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Fluid-saturated porous metamaterials described following Biot’s theory support two longitudinal
elastic waves. The phase velocity and attenuation of these waves depend non linearly on porosity
and viscosity of the fluid. Furthermore, when two fluid-saturated porous metamaterials are ar-
ranged to form a periodic composite, different bandgaps are opened for the two longitudinal waves
and these couple to form anti-crossings in the dispersion relation. The complex band structure
of one-dimensional composites is derived and compared with numerical transmission through a fi-
nite sample obtained by the finite element method. It is found that the anti-crossings disappear
rapidly as viscosity increases, while attenuation bandgaps become dominated by the fastest of the
two longitudinal waves. Increasing porosity further leads to wider and lower frequency bandgaps.
These results are relevant to practical applications of fluid-saturated porous metamaterials, e.g. to
engineered soils.

I. INTRODUCTION

Wave propagation in geological materials or ground1

has received considerable attention because of its practi-
cal importance in various fields such as earthquake engi-
neering, soil dynamics, geophysics, hydrology, etc. Most
existing studies deal with ground vibrations caused by
mechanical operation or seismic waves2. A great deal
of research has already been conducted on construct-
ing wave barriers operating between the vibration source
and the protected structures3. More recently, periodic
wave barriers, inspired by the concept of phononic crys-
tal (PC), have attracted more and more attention4. PCs
are spatially periodic composites composed of different
materials5. They can exhibit frequency bandgaps in their
transmission spectrum, where the propagation of acous-
tic or elastic waves is fully prohibited. The PC concept
was proposed in 1993, although there had been many
works about wave propagation in periodic media and
structures before6. In 2000, Liu et al.7 further intro-
duced the concept of local resonance inducing complete
bandgaps at low frequencies and providing a negative dy-
namic effective mass density inside resonant bandgaps8.
Locally-resonant PCs are also termed acoustic/elastic
metamaterials9, since their band gaps are not signifi-
cantly dependent on periodicity. PCs and metamaterials
provide new ways to manipulate acoustic/elastic waves.
Bandgap engineering10 ambitions to realize control over
wave propagation.

A direct application of bandgap engineering is
noise isolation and vibration reduction. Niousha and
Motosaka4 investigated the effects of periodic wave bar-
riers on the reduction of ground vibration. Jia and
Shi11 studied the influence of physical and geometri-
cal parameters of periodic foundation on the bandgaps.
Malcolm and Nicholls12 examined the scattering of peri-
odic multilayered media. Bao et al.13 discussed the dy-
namic response of a seven-storey frame structure with
periodic foundations. Kim and Das14 proposed an
earthquake-resistant design by constructing a shell-type

waveguide composed of many Helmholtz resonators. Shi
and Huang15 described the feasibility of reducing seis-
mic waves by locally resonant metamaterials. Mitchell
et al.16 proposed a metaconcrete composed of designed
aggregates to enhance dynamic performance. Colombi et
al.17 designed a seismic metawedge to convert destructive
Rayleigh seismic waves into harmless bulk shear waves.
Colquitt et al.18 carefully analyzed the canonical problem
of an array of sub-wavelength resonators placed on either
a thin elastic plate or an elastic half-space. On the experi-
mental side, a full-scale experiment aiming at researching
the interaction of structured soil with seismic waves was
realized by Brûlé et al.19. Yan et al.20 conducted field
experiments of a scaled periodic foundation. Colombi et
al.21 demonstrated experimentally that a Rayleigh wave
experiences strong attenuation when interacting with a
forest acting as a locally resonant metamaterial.

Although numerous theoretical studies have explored
the properties of PCs and metamaterials, they often
consider soil as an elastic constituent, within which
waves furthermore often propagate without attenuation.
Some studies of PCs or metamaterials composed of fluid-
saturated porous (FSP) media have emphasized their
specific acoustic properties22–25 and have also discussed
wave attenuation in FSP media26. Actually, wave prop-
agation in FSP media has attracted significant attention
for a long time27–30. The related theory is of great signif-
icance in the fields of geophysical exploration, seismic en-
gineering, or geodynamics. Biot31,32 formulated the basic
equations for isotropic FSP media. It follows from this
theory that two longitudinal and two transverse waves ex-
ist. Plona33 and Dutta34 later proved this fact: the speed
of the slow compressional wave is smaller than the speed
of sound in the fluid. Wave propagation in FSP media
has since then been investigated from different viewpoints
and using different methods35–39. The effect on the prop-
agation of elastic waves of the material parameters of the
fluid, the solid skeleton, and of their combination was
discussed. Slowness surfaces38 and wave fronts40 were
calculated by using plane-wave theory or characteristic
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analysis. We note that previous investigations of PCs in-
volving FSP media22–26 have not specifically considered
the possible interference of the two longitudinal waves.

In this paper, we conduct a detailed analysis of the dy-
namical behavior of wave propagation in one-dimensional
fluid-saturated porous metamaterials (FSPMs). Of par-
ticular interest is the mutual interaction of the two longi-
tudinal acoustic waves in FSP media and how they atten-
uate differently in FSPMs. The basic equations are first
summarized in Section II. Harmonic Bloch wave propaga-
tion and its finite element implementation are discussed
in Section III. These equations are used in Section IV to
obtain dispersion relations. To start with, we study wave
propagation in homogeneous FSP media. We then con-
sider the effect of viscosity and porosity on the complex
band structure and the frequency response function of
one-dimensional FSPMs. Only normal incidence of lon-
gitudinal waves is considered in this paper. Extensions of
our approach to general incidence and more periodicities
are suggested in the conclusion.

II. BASIC EQUATIONS

Following Biot31,32, the constitutive equations for wave
propagation in an isotropic FSP media can be written

τxx = (2B1 +B2)exx +B2eyy +B2ezz +B3ξ,

τyy = B2exx + (2B1 +B2)eyy +B2ezz +B3ξ,

τzz = B2exx +B2eyy + (2B1 +B2)ezz +B3ξ,

τyz = 2B1eyz, τzx = 2B1ezx, τxy = 2B1exy,

p = B3exx +B3eyy +B3ezz +B4ξ. (1)

In these expressions, τij and eij (i, j = x, y, z) are the
stress and strain tensors of the solid skeleton, p is the
pore fluid pressure, and ξ is the increment of the fluid
content per unit volume. The displacement components
of the skeleton and of the fluid are ui and Ui. All these
quantities are functions of position. The strain eij and
the increment ξ can be expressed as

eij =
1

2
(ui,j + uj,i), ξ = −wi,i, (2)

where wi = φ(Ui−ui) and φ is the porosity of the medium
(a number between 0 and 1). The notation ui,j = ∂ui

∂xj

is used for brevity where applicable. The material coef-
ficients B1 to B4 are spatially periodic functions deter-
mined by the material properties of the solid skeleton and
fluid41:

B1 = C44, B2 = C12 +B2
3/B4,

B3 = −
(

1− 1

3Ks
(C11 + 2C12)

)
B4,

B4 =

(
1− φ
Ks

+
φ

Kf
− 1

3K2
s

(C11 + 2C12)

)−1

,
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y

z

L

Figure 1: Sketch of the 1D fluid-saturated porous metama-
terial with a periodic alternation of two layers. The lattice
constant is Λ. Periodicity is along the x-direction; the other
two directions are infinite.

where the Cij are the elastic constants of the solid skele-
ton, Ks andKf are the bulk modulus of the solid skeleton
and the pore fluid respectively.

The equations of motion can be written in Cartesian
coordinates as

τij,j = ρüi + ρf ẅi,

−p,i = ρf üi +miiẅi + riiẇi, (3)

where ρ = (1 − φ)ρs + φρf , ρf , and ρs are the mass
densities of the FSP media, the solid skeleton, and the
pore fluid, respectively. mii and rii are coefficients in-
troduced by Biot. For isotropic FSP materials, we have
m11 = m22 = m33 = m and r11 = r22 = r33 = r.

Without loss of generality, we limit our discussion to
longitudinal motion restricted to the x-direction. For il-
lustration, we consider an inhomogeneous FSPM with a
periodic alternation of layers, as shown in Fig. 1. Com-
bining the above equations, we have

∂

∂x

[
(2B1 +B2)

∂ux
∂x

]
− ∂

∂x

(
B3

∂wx

∂x

)
= ρüx + ρf ẅx,

− ∂

∂x

(
B3

∂ux
∂x

)
+

∂

∂x

(
B4

∂wx

∂x

)
= ρf üx +mẅx + rẇx

(4)

for longitudinal wave motion. Thus, the two indepen-
dent variables are chosen as (ux, wx). If at the in-
terface between two FSP media longitudinal displace-
ments are considered continuous, the open pore condi-
tion, then the natural boundary condition is the continu-
ity of both normal stresses (2B1 +B2)ux,x−B3wx,x and
−B3ux,x +B4wx,x.

III. HARMONIC WAVE PROPAGATION

A. Harmonic waves

For harmonic waves at angular frequency ω, longitudi-
nal displacements can be written

[ux, wx] = [ūx, w̄x]e−ıωt, (5)
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where t is the time variable, and where ūx and w̄x are
functions of position x otherwise independent of time.
Here, we note U = (ūx, w̄x). Substituting Eq. (5) into
Eq. (4), we get

∂

∂x

(
A0

∂

∂x
U

)
= −ρω2M0U, (6)

with

A0 =

[
(2B1 +B2) −B3

−B3 B4

]
,M0 =

[
ρ ρf
ρf m1

]
and m1 = m+ ır/ω.

The Biot coefficients m and r can be written28,36

m = Re[α(ω)]ρf/φ, r = Re[η/K(ω)], (7)

where η is the viscosity of the fluid, and α and K are the
dynamic tortuosity and permeability, respectively, with
the relation:

α(ω) = ıηφ/[K(ω)ωρf ]. (8)

For porous media with pores of simple form, the dynamic
permeability can be expressed approximately as42

K(ω) = K(0)

([
1− 4ıα2(∞)K2(0)ωρf

ηd2φ2

]1/2

− ıα(∞)K(0)ωρf
ηφ

)−1

(9)

where d is the characteristic length of the pores. When
the pores are a set of non-intersecting tubes, we further
have

8α(∞)K(0)/(φd2) = 1. (10)

B. Bloch waves

According to Bloch’s theorem, the displacement field
for propagation eigenmodes of a periodic medium is the
product of a periodic function times a plane wave term.
It thus can be written

U(x) = u(x)eıkx, (11)

where u = (ax, bx), with ax and bx periodic amplitudes
as a function of position, and k is the Bloch wavenumber
whose real part can be restricted to the first Brillouin
zone of the reciprocal lattice. Substituting Eq. (11) into
Eq. (6), we get

∂

∂x

(
A0

∂

∂x
u

)
+ 2ıkA0

∂

∂x
u + (−k2A0 + ω2M0)u = 0

(12)

for longitudinal wave motion.

In the present paper, numerical calculations are con-
ducted with the finite element method. The layered sys-
tem is treated as a periodic and inhomogeneous medium,
whose material parameters are spatially periodic func-
tions. The pores are chosen to be open at the inter-
faces, since the appearance of the P2 (slow) wave is re-
stricted by the sealing of the pores at the interfaces43.
The field variables (ax, bx) between different layers are set
as continuous44,45. We write the coefficient form of the
resulting equation, suitable for use with the partial dif-
ferential equation (PDE) module of Comsol Multiphysics
for instance46, as

λ2A1u−∇ · (A0 : ∇u +A2u) +A3∇u +A4u = 0 (13)

where λ = ık and the coefficient matrices are obtained
from Eq. (12) as

A1 = −A0, A2 = −A3 = λA0, A4 = −ω2M0. (14)

Since the dynamic material parameters of FSPMs are
frequency-dependent, complex band structures46,47 are
the first choice for the analysis. For this purpose, we set
the eigenvalue as λ = ık. Complex band structures are
then obtained by sweeping ω in the frequency range of
interest.

In particular, if the pore fluid is lossless, i.e., η = 0, we
havem = α(∞)ρf/φ non dispersive and r = 0 identically.
Then m1 = m and Eqs. (6) and (12) do not involve
frequency-dependent coefficients. In this case, we may
solve Eq. (12) for the real band structure by choosing
the eigenvalue as λ = ıω. The coefficient matrices of
Eq. (14) are in this case

A1 = M0, A2 = −A3 = ıkA0, A4 = k2A0. (15)

The real band structure is then obtained by sweeping k
inside the first Brillouin zone of the 1D periodic meta-
material.

C. Homogeneous FSP medium

For homogeneous FSP media, the amplitudes ax and
bx are constant functions, so the partial terms in Eq. (12)
vanish. Then Eq. (12) reduces to

(−k2A0 + ω2M0)u = 0. (16)

Note that strickly speaking k here denotes the wavenum-
ber of a harmonic plane wave rather than a Bloch
wavenumber and u is a constant vector representing the
polarization of the plane wave. As a result, the disper-
sion relation for longitudinal harmonic plane waves can
be obtained as

k = ω

√
−b±

√
b2 − 4ac

2a
, (17)
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Table I: Material parameters used in this paper. Units are given inside brackets.

Material ρs ρf C11 C12 C44 Ks Kf η d α(∞) φ
(kg/m3) (kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa) (Pa·s) (µm)

Lossy FSP medium 1 3000 1000 10 2 4 30 2 0.001 6.32 1 0.2

Lossless FSP medium 1 3000 1000 10 2 4 30 2 0 6.32 1 0.2

Lossless FSP medium 2 2500 0.1 33.3 8.3 12.5 49.9 2 0 6.32 1 0.01

where a = B2
3−(2B1 +B2)B4, b = 2ρfB3 +ρB4 +(2B1 +

B2)m1, and c = ρ2
f − ρm1. Eq. (17) also suggests that

there are two longitudinal waves in the porous medium,
the sign + corresponding to the P1 (fast) wave and the
sign − to the P2 (slow) wave. As a note, Eq. (4) could
also be written with the fluid pressure p replacing dis-
placement wx as an independent variable41. In this case,
exactly the same dispersion relation would be obtained,
as we have checked. In this case, the eigenvectors defining
the polarization would be different though the following
results would still hold.

D. Frequency response function

The frequency response function (FRF)48 of a finite
system can also be calculated by solving Eq. (6), in
order to compare with phononic band structures. The
only non-zero coefficient matrices are in this case A0 and
A4 = −ω2M0. Harmonic excitation with unit amplitude
is applied to the left side of the finite system. Polariza-
tions (ux, wx) = (1, 0) or (0, 1) are considered as exci-
tations. Harmonic responses are measured at the right
side of the system, and the frequency response function
is defined as

FRF = − log

√
ū2
x + w̄2

x√
ū2
x0 + w̄2

x0

. (18)

The imaginary part of the wavenumber characterizes
the spatial decay of Bloch waves inside a PC47,49. As a
result, the FRF can be approximated by using only the
least evanescent Bloch wave50

FRF ≈ − log
(
T0e
−n|Im(k(ω)|Λ

)
, (19)

where n is the number of layers, and T0 is the conversion
efficiency from the incident wave to the least evanescent
Bloch wave.

IV. RESULTS AND DISCUSSION

In this section, Bloch wave propagation in the 1D
FSPMs is investigated, including complex band struc-
tures and harmonic responses. To get a convergent result,
the size of the mesh is 100 times smaller than the lattice
constant in the calculation of complex band structures,
and 50 times smaller in the calculation of attenuation
properties. Results for the homogeneous FSP media are
first presented for reference and comparison.
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Figure 2: Complex band structures for homogeneous FSP
media.The left and right panels illustrate the variation of the
frequency with the real and imaginary part of the wave vec-
tor, respectively. The solid lines represent for the analytical
results obtained by Eq. (17). The colorscale indicates the
relative energy ratio between the solid skeleton (1) and the
pore fluid (0). The blue and red dashed lines represent the
analytical dispersion curves for lossless homogeneous media.
The inset shows a closer view to the imaginary part at the
origin.

A. Homogeneous FSP media

We first consider the case of a homogeneous FSP
medium. The material parameters are listed in the sec-
ond row of Table. I. It should be pointed out that the tor-
tuosity is rigorously related to the electrical conductivity
of the pore space51. We choose the ideal case α(∞) = 1
for qualitative analysis42,45. The complex band structure
k(ω) is shown in Fig. 2. It consists of two parts, show-
ing the variations of frequency, ω/(2π), as a function of
the real (Re(k)) and of the imaginary (Im(k)) parts of
the wavenumber in the direction of propagation. The
colorscale amounts for the relative energy ratio between

the kinetic energy Ef
k for the pore fluid and the kinetic

energy Es
k for the solid skeleton, defined as∫

eskdL∫
(esk + efk)dL

, (20)

where L is the integration line along the unit cell, esk =

(1−φ)ρsω
2u2

x/2 and efk = φρfω
2U2

x/2. Both longitudinal
waves are dispersive and lossy, as a result of the viscosity
of the pore fluid. The polarization of the P1 wave is
mainly ux while the polarization of the P2 wave is mostly
Ux. The imaginary part of the wavenumber generally
increases with frequency, but its value for the P2 wave is
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(a) (b)

Figure 3: Variation of the phase velocity (a) and of the at-
tenuation (b) with frequency for different viscosities of the
pore fluid. The horizontal axis is shown with a logarithmic
scale. The thick-solid blue, thin-solid red, and thin-dashed
green lines represent the results for η = 10−7, 10−4 and 10−3

Pa·s, respectively. The upper and lower panels present the
results for P1 and P2 waves, respectively.

much larger than that for the P1 wave, implying a much
larger attenuation. The analytical result of Eq. (17) is
in excellent agreement with the finite element result.

For comparison, the band structure for the lossless ho-
mogeneous FSP medium (third row of Table. I) is also
plotted in Fig. 2. Im(k) is zero in this case for both
waves, but Re(k) is almost unchanged for the P1 wave
while it changes drastically for the P2 wave. In the low
frequency range, the imaginary and the real parts of the
wavenumber are nearly equal in the lossy case, in agree-
ment with the results in Ref.45. We correspondingly eval-
uate in Fig. 3 the variation of phase velocity, ω/Re(k),
and of the attenuation, log(1/Q), as a function of fre-
quency. The quality factor is here defined as

Q =
Re(k)

2Im(k)
. (21)

As a note, this definition is slightly different from that
used in Ref.28. Three different values of viscosity are con-
sidered in Fig. 3, η = 10−7, 10−4 and 10−3 Pa·s. The
phase velocity of the P1 wave is not strongly affected by
the value of viscosity and remains only slightly dispersive.
The attenuation has larger variations with frequency: it
first increases, reaches a maximum, and then decreases.
The frequency of the maximum is termed the critical fre-
quency and can be expressed as52

fc = 3ηφ/(8πK(0)α(∞)ρf ). (22)

It is thus linearly proportional to viscosity. For the cho-
sen values of viscosity, the critical frequency is 2.4 Hz,
2.4 kHz, and 24 kHz, respectively. The phase velocity of
the P2 wave, in sharp contrast, is strongly dependent on
viscosity and strongly dispersive, with a sharp variation
around the critical frequency. The attenuation remains
almost constant until fc and then decreases with increas-
ing frequency. For the same value of viscosity, the atten-
uation of the P2 wave is generally larger than that of the
P1 wave.

(a) (b)

Figure 4: Variation of the phase velocity (a) and of the at-
tenuation (b) with frequency for different values of porosity.
The horizontal axis is shown with a logarithmic scale. The
thick-solid blue, thin-solid red, and thin-dashed green lines
present the results for φ = 0.05, 0.24 and 0.45, respectively.
The upper and lower panels present the results for P1 and P2
waves, respectively.

It is furthermore instructive to consider the depen-
dence of the complex dispersion with porosity in Fig. 4.
In order to enable a fair comparison, the pore size d is
considered fixed. The change in porosity φ can then be
understood as a change in the number of pores. Accord-
ing to Eq. (10), the critical frequency in Eq. (22) can be
rewritten

fc = 3η/(πd2ρf ). (23)

This expression implies that fc is independent of porosity
for a fixed pore size. It is found that porosity has a strong
influence on both the phase velocity and the attenuation
of the P1 wave. For the particular value φ=0.24, the
phase velocity is observed to be non dispersive. This ef-
fect is contained in the FSP model summarized in Section
II, that is based on the literature, but has not yet been
observed experimentally to the best of our knowledge. At
a given frequency, the phase velocity and the attenuation
first decrease and then increase with increasing porosity.
The attenuation of the P2 wave is almost independent of
porosity, but the asymptotic value of the phase velocity
at large frequencies generally increases with porosity.

B. 1D lossless FSP metamaterial

We now turn our attention to wave propagation in 1D
FSPM composed of periodic layers of FSP media. We
first consider a lossless FSPM (zero viscosity). The filling
ratio for FSP medium 2 is chosen to be 0.35 and the
lattice constant is Λ = 2 m. Material parameters are
listed in the fourth row of Table I.

The complex band structure in Fig. 5(a-b) shows re-
duced frequency, Ω = ωΛ/(2π), as a function of reduced
wavenumber, kΛ/(2π), as usual with PCs. We consider
the reduced frequency range 0 < Ω < 2000 m/s and the
corresponding frequency range is 0−1000 Hz for the cho-
sen lattice constant. Given the color scale representing
the energy ratio between the P1 and the P2 wave, it is
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(a)       Re(k /(2 ))L p (b) LIm(k /(2 ))p
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Figure 5: Complex band structures for 1D lossless FSPM with periodic layers of FSP medium. Panels (a) and (b) illustrate the
variation of the reduced frequency with the real and imaginary part of the wave vector, respectively. The solid lines represent
the real band structures obtained by using Eqs. (13) and (15). The blue and red dashed lines are the dispersion curves of P1
and P2 waves for lossless FSP media, as obtained by Eq. (17). The colorscale is the same as that in Fig. 2. FRF curves of
a finite metamaterial with 8 or 50 unit cells are shown in panel (c). The solid and dashed lines represent the results for the
excitation of P1 and P2 waves, respectively. The light gray region indicates the Bragg bandgap for P1 wave in panel (a), while
the gray regions show the complete bandgaps for both P1 and P2 waves. The green lines represent the results predicted by
using Eq. (19) through the imaginary part of the wave vector for P1 wave (dashed lines for P2 wave). Normalized displacement
distributions at the marked points in panel (a) are illustrated in panel (d). The relative energy ratio is 0.74 at point M1 and
0.27 at point M2.

inferred that both longitudinal waves exist in the compos-
ite metamaterial and can form Bragg band gaps opening
at the edges of the first Brillouin zone. The Bragg band
gap for the P1 wave is the widest and contains the second
Bragg band gap for the P2 wave. The first Bragg band
gap for the P2 wave is too narrow to be observed from the
real part of the wavenumber alone but still can be clearly
identified from the imaginary part of the wavenumber.
Overall, the complete Bragg bandgap is small and covers
the reduced frequency range 1495 < Ω < 1547 m/s.

Since the polarizations of P1 and P2 waves share cou-
pled longitudinal displacements, they can interfere when-
ever their dispersion curves cross. As a result of band
anti-crossing, two complete bandgaps appear around Ω ∼
1000 and 2000 m/s in Fig. 5(a-b). Vibration distribu-
tions at the marked points M1 and M2 near the first
anti-crossing region are presented in Fig. 5(d). It is
noted that the polarizations of these Bloch waves change
abruptly at the anti-crossing, as can be attributed to
level repulsion or avoided-crossing of the bands53,54. A
pair of evanescent Bloch waves appear inside the anti-
crossing bandgaps, connecting the extremal points of the
two dispersion bands. The attenuation of the P1 and P2
waves are identical inside these bandgaps, implying the
bandgaps are complete.

In addition, the FRF curves of a finite metamaterial
are calculated and presented in Fig. 5(c) for either 8 or 50
periods. Many oscillations come up in the FRF curves,
even inside bandgaps. These oscillations are caused by
the excitation of Fabry-Perot resonances of the finite
structure. Since the polarization of the P1 and P2 waves
share coupled longitudinal displacements, the resonances
affect both waves simultaneously. Bragg bandgaps can
not be clearly observed when only 8 periods are consid-

ered. For 50 periods, the first P2 Bragg bandgap is still
missing in the FRF curves, because the imaginary part of
the wavenumber remains very small. The Bragg bandgap
for the P1 wave is corrupted by Fabry-Perot resonances
of the P2 wave. Interestingly, the anti-crossing bandgaps
show the same attenuation for P1 and P2 waves, in agree-
ment with the complex band structure. The approxima-
tion of the FRF curves inside bandgaps as obtained with
Eq. (19) are added with a green line to Fig. 5(c). They
are in excellent agreement with FEM results in all com-
plete bandgaps. Inside the Bragg bandgap for the P1
wave, the approximation breaks when wave P2 is not it-
self inside a bandgap. Again, this is attributed to the
coupling of longitudinal waves in the solid skeleton and
in fluid saturated pores.

C. Effects of fluid viscosity

Next, we consider FSP metamaterials with varying vis-
cosity, as shown in Fig. 6. Even when only a slight vis-
cosity is added (η = 10−7 Pa·s), the dispersion curves
are affected compared to the lossless case of the previ-
ous section. Regarding the real part of the wavenumber,
the sharp corners at the edge of the Brillouin zone for
the P1 wave become rounded. The degeneration of the
evanescent modes at the anti-crossings is now lifted for
the imaginary part of the wavenumber. The P2 wave
presents a larger attenuation than the P1 wave, in corre-
spondance to the larger attenuation of the P2 wave in a
homogeneous FSP medium shown in Fig. 3. FRF curves
are also affected by viscosity. The Fabry-Perot oscilla-
tions of the lossless system are washed out, especially
inside the Bragg bandgap for the P1 wave. The atten-



7

h=1e-7

Re(k /(2 ))L p Im(k /(2 ))pL

h=1e-3

h=1e-4

(a) (b) (c)

Figure 6: Influence of fluid viscosity on complex band struc-
tures for 1D FSP metamaterials. Panels (a) and (b) show the
variation of the reduced frequency with the real and imagi-
nary part of the reduced wavenumber. The colorscale is the
same as that in Fig. 2. The insets in (b) show a larger view
of the imaginary part of the wavenumber. The attenuation
properties of a finite metamaterial with 50 periods are shown
in panel (c). The red solid and blue dashed lines represent
the results for the excitation of ux and wx, respectively. The
green lines represent the results predicted by Eq. (19) for the
P1 wave (green dashed lines for the P2 wave). The gray areas
indicate the bandgaps for the lossless FSPM in Fig. 5.

uation is generally larger for all frequencies and adds to
the attenuation already present inside the bandgaps.

When η = 10−4 Pa·s, fc is beyond the frequency range
considered and the attenuation of the P2 wave is ex-
pected to be quite large following Fig. 3. Thus, the
dispersion relation of the P2 wave resembles that of the
homogeneous FSP medium in Fig. 2. The anti-crossings
disappear from the FRF, as the P2 wave is too much
attenuated to interfere with the P1 wave. The Bragg
bandgaps for the P2 wave also disappear. When the vis-
cosity is further increased to η = 10−3 Pa·s, the same
observations amplify. Interestingly, the base attenuation
for the P1 wave (outside the Bragg bandgap) is smaller
than for η = 10−4 Pa·s. This observation is in corre-
spondence with the decrease of the attenuation of the P1
wave in Fig. 3(b) for larger viscosities. With an increase
in viscosity, the number of foldings for the P2 wave gen-
erally increases, but the same number for the P2 wave is
almost unchanged. This could also be explained by the
distinct variation of phase velocity of the P2 wave with
a change in viscosity indicated by Fig. 3(a). For both

Re(k /(2 ))L p Im(k /(2 ))pL

f=0.05

f=0.24

f=0.45

(a) (b) (c)

Figure 7: Influence of porosity on the complex band struc-
tures for 1D FSPMs. Panels (a) and (b) show the variation
of the reduced frequency with the real and imaginary parts
of the reduced wavenumber. The dashed lines are the disper-
sion curves for φ = 0. The colorscale is the same as that in
Fig. 2. FRF curves for a finite metamaterial with 50 periods
are shown in panel (c). The red solid and blue dashed lines
represent the results for the excitation of ux and wx, respec-
tively. The green lines present the results of Eq. (19) for the
P1 wave.

excitations, the FRF curves have only small differences
at large viscosity. Generally, the transmission of the P1
wave dominates the frequency response. As a result, the
FRF curves can be closely approximated by considering
only the least evanescent P1 wave.

It is also noted that the curvature of the lower round
corner of the Bragg bandgap for P1 wave first increases
and then decreases. This can be simply explained by
expanding ω(k) in powers of complex k about the zone
edge k0 = π/d via a Taylor expansion55, i.e.

∆ω = ω(k)− ω(k0) ≈ ζRe((∆k)2) = ζ(g2 − h2), (24)

where ζ is a constant related to the second derivative of
the band, and ∆k = g + ıh. For the same ∆ω > 0 and a
different viscosity, since the attenuation in Fig. 3(b) first
increases and then decreases, the corresponding imagi-
nary part first increases then decreases. Then h follows
a similar variation, and so does g according to Eq. (24).
Hence, the corners first get rounded and then become
sharper.
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D. Effects of fluid porosity

Porosity is also an important factor for FSP media. In
this section, we consider the influence of fluid porosity on
the complex band structures and the attenuation spec-
tra. For comparison, we also consider the system with
zero porosity. In this case, the system reduces to a 1D
elastic layered metamaterial, the band structure of which
is plotted with a dashed line in Fig. 7; no P2 wave exists
in this case. Even when a small porosity (φ = 0.05) is
considered, the P2 wave comes up and the phase velocity
of the P1 wave decreases. Correspondingly, the Bragg
bandgap for the P1 wave shifts downward. Comparing
with Fig. 4, with an increase in porosity, the phase veloc-
ity of the P2 wave increases monotonously and there are
less foldings in the real part of the P2 wave. In contrast,
the phase velocity of the P1 wave first decreases and then
increases, but the relative changes remain small. The real
parts for φ = 0.24 and 0.45 are thus similar. Both outside
and inside the Bragg bandgap, the imaginary wavenum-
ber of the P1 wave increases monotonously with porosity,
leading to an overall lower transmission. This observa-
tion is in contrast with the variations of attenuation for
the P1 wave in a homogeneous FSP medium shown in
Fig. 4(b). We attribute this difference to the periodic-
ity of the FSPM. It is also noted that the upper (lower)
corner of the bandgap generally becomes more rounded
(sharper) with an increase in the fluid porosity. This vari-
ation is explained by Eq. (24) as in the case of viscosity.

V. CONCLUSIONS

This paper has presented a comprehensive analysis
of wave propagation in 1D fluid-saturated porous meta-
materials (FSPMs) described by Biot’s model and sup-
porting two longitudinal waves, P1 and P2. Complex
band structures and harmonic responses of 1D FSPMs
were calculated by a finite element method. A theoreti-
cal analysis of longitudinal wave motion in homogeneous

FSP media was conducted. Numerical results match per-
fectly analytical ones for homogeneous FSP media. It
is found that the material parameters of the pore fluid
have a strong influence on both complex band structures
and FRF curves. With an increase (decrease) in vis-
cosity (porosity), the attenuation in the passing bands is
first enhanced and then reduced. Inside Bragg bandgaps,
the attenuation varies in the opposite way. Anti-crossing
bandgaps can be generated by level repulsion between
the fast P1 wave and the slow P2 wave when viscosity
is negligible. These anti-crossing bandgaps soon disap-
pear, however, as viscosity increases. With an increase
in fluid porosity, attenuation increases monotonously in-
side passing bands and Bragg bandgaps.

Generally speaking, the P2 wave is highly attenuated
and influenced by material parameters. The P1 wave
then plays the key role in the transmission though a finite
periodic structure. In the limit that the influence of the
P2 wave has been removed by viscosity, the frequency
response is well predicted by considering only the least
evanescent P1 wave.

The present work is limited to 1D periodic metama-
terials and should be extended to the 2D and 3D cases.
In this case, appropriate independent variables should
be chosen, as there are 6 displacements but only 4 de-
grees of freedom41. The influence of other complex in-
terface conditions on wave propagation in FSPMs should
be discussed56. The case of surface waves57,58 propagat-
ing over a fluid-saturated porous metamaterial is also of
interest. These different problems are significant for the
development of novel metamaterials applied to the miti-
gation of blast and/or seismic waves.
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