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Abstract—By exploiting the sparsity of the scene containing only 

a few moving targets, a high-resolution and real-time range-
Doppler map generation algorithm for passive bistatic radar is 
proposed. The proposed algorithm divides the long integration 
time into multiple short batches, from which a few batches are 
randomly selected on the basis of compressive sensing theory. A 
one-dimensional cross-correlation is performed for each selected 
batch to obtain the range-compressed profile. Mean-value 
subtraction is then performed to suppress the direct path 
interference and stationary target reflections. Finally, an extended 
orthogonal matching pursuit algorithm is proposed for the 
effective estimation of target Doppler frequency. Practical 
application of this novel algorithm is examined by the detection of 
airplanes and ships via two synchronized general-purpose 
software-defined radio receivers. The results show that the 
proposed algorithm can achieve an improved resolution and a 
reduced sidelobe level compared to the conventional algorithms. 
 

Index Terms—Passive bistatic radar, range-Doppler map, 
software-defined radio, batches algorithm, compressive sensing. 
 

I. INTRODUCTION 
ASSIVE bistatic radar (PBR) has attracted considerable 
attention over the last decades because of its large coverage 

area, low vulnerability, and reduced electromagnetic pollution 
to the environment [1], [2]. Different types of illuminators of 
opportunity (IO), including frequency modulated broadcast 
emitters [3], digital audio broadcasting emitters [4], spaceborne 
and Global Navigation Satellite System (GNSS) sources [5], [6], 
digital communication networks such as Wi-Fi [7], [8], and 
digital terrestrial television broadcasting (DTTB) emitters [9], 
[10], have been exploited in PBR to detect and track air and 
coastal targets. Various signal processing techniques 
transposed from active radar to passive radar such as space-time 
adaptive processing (STAP) [11], [12], synthetic aperture radar 
(SAR) imaging [9], [13], and inverse SAR (ISAR) imaging [14], 
[15] have been developed for specific applications.  

In a PBR system, the bistatic range and Doppler frequency of 
the moving target are estimated by calculating the two-
dimensional (2D) cross ambiguity function (CAF). Typically, 
two approaches, namely, the Fourier transform method and the 
 

This work was supported by JSPS Grant-in-Aid for Scientific Research (A) 
26249058. The DVB-T passive radar investigation is partly supported by the 
French Centre National de la Recherche Scientifique (CNRS) PEPS grant. 

Weike Feng and Grigory Cherniak are with the Graduate School of 
Environmental Studies, Tohoku University, 980-8579, Sendai, Japan (e-mail: 
feng.weike.q4@dc.tohoku.ac.jp and grigory.chernyak.s6@dc.tohoku.ac.jp). 

cross-correlation method [2], are used to generate target range-
Doppler maps by implementing the fast Fourier transform 
(FFT). However, for long-term measurements with a high data 
sampling frequency, the computational burden of these 
approaches is usually unacceptable, especially when sufficient 
signal processing gain and fine range-Doppler resolution are 
desired for a large surveillance area. Therefore, some 
suboptimal algorithms [16], [17] have been proposed to obtain 
real-time processing capability. In particular, the batches 
algorithm, which is analogous to pulse-Doppler processing in 
classical active pulse-Doppler radar, has been proposed and 
validated in [18]. In this algorithm, a long received signal is 
divided into many short batches. Then, range compression is 
conducted for each batch by a one-dimensional (1D) cross-
correlation without compensating for the target Doppler shift. 
Finally, the Fourier transform along each range bin is conducted 
to estimate the Doppler frequency of the target. The computing 
time required to generate the target range-Doppler map by the 
batches algorithm is considerably less than that required by 
lossless approaches.  

When the matched filter theory is used for Doppler 
estimation, the range-Doppler maps obtained in a limited 
integration time have a limited resolution and high sidelobe 
level. The sidelobes produced by the strong targets introduce 
spurious values in their neighboring Doppler cells, thus leading 
to wrong position and amplitude estimations of the weak targets. 
Moreover, FFT will calculate Doppler frequencies up to half of 
the inverse of the batch duration. When a shorter batch length 
is used to achieve a lower signal-to-noise ratio (SNR) loss, the 
maximal calculated Doppler frequency is considerably larger 
than the Doppler frequency of the target. Therefore, many 
calculated values of FFT are meaningless and hence ignored. 
Although a simple way to overcome this is to use the 
decimation technique before the Fourier transform, this leads to 
additional computational complexity and SNR loss. Recently, 
compressive sensing (CS) theory [19-21] has been extensively 
studied to overcome the sidelobe and resolution problems 
commonly encountered in the field of radar signal processing, 
such as ISAR [22-24], SAR [25-27], STAP [28], [29], and 
passive radar range-Doppler map generation [30], [31]. In 
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comparison with conventional approaches, CS theory can 
achieve higher resolution and better performance. Furthermore, 
based on the signal sparsity in a specific dictionary and by 
solving a restricted minimization problem, CS theory can 
recover the sparse signal from its undersampled measurement 
with a high probability. Undersampling can reduce the 
computational complexity and memory usage, making CS 
theory attractive for practical applications. 

In this study, we propose a novel algorithm based on CS to 
reduce the sidelobe level obtained when using the batches 
algorithm for CAF calculation in PBR by exploiting the sparsity 
of the scene. In addition, this algorithm allows processing 
within a specific Doppler frequency range. For typical 
applications of PBR, the moving targets are always sparse in 
the range-Doppler domain after removing direct path 
interference (DPI) and strong stationary target reflections (such 
as islands in coastal applications). However, if CS is directly 
applied to PBR with a long integration time and high sampling 
frequency, as studied by the previous researchers [32], [33], the 
computational complexity may prevent real-time application. 
Therefore, based on the principle of the batches algorithm, the 
long integration time is divided into multiple short batches, 
from which only a few batches are randomly selected and range 
compression is correspondingly conducted. Finally, we propose 
an extended orthogonal matching pursuit (EOMP) algorithm to 
effectively estimate the Doppler frequency of the targets. 
Compared to the batches algorithm, the proposed algorithm can 
achieve range-Doppler maps with an improved resolution and a 
reduced sidelobe level while maintaining the real-time 
processing capacity. These concepts were experimentally 
demonstrated using a low-cost PBR system implemented with 
digital video broadcasting-terrestrial (DVB-T) receivers, as 
described in detail in the accompanying article describing the 
hardware setup [34]. 

II. SIGNAL MODEL 
In a PBR system, the reference signal received by an antenna 

directly oriented to IOs (e.g., TV towers) can be expressed as  
 0( )= ( ) ( )ref ref ref refs t A s t t n t                          (1) 

where Aref is the complex amplitude, s0(t) is the transmitted 
signal, tref denotes the transmission time from the IOs to the 
reference antenna, and nref(t) denotes the additive noise. 

On the other hand, the received signal from a surveillance 
antenna, which includes DPI, multipath echoes, and moving 
target reflections, is given by 
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where Asurv is the amplitude of the DPI signal with time delay 
tsurv, which is equal to tref when the reference and surveillance 
antennae are co-located, and M, am, and tm are the number, 
amplitude, and time delay of the multipath echoes, respectively. 
The third term on the right side of (2) denotes the moving target 
components, where fp is the Doppler frequency of the p-th 
moving target; P, ap, and tp are the number, amplitude, and time 
delay of the moving targets; and nsurv(t) denotes the additive 

noise in the surveillance channel. 
 The classical way to estimate the bistatic range and Doppler 

frequency of the moving targets is to calculate the CAF between 
the received reference and surveillance signals. The CAF can 
be expressed as 

2

0
( , ) ( ) ( )intT j ft

surv reff s t s t e dt             (3) 

where χ(τ, f) represents the range-Doppler map of the targets, τ 
and f are the expected bistatic time delay and Doppler shift of 
the reflected signal from the target, respectively, (·)  denotes the 
complex conjugate, and Tint denotes the integration time that 
determines the system Doppler resolution. Notably, to avoid 
integration losses in (3) [18], the integration time is chosen as 
Tint = Tref + τmax, where Tref is the length of the reference signal 
and τmax is the maximal time delay to be processed. In this case, 
it is assumed that sref(t) = 0 when t  (Tref, Tint]. 

The most straightforward approach to obtain the range-
Doppler map of the target is to calculate (3) for each pair of 
bistatic time delay in (τmin, τmax) and Doppler frequency in (fmin, 
fmax). However, the computational complexity is normally 
beyond that manageable in real-time processing, especially for 
large surveillance areas and fast-moving targets which have large 
Doppler frequencies. Two simpler methods, namely, the Fourier 
transform method and the cross-correlation method, can be used. 
In the first method, the Fourier transform of ssurv(t)·s ref(t − τ) 
for a given time delay τ is obtained using FFT. In the second 
method, the cross-correlation between the Doppler-shifted 
reference signal for a given Doppler frequency f, i.e., sref(t)e−j2πft, 
and the surveillance signal ssurv(t) is calculated by FFT. 

Although these two approaches can reduce the computational 
cost, two drawbacks limit their applications [18]. First, FFT 
generates some unused Doppler frequency values in the first 
method or unused bistatic range values in the second method. 
Second, if high signal processing gain and range-Doppler 
resolution are desired, the long integration time and high data 
sampling frequency may make the calculation of (3) via FFT 
impractical. To solve these problems, several suboptimal 
algorithms have been proposed. In particular, for the first 
problem, based on the prior knowledge of target distance and 
velocity, the decimation technique is applied before the Fourier 
transform process. For the second problem, the batches algorithm 
is proposed, which divides the long integration time into multiple 
short batches, and this method will be reviewed in the next 
section. 

III. BATCH COMPRESSIVE SENSING ALGORITHM  

A. Batches algorithm review 
In this subsection, the batches algorithm is briefly reviewed 

to provide the basis for the proposed algorithm. In the batches 
algorithm, a dataset collected over a long time is divided into 
multiple short batches. According to [14], the n-th (n = 1,2,…,N) 
batch of the reference signal can be expressed as  

( , ) ( )rect[( / 2)/ ]ref ref b b bS t n s t nT t T T                (4) 
where Tb is the length of each batch and is assumed to be given 
by Tb = Tref/N without loss of generality and rect(x) is unity 
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when -1/2 ≤ x ≤ 1/2 and is zero otherwise. 
For the surveillance signal, to guarantee the maximum 

integration gain in each batch, a partially overlapping division 
approach is employed and the n-th (n = 1,2,…,N) batch is 
expressed as  

max

max

( ) / 2
( , ) ( )rect b

surv surv b
b

t T
S t n s t nT

T
         (5) 

Thus, the reference and surveillance signals can be rewritten 
as  
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Then, by substituting (6) into (3), we get  
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Defining the slow time as u = [0,Tb,…,(N − 1)Tb] and the n-
th ambiguity function as  

max 2

0
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(7) can be represented as  
2
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From (9), the optimal CAF can be estimated as a weighted 
sum of the ambiguity functions of all batches. Moreover, if the 
product of the batch length and the maximum target Doppler 
frequency is small, then the phase of each sampling in the batch 
is closer to the phase of the sampling of the central time, i.e.,
2 , [0, ]b bft fT t T  and 2 , [0, ]bj fTj ft

be e t T . 
Thus, (8) can be approximated as  
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Defining the cross-correlation within the n-th batch as  
max

0
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n surv refS t n S t n dt               (11) 

(9) can be approximated as  
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Based on (12), the range-Doppler map of the target can be 
effectively derived using FFT. Specifically, the 1D cross-
correlation can be applied to each batch to obtain the range-
compressed profiles and then the Fourier transform along the 
slow times can be conducted to estimate the Doppler 
frequencies of the targets. It should be mentioned that after 
obtaining the Fourier transform for each range bin, e−jπfTb should 
be multiplied accordingly. However, if the target Doppler shift 
can be ignored for each batch, i.e., 2 1j fte  for [0, ]bt T , 
the first exponential function in (12) can be ignored. We have 
observed that the approximations e−j2πft ≈ e−jπfTb and e−j2πf t ≈ 1 do 
not show much difference experimentally. 

To achieve acceptable approximation precision, the batch 
length should be short enough to reduce the loss of SNR caused 
by the batch-wise approximation [14] compared with the 
optimal process, especially for a fast target with high Doppler 
frequency. However, the computational complexity of the 
batches algorithm increases with decreasing batch length (i.e., 

the number of batches increases). Therefore, a suitable batch 
length (and hence number of batches) should be considered to 
ensure a good trade-off between accuracy and computational 
complexity.  

B. Range-Doppler map generation with CS model 
Because the matched filter theory is used, conventional 

algorithms, including the batch algorithm, have a limited range-
Doppler resolution owing to the limited frequency bandwidth 
and integration time. In addition, the Fourier transform-based 
approach of these algorithms produces high sidelobe levels. The 
sidelobes of strong targets mask the weaker targets, making 
processes such as detection and tracking difficult. In general, 
amplitude weighting methods can be used to reduce the 
sidelobe level, however, these methods affect the resolution.  

CS theory can also be easily applied for PBR [32], [33]. First, 
expected time delays in (τmin, τmax) and Doppler frequencies in 
(fmin, fmax) are discretized into I and J grids. Then, a sparsifying 
dictionary Ψ can be designed with the ((j − 1)I + i)-th column 
calculated by the reference signal with time delay τi and 
Doppler frequency fj, i.e., sref(t − τi)e−j2πfjt. Correspondingly, the 
range-Doppler estimation problem is modeled as 

survs n                                     (13) 
where ssurv is the vectorized surveillance signal obtained by 
stacking ssurv(t) with all samples, χ is the vectorized range-
Doppler map, and n is the noise vector. To reduce the 
complexity and memory used, a random selection approach can 
be applied, giving  

un un un
surv survs s n = n              (14) 

where the superscript “un” stands for “undersampling”, Φ is the 
measure matrix used to randomly select rows from Ψ, and the 
number of rows indicate the selected samplings from ssurv.  

Then, based on CS theory and assuming that the range-
Doppler vector is sparse, i.e., there are only a few targets in the 
surveillance area, the solution of (14) is given by solving the 
following optimization problem: 

2
   0 2=min || || , . .   || ||un un

survs t s             (15) 
where ε is the noise level. 

Although it has been shown to have non-deterministic 
polynomial-time hardness, (15) can be approximately solved by 
many state-of-the-art algorithms, such as OMP algorithm [35], 
smoothed l0 norm algorithm [36], and basis pursuit denoising 
algorithm [37]. However, two problems may make (15) 
unsuitable for practical application. The first is the considerable 
computational and memory requirement. Long computing time 
makes it impossible for real-time application, especially when 
high sampling rate, long integration time, fine range-Doppler 
resolution, and large range-Doppler coverage are desired. The 
second problem, caused by the insufficient sparsity assumption 
of the range-Doppler map, may occur when DPI is strong and 
multiple stationary targets are included in the scene. In such a 
case, the sparsity of the target range-Doppler map is destroyed. 
Although some algorithms, such as the normalized least mean 
squares algorithm [38], [39], can be employed to suppress DPI 
and multipath echoes, higher computational complexity is 
inevitable. In this subsection, we propose a novel CS-based 
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range-Doppler estimation model for PBR to solve these two 
problems. 

First, similar to the process in the batch algorithm, the long-
time received signal is divided into multiple short batches. Then, 
following the Doppler frequency approximation, 1D cross-
correlation is applied to each batch using FFT, which gives us 

max

0

0
1 1
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M Pm p
n n nm p
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              (16) 

where 0 ( )n , ( )m
n , and ( )p

n  are the DPI component, m-
th multipath component, and p-th moving target component in 
the n-th range profile, respectively. Because the range profiles 
of DPI and stationary targets show small changes in different 
batches, the mean value subtraction process is employed to 
suppress their influence, which is given by  

1
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where the superscript “tar” represents “targets.” 
Therefore, we have a signal matrix consisting of range 

profiles of all batches, which is defined as  

1 min min
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where Nbin is the number of range bins. 
Then, based on (12), the batches algorithm can be 

reformulated to get the target range-Doppler map as 
bin DopN N

D CX S , where ΨD is the Doppler-shifted Fourier 
transform matrix and is expressed as  

min max max 1min 1
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where NDop is the number of Doppler frequencies. 
Using the transpose process, we obtain T T T( )DX S  , 

which can be considered as a solution obtained by the Fourier 
transform of the following problem: 

T T( )DS X                                 (20) 
where (·)T denotes the transpose. 

However, as mentioned above, because of the limited 
integration time, the Fourier transform-based solution of (20) 
has a limited resolution and high sidelobe level. For most 
applications, after DPI and multipath echo suppression, the 
range-Doppler map is always sparse, i.e., only few elements 
corresponding to the moving targets in X have significant 
values. Therefore, if the sparse property of X can be exploited, 
better resolution and a lower sidelobe level can be obtained. 
Therefore, based on CS theory, we propose to solve the 
following restricted optimization problem to estimate the range-
Doppler parameters of the targets:  

0 T 2
   0 0=min || || , . .   || ||D Fs tX X S X                (21) 

where T
0S S  , 0 ( )D D  , and ||·||F denote the Frobenius 

norm of a matrix. To further exploit the advantage of CS theory 
to reduce computational complexity, the batches are randomly 

selected, resulting in  
T 2

   0 1 1=min || || , . .   || ||Fs tX X S X             (22) 

where 1 1 0
s binN NCS S  is the undersampled signal matrix, 

0
1 1

s DopN N
D C   denotes the defined sparsifying matrix, 

1
sN NC   is the measure matrix used to randomly select 

batches, and Ns is the number of selected batches. Notably, to 
save memory usage and reduce computational complexity, 
undersampling should be performed just after the determination 
of batches. In such a case, the signal processes mentioned above 
should be adjusted accordingly. 

C. Extended OMP algorithm  
In this subsection, we attempt to solve (22) effectively and 

accurately. Although the l0 norm in (22) is the best to measure 
the sparsity of a signal in the absence of noise, its computational 
burden is very high because of its discontinuity. Therefore, 
some advanced algorithms should be adopted to solve (22). 
Compared to (15), the difference in the proposed model is that 
it is established in the matrix form. For the classical 1D CS 
problem in (15), three different algorithm types, i.e., greedy 
algorithms [40], [41], Bayesian CS algorithms [42], and convex 
optimization algorithms [43], have been extensively studied 
and applied. In general, greedy algorithms are much more 
computationally efficient than other algorithms and are easier 
to implement practically. Moreover, among greedy algorithms, 
the OMP algorithm [35] is widely used because of its simplicity 
and efficiency. Therefore, we extend the OMP algorithm, which 
is normally used to solve sparse vector recovery problems, to 
the sparse matrix recovery problem in (22). The basic idea of 
the OMP algorithm is to sequentially find the support set of the 
measured signal and then project it on the atoms selected from 
the sparsifying dictionary. Following this basic idea, we 
propose an extended OMP (EOMP) algorithm, as summarized 
in Table I. 
 

TABLE I.  EOMP ALGORITHM 
Input: S1, Ψ1, and iteration number Q. 
Procedure: 

1) Initialization: 1R S , 
binQ NL 0 , 0 Dop binN NX 0 , 1q ; 

2) Index finding: H
1[ , ] argmax | |q qa b R , where aq and bq 

are the row index and column index of the biggest element in 
H

1| |R , and (·)H denotes the conjugate transpose; 
3) Index set expansion: ( , )q qq b aL , and { [ ]}qInd bK L , 

where Ind{·} denotes the nonzero elements in a vector and Z[u] 
denotes the u-th column of matrix Z;  

4) Estimation: 1[ ]K  , †
1[ ]qbx S , and 0[ , ]qbX K x , 

where †( )  is the pseudo-inverse of a matrix; 
5) Residual updating: 1[ ] [ ]q qb bR S x ; 
6) Iteration: 1q q , if q Q  go back to 2), otherwise, stop. 

Output: T
0X X . 

 
In each iteration, the atom in Ψ1 that is the most strongly 

correlated with the residual matrix R (the remaining part of S1) 
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is chosen, and the corresponding row index and column index 
are recorded in L. Then, for the signal column selected in this 
iteration, the contribution of all selected atoms is subtracted by 
projecting this signal column onto the orthogonal subspace 
spanned by these atoms. The iteration is stopped when the 
number of iterations equals the maximum iteration number Q. 
The final estimation of X has non-zero entries corresponding to 
the index set L, and the values of these entries are obtained by 
applying the pseudo-inversion process. For the practical 
implementation for PBR range-Doppler mapping problem, we 
assume that there are J moving targets with different range-
Doppler parameters. In the first iteration, the range and Doppler 
frequency of the strongest target are estimated by the least 
squares method. Then, the contribution of this target to the 
received signal is subtracted. In the next iteration, the second-
strongest target is considered. Finally, all targets are expected 
to be recovered after Q ≥ J iterations. 

D. Signal processing chain and complexity analysis 
In summary, the main steps of the proposed range-Doppler 

map generation algorithm are shown in Fig. 1 and can be 
described as follows: 

1) With the same approach as that shown in [18], divide the 
reference signal into N consecutive batches and divide the 
surveillance signal into N partially overlapping batches. 

2) Randomly select Ns corresponding batches from the 
reference and surveillance channels. 

3) For each selected batch pair, apply 1D cross-correlation 
using FFT. 

4) Use the mean-value subtraction approach to suppress DPI 
and stationary target reflections. 

5) Given the pre-defined sparsifying dictionary and 
maximum iteration number, use the proposed EOMP algorithm 
to generate the range-Doppler map of the targets. 

 
Fig. 1. Flow chart of the proposed range-Doppler map generation algorithm. 
 

Since the real-time processing capacity is considered to be 
important, the computational complexity of the proposed 
algorithm is analyzed. The time-consuming parts of the 
proposed algorithm are the cross-correlation step (item 3 in the 
algorithm description above) and the EOMP step (item 5). 
Since FFT can be used for the efficient implementation of the 
cross-correlation step, the computational burden in terms of 
complex multiplications for all the selected batches is given by 

3NbinNslog2(Nbin). The index finding step dominates the 
computational consumption of the EOMP algorithm and the 
complexities of other steps of this algorithm are negligible. For 
Q iterations, the total complex multiplication number for index 
finding is given by QNbinNsNDop. Therefore, the complexity of 
the proposed algorithm can be approximated as 
[3log2(Nbin)+QNDop]NbinNs. Thus, with an increase in the 
selected batch number, range bin number, iteration number of 
EOMP, and Doppler frequency number, the computational load 
increases. However, thanks to the batch segmentation, 
undersampling, and the proposed efficient greedy algorithm, 
real-time range-Doppler generation can be obtained on a 
general-purpose personal computer (PC), similar to the 
classical batches algorithm. 

IV. EXPERIMENTAL RESULTS 
The experimental setup used to collect data is described in 

[34]: it mainly consists of two clock-synchronized DVB-T 
receivers used as general-purpose software-defined radio 
sources. The sampling rate is 2.048 Msamples/s and data are 
collected using the GNURadio framework [44] using two 
Osmocom sources to display real-time cross-correlation peak 
values for assessing the quality of the data. As the setup is fully 
powered by a universal serial bus, it can be easily transported, 
along with the antennas, for on-field measurements. The 
experiment setups for landing airplanes and multiple ships are 
shown in Fig. 2.  

   
Fig.2. Measurements of landing airplanes (left) and multiple ships (right) by the 
designed PBR system [34]. 

A. Fast moving target: landing airplanes 
Landing airplanes are selected as the initial target because of 

their large cross-section and because their large radial velocity 
v during landing yields Doppler shifts of the order of hundred 
hertz. Indeed, considering that the reference signal carrier 
frequency is approximately 500 MHz, the Doppler shift f 
induced in the carrier frequency fc is given as f = 2fcv/c, where 
c is the speed of light. When v = 100 m/s, f  330 Hz. This 
value is the upper bound of the expected Doppler shift 
introduced by the motion of the airplane in a bistatic 
configuration assuming that the bistatic angle is null. This value 
also suggests the integration duration and targeted Doppler 
coverage. 

At the beginning, we show the results obtained by the 
classical batches algorithm. Fig. 3 (a) shows the cross-
correlation results of different batches for a total of 210 batches. 
Fig. 3 (b) presents the mean-value subtracted cross-correlation 
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result, with the airplane clearly observed. Fig. 3 indicates that 
the target can be easily distinguished only after removing DPI 
and strong stationary target echoes.  

 
(a) Cross-correlation results 

 

 
(b) Background subtraction 

Fig. 3. (a) Cross-correlation results of different batches, and (b) mean values 
along the slow time is subtracted from all batches, removing static clutter and 
leaving only the moving target indicated by the black rectangle. 

 
Therefore, as shown in Fig. 4 (a), the range-Doppler map can 

be generated by the Fourier transform in the slow time direction. 
Furthermore, the range-Doppler map considering 214 batches 
with the same steps of range compression and background 
subtraction is presented in Fig. 4 (b). By shortening the batch 
length, a higher SNR can be achieved, which can be 
demonstrated by the integrated sidelobe level (ISL) of the batch 
algorithm as a function of batch number, as given in Fig. 5. The 
ISL in dB scale is defined as 

2
( , )

2
( , )

( )
I

,
SL 10log

( )

,i ji j

i ji j

f

f
                   (23) 

where Ω is defined as a 3-cell-long and 3-cell-wide window 
around the target.  

For short batches, the Doppler shift along the batch length 
can be ignored. Therefore, as observed in Fig. 5, the sidelobe 
level is lowered with increasing number of batches, which is 
consistent with the theoretical analysis. However, the increase 
in the number of batches induces an increase in the computation 
time. Furthermore, as shown in Fig. 5, the SNR level is almost 
constant when the number of batches is greater than 214. 
Therefore, for the proposed algorithm, 214 is selected as the base 

value.  

 
(a) 210 batches    

 
(b) 214 batches 

Fig. 4. Range-Doppler map resulting from the Fourier transform along the slow 
time, providing estimation of the Doppler frequencies introduced by target 
motion. (a) 210 batches and (b) 214 batches. 

 
Fig. 5. Sidelobe level of the batches algorithm as a function of the number of 
batches.  
 

Fig. 6 shows the range-Doppler map obtained by the 
proposed algorithm with 211 batches randomly selected from the 
214 batches. The iteration number of the proposed EOMP 
algorithm is set to 10, which is sufficient to estimate the target. 
Fig. 6 shows that the proposed algorithm can provide a clearer 
range-Doppler map with only one outlier (caused by the noise), 
as indicated by the white square. To show the stability of the 
proposed algorithm with randomly selected undersampled data, 
100 random selections of the batches are conducted and the 
average value is presented. It is experimentally proved that, 
with 100 trials, the performance (e.g., the ISL) of the proposed 
algorithm is statistically converged, as shown in Fig. 7 (a). 
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Taking 100 trials will induce many more outliers than the single 
trial case, as can be seen from Fig. 7 (b). However, for 100 trials, 
the target can always be recovered, which demonstrates that no 
matter how random the selected batches are, the proposed 
algorithm is robust enough to work well. We note that, in 
practice, only one-time random selection will be conducted to 
achieve the real-time processing capacity. 

 
Fig. 6. Proposed algorithm combining the batches algorithm with compressive 
sensing run on 211 randomly selected batches (the white circle indicates target 
and the white square indicates the outlier). 
 

 
(a) ISL against different number of trials 

 
(b) Range-Doppler map obtained by averaging over 100 trials 

Fig. 7. Proposed algorithm combining the batches algorithm with compressive 
sensing run on 211 randomly selected batches: (a) the ISL against different 
number of trials and (b) range-Doppler map obtained by averaging over 100 
random selections (the white circle indicates target).  
 

In addition, the computational complexity of the proposed 
algorithm with different numbers of selected batches is given in 
Fig. 8 (a). We can see that the computation time of the proposed 
algorithm with 211 batches is smaller than the integration time, 
providing a real-time display. Fig. 8 (b) shows the ISL of the 
range-Doppler maps obtained by the proposed algorithm with 

different numbers of batches obtained by 100 random selections 
and average processing. As can be seen from Fig. 8 (b), the 
sidelobe level of the proposed algorithm with 211 batches is 
smaller than the batches algorithm with 214 batches. Besides, by 
offsetting the burden of CS by considering 8 times (211 vs 214) 
fewer cross-correlations for range compression, the proposed 
algorithm also have comparable processing time with the 
batches algorithm, as shown in Fig. 8 (a). 

 
(a) Computation running time   

 
(b) Sidelobe level 

Fig. 8. (a) Computation running time as a function of selected batch number, 
demonstrating real-time capability for all cases. (b) Sidelobe level of the 
proposed algorithm as a function of selected batch number and comparison with 
the sidelobe level of classical batches algorithm with 214 batches. 
 

For a more illustrative comparison of the proposed algorithm 
with the batches algorithm, two cuts are made along the location 
of the airplane in the Doppler and range directions shown in Fig. 
4 (b) and Fig. 7 (b), and the results are shown in Fig. 9. The 
proposed algorithm has a considerably lower sidelobe level 
than the batches algorithm, confirming the former’s superiority.  

 
(a) Doppler direction 



 8 

 
 (b) Range direction 

Fig. 9. Sidelobe level comparison between the batches algorithm and the 
proposed algorithm in (a) Doppler direction and (b) range direction. 
 

Finally, about 1 min of the data measured to track the 
airplane is processed using the proposed algorithm, and the 
result is shown in Fig. 10. The white rectangle indicates the 
flying path of the airplane. It can be seen that the landing route 
of the airplane can be effectively estimated by the proposed 
algorithm within a 20 dB dynamic range. 

 
Fig. 10. Airplane tracking in the Doppler-range plane using 1-min data 
processed by the proposed algorithm. 

B. Large cross-section and slow moving targets: ships 
The second demonstration aims at detecting ships entering 

and leaving the port of Sendai. The objective is to demonstrate 
the multiple target tracking capability and target separation 
capacity of the proposed algorithm. Ships are selected because 
of their lower speed, leading to small Doppler frequencies that 
are closer to the stationary clutter. 

The same analysis sequence as that used above for the 
airplane measurements is employed for the case of two large 
ships crossing each other, creating both positive and negative 
Doppler shifts. Fig. 11 (a) shows the range-Doppler map 
obtained from the classical batches algorithm. Fig. 11 (b) 
exhibits the same map obtained using the proposed algorithm, 
and its result is consistent with that shown in Fig. 11 (a), but the 
targets are better resolved. Again, background, calculated as the 
mean value of all batches, is subtracted from each batch, and 
the Doppler estimation results are obtained from the Fourier 
transform along the slow time direction. 

 
(a) Classical batches algorithm 

 
(b) The proposed algorithm 

Fig. 11. Range-Doppler maps obtained by the (a) classical batches algorithm 
and (b) the proposed algorithm: both ships are visible in a range of 6 km, one 
exhibiting a radial velocity away from the receiver (stronger target) and the 
other toward the receiver (weaker target). 
 

Fig. 12 demonstrates the sidelobe level reduction achieved 
by the proposed algorithm as a cross-section along the abscissa 
of Figs. 11 (a) and Fig. 11 (b) for a range in which the two ships 
cross. Targets moving at different speeds are better separated 
by the proposed algorithm than by the classical batches 
algorithm, as shown by the comparison of the two methods in 
Fig. 13 (a) and Fig. 13 (b). To emphasize this result, a short 
integration time of 64 ms (as opposed to 2.048 s selected 
previously) was used, decreasing the velocity resolution to a 
level at which the two targets are mixed when the batches 
algorithm is used. The 64 ms duration is selected to mix the 
targets in the Doppler direction, while the practical application 
would aim at demonstrating separation of targets moving at 
slightly different speeds, inducing Doppler frequency 
differences below the inverse of the integration time. 

Indeed, despite some suggestions of two maxima in Fig. 14 
(blue-dashed curve), the right-most maximum obtained by the 
classical batches algorithm is not located at the correct speed 
but at 20 Hz, as opposed to that obtained by the proposed 
algorithm, which properly identifies the weaker target velocity 
at 10 Hz, as is shown with the longer integration time in Fig. 12. 
The extended Doppler frequency range of Fig. 14 is selected to 
illustrate that the sidelobe peak is stronger than the weaker 
target when using the classical batches algorithm, as indicated 
by the black circle in Fig. 14. 
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The range-Doppler tracking of the two ships during a 2.7-
min-long acquisition is shown in Fig. 15, where the routes of 
two ships can be clearly observed. Thus, the new algorithm 
indeed allows for improved separation of multiple targets 
characterized by different Doppler shifts. 

 
Fig. 12. Sidelobe level reduction as observed from cross-sections of the range-
Doppler maps for a range in which both ships cross. 

 
(a) Classical batches algorithm 

 
 (b) The proposed algorithm 

Fig. 13. Range-Doppler map resulting from the analysis of a short integration 
time subset using (a) the classical batches algorithm, demonstrating the 
degraded Doppler resolution with mixed targets as the two ships cross, and (b) 
the proposed algorithm, demonstrating the ability to separate both targets 
despite the degraded Doppler resolution due to the short integration time. 

 

 
Fig. 14. Quantitative analysis of the Doppler resolution improvement and 
ability to separate targets using the proposed algorithm. 

 
Fig. 15. Tracking of two ships for a duration of 2.7 min: the left ship moves 
away from the receiver and the right ship moves toward the receiver. 

V. CONCLUSION 
We have proposed a novel real-time range-Doppler map 

generation algorithm for PBR applications. We investigated 
low-cost PBR consisting of synchronized DVB-T receivers 
used as general-purpose software-defined radio sources. A low 
sampling rate of 2.048 Msamples/s is used to demonstrate the 
performance of the proposed batch CS algorithm for detecting 
and tracking moving targets. Following the detailed description 
of the theoretical background and the novel developments, the 
algorithm was employed using moving airplanes and ships as 
targets. The proposed algorithm showed an improved range and 
Doppler sidelobe level reduction compared to the classical 
batches algorithm while allowing real-time processing, as the 
computation duration was shorter than the acquisition duration. 
The improved Doppler resolution helped to improve the target 
separation capability, as demonstrated in the example of two 
ships crossing each other. The designed low-cost PBR system 
and the proposed algorithm have potentials to be applied in 
airplane navigation and harbor protection. The further study 
will focus on the extension of the proposed algorithm for the 
simultaneous estimation of target range, velocity and azimuth 
information, which will increase the capacity of the PBR 
system. In addition, CS theory will be employed for range 
resolution improvement for short-range moving target detection 
and tracking, which is beneficial for some applications, such as 
traffic density monitoring. 

Correct Doppler 
identification 
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