE  0.159 309.059 0.046 0.081  ***  0.3 

3 

 2  0.010 325.745 0.446 0.163  1.215  9.6 

 10  0.010 325.621 0.446 0.164  19.427  8.8 

 20  0.010 325.750 0.445 0.166  65.375  7.9 

 40  0.464 305.144 0.062 0.093  165.545  14.1 

  APE  0.194 307.598 0.043 0.082  ***  5.6 

4 

 2  0.010 328.523 0.456 0.158  1.382  9.5 

 10  0.010 328.386 0.456 0.159  19.187  8.6 

 20  0.010 328.903 0.454 0.163  63.263  7.7 

 40  0.551 302.808 0.059 0.092  125.255  19.2 

  APE  0.065 313.775 0.060 0.051  ***  5.0 

Table 6: Optimal TMD parameters for different mass ratio and with different bandwidth control,  3 313.20 Hz   

  



 

    TMD optimal parameters  
4* 10p (Pa) 

  

(%)   )Hz(f   (%)*
T  )Hz(*

Tf  )m(*
TMDx  )m(*

TMDy    
2 (%)G  

2 

 2  2.163 365.795 0.064 0.071  0.242  2.8 

 10  2.173 366.019 0.067 0.067  7,077  14.6 

 20  2.122 378.299 0.048 0.104  27.392  25.1 

 40  1.915 366.677 0.062 0.070  63.377  27.5 

 APE  0.854 371.300 0.080 0.046  ***  2.7 

3 

 2  2.143 363.097 0.057 0.071  0.187  20.7 

 10  2.310 374.864 0.092 0.035  12.680  13.9 

 20  2.128 377.796 0.041 0.104  24.377  17.5 

 40  1.744 416.471 0.040 0.134  63.690  15.3 

 APE  2.624 360.625 0.060 0.072  ***  13.9 

4 

 2  2.216 366.139 0.070 0.049  1.122  22.2 

 10  2.177 363.564 0.064 0.056  5.292  13.9 

 20  2.134 362.738 0.061 0.060  14.528  19.8 

 40  1.923 363.275 0.057 0.064  42.348  12.1 

 APE  0.990 381.270 0.028 0.111  ***  15.1 

Table 7: Optimal TMD parameters for different mass ratio and with different bandwidth control,  5 378.61 Hz   

  



 

        TMDs optimal parameters  
*
pi (Pa) 

  

TMDs 
 Optimal  

solution 

 (%)*
T  )Hz(*

Tf  )m(*
TMDx  )m(*

TMDy  (%)*
T    

2 (%)G  

TMD 1 

 S8  8.451 99.279 0.185 0.140 3.038  0.201  -62.7 

 S60  6.505 99.483 0.209 0.147 3.184  0.100  0.9 

 S79  7.257 99.417 0.202 0.146 3.092  0.112  -26.4 

 S99  8.333 99.370 0.193 0.142 3.061  0.152  -50.2 

TMD 2 

 S8  2.065 142.276 0.175 0.138 3.991  0.067   

 S60  3.785 130.691 0.257 0.152 3.834  0.413   

 S79  4.024 130.778 0.229 0.151 3.937  0.302   

 S99  4.221 138.563 0.208 0.146 3.963  0.169   

Table 8: Optimal parameters of the two TMDs for different optimal solutions 

  



 

    TMDs optimal parameters  
*
pi (Pa) 

 

2 (%)G  TMDs 

 

 Optimal  

solution 

 (%)*
T  )Hz(*

Tf  )m(*
TMDx  )m(*

TMDy  (%)*
T    

TMD 1 

( 1 ) 

 S26  8.829 98.250 0.205 0.151 1.346  0.264  -67.0 
 S19  8.360 98.217 0.203 0.147 1.363  0.268  -65.5 
 S16  9.008 98.260 0.204 0.147 1.699  0.247  -65.6 
 S14  8.708 98.322 0,206 0.146 1.730  0.239  -63.2 

TMD 2 

( 2 ) 

 S26  11.638 128.512 0.195 0,152 1.328  0.056   

 S19  5.320 128.580 0.195 0,151 0.918  0.061   

 S16  4.184 128.508 0.209 0,151 0.649  0.040   

 S14  5.456 128.391 0.208 0,150 0.851  0.039   

TMD 3 

( 3 ) 

 S26  22.032 282.972 0.318 0.134 2.925  0.043   

 S19  34.786 282.951 0.020 0.025 0.100  0.039   

 S16  0.026 282.947 0.270 0.160 0.502  0.026   

 S14  0.001 282.926 0.322 0.107 1.518  0.032   

TMD 4 

( 4 ) 

 S26  2.280 311.472 0.386 0.115 0.454  0.046   

 S19  0.010 311.401 0.301 0.119 4.000  0.015   

 S16  0.010 311.418 0.310 0.118 3.790  0.027   

 S14  0.010 311.337 0.300 0.123 2.595  0.030   

TMD 5 

( 5 ) 

 S26  0.559 342.640 0.057 0.090 0.877  0.004   

 S19  2.535 342.754 0.066 0.117 0.549  0.039   

 S16  2.804 342.610 0.075 0.111 0.289  0.007   

 S14  5.633 343.263 0.080 0.112 0.236  0.011   

Table 9: Optimal parameters of the five TMDs for different optimal solutions 



 

 

 

 

 

 

 

 

 

 

  
Fig. 1: Plate-cavity system with the attached multi-TMDs devices  
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Fig. 2 : schematic representation of two objective functions (i.e. the square roots of the shaded surfaces)       
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Fig. 3: FRF for the force location (0.05m, 0.05m); (a) Pressure response, microphone location (0.35 m, 0.10m, -

0.875m); (b) displacement response at force location 
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Fig. 4 PSD responses of acoustic pressure for the damped and undamped TMD, =2%, 1 108.59 Hz   
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Fig. 5: PSD responses of acoustic pressure for narrowband and broadband control, =2%, 1 108.59 Hz   
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Fig. 6: PSD responses of acoustic pressure for narrowband and broadband control, 4 343.8 Hz   
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Fig. 7: PSD responses of acoustic pressure for a broadband control (fHzanddifferent mass ratios 1 108.59 Hz   
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Fig. 8: PSD responses for a broadband control (f=40Hz) and different mass ratios;, 4 343.8 Hz   
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Fig. 9: PSD of acoustic pressure for narrowband and broadband control, , 2 159.52 Hz   
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Fig. 10: PSD responses of acoustic pressure for different bandwidth parameter f,  3 313.20 Hz   
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Fig. 11: PSD of acoustic responses for different values f,  5 378.61 Hz   
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Fig. 12: PSD responses of the acoustic pressure for different mass ratio; f=2Hz; 2 159.52 Hz   
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Fig. 13: PSD of acoustic responses for different mass ratio , f=40Hz; 3 313.20 Hz   
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Fig. 14: PSD responses of acoustic pressure for narrowband control (f=2Hz) for different values of the mass ratio; 

5 378.61 Hz   
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Fig. 15: Pareto front (two objective functions) 
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(a) (b) (c) 

Fig. 16: SOM; (a) U-matrix map, (b) Objective function one component map; (c) Objective function two component map 
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Fig. 17: PSD responses of the four selected optimal solutions (sound control using two TMDs) 
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(a) (b) 
Fig. 18: Component maps of the optimized damping ratios (a) first TMD tuned to the first mode, (b) second TMD tuned to 

the second mode 
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Fig. 19: SOM: the U-matrix and the five objective functions 
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Fig. 20: PSD responses for four optimal solutions (sound control using five TMDs) 
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