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Abstract— Optimization of urban transport is an ever-
growing research area, especially with the massive success of
e-commerce, the substantial demographic increase in urban
areas, but also exploring interesting trends such as flexible
multimodal itineraries. This work presents an innovative multi-
stage approach where optimization methods such as greedy
algorithms are adapted to solve a bi-objective vehicle routing
problem with pickup and deliveries in urban areas with
transfers. We highlight the performance of our approach on
several instances with various sizes and characteristics.

I. INTRODUCTION

With the development of e-commerce in particular, the is-
sue of urban distribution is becoming increasingly important.
How to deliver many parcels throughout a city, at different
times and in a sustainable context? As the economic aspect
is no longer the predominant criterion, the impact on the
environment has become crucial with the development of
more ecological transport solutions. The adopted solution
aims to optimize the use of the transport resources, by
adapting the capacity of the these ones to the volume of
goods to be delivered or by adapting the type of energy
used. Thus, the pooling of transport resources by grouping
several requests and the search for the best routes are an
integral part of the solution to the last mile delivery problem.
In addition, to allow access to restricted traffic areas or to
wait for staggered delivery times, it may be worthwhile to
transship goods between two modes of transport, after a
possible storage period at transfer points. In the scientific
literature, this problem is similar to a Pickup and Delivery
Problem with paired demands, time windows and transfers.

II. LITERATURE REVIEW

Pickup and Delivery Problems with Transfers take their
roots on Vehicle Routing Problems family, known to be
NP-hard. Since its first introduction, Pickup and Delivery
Problems with Transfers (PDPT) earned a lot of interest in
research. In this section we describe some works relevant to
our problem that can be found in literature. Masson, Lehuédé
and Péton [6] proposed an Adaptive Large Neighborhood
Search method to solve 780 instances containing from 50
to 100 requests each. In these instances, transfer points are
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2020) and labeled by Pôle Véhicule du Futur
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known in advance. Karaoglan et al. [5] studied a location-
routing problem with simultaneous pickup and delivery.
Two mixed integer linear programming formulations are
proposed to tackle small instances including an efficiency
comparison, and they developed a heuristic algorithm based
on simulated annealing to solve 360 instances of bigger
scale. Mitrović and Laporte [9] used a transfer insertion
heuristic to solve a PDPT in order to explore the benefit
of transshipment. On demand transportation problems are
defined as Dial-A-Ride Problems (DARP). They also arise in
urban context, especially for transportation systems dedicated
to elderly and disabled people. The reader can refer to
Masson, Lehuédé and Péton [7] for a general framework
on DARP. Deleplanque and Quillot [2] allow the insertion
of dynamic transfer points and studied an algorithm based
on insertion techniques and constraints propagation.

The few available literature dealing with such routing
problems with transfers are mainly adressed using meta-
heuristic methods and for mono-objective instances. We have
also previously developped a hybrid genetic algorithm [12]
but it is not performing fast enough to find feasible solutions
with large instances. In this paper, we deal with a bi-objective
problem for which we propose an algorithm based on several
greedy algorithms involved at various decision levels.

III. PROBLEM DESCRIPTION

A. Notations

Let us consider a set of vehicles v ∈ V with heteroge-
neous capacities Qv ∈ Q and heterogeneous speeds sv ∈ S .
Each vehicle v is associated to a vehicle depot vwv ∈W .
The urban network under consideration is modelled with
a graph G = (N ,E ). The set of vehicle depots w ∈W
represents all locations where associated vehicles start and
end their route. Sites z ∈ Ω are used to express the origin and
destination of requests, which are described later. Thus the
set of nodes N is defined such that N = W ∪ Ω . The graph
G is complete. Edges {i , j} ∈ E link any node i ∈ N with
node j ∈ N . Its respective distance is denoted dij . A time
window [ei ; li ] is assigned to each node i ∈ N . When ex-
pressed on a vehicle depot w ∈W , the time window [ew ; lw ]
corresponds to the earliest date of vehicle departure ew and
to the latest date of vehicle return lw . This statement is true
for any vehicle v ∈ V associated to this depot (i.e vwv = w ).
When expressed for a site z ∈ Ω , the time window [ez ; lz ]
corresponds to the opening time during which operations are
allowed.

Finally, we define a set of transportation demands r ∈ R.
A quantity qr is associated to each demand r and has to be



moved from the origin node S+
r ∈ Ω to the destination node

S−r ∈ Ω . A set Br lists vehicles that can handle r . Moreover,
handling of demand r ∈ R is allowed only within its time
window [err ; lrr ]. err is the earliest pickup date while lrr
is the latest delivery date. A service time for pickup δ+r and
for delivery δ−r is defined for any demand r ∈ R. Finally,
a set T contains transfer points t where goods may change
vehicle. Each transfer point t has a storage capacity sct .

B. Problem formulation

The problem to solve is non-selective as all demands
r ∈ R must be satisfied. The capacity of the vehicles must
be respected: the load of a vehicle v ∈ V cannot exceed its
capacity Qv at any time. We allow latest date violation on
all time windows. However, vehicles are not allowed: (1)
to leave their associated depot, (2) to visit sites or (3) to
handle demand, before the earliest date of respective time
windows. Thus time windows constraints can be defined as
[hard;soft]. The number of vehicles is limited. Each vehicle
at most performs one trip, so its use is not mandatory.

Our approach is to solve sequentially (1) the vehicle
assignment problem then (2) the vehicle routing prob-
lem. These two problems are hierarchically interdependent.
Changing solution for the assignment problem leads to a
whole new vehicle routing problem to solve. Our first con-
tribution is to provide a better understanding of the instance
under consideration, based on the observation of static data.
One thought would be to consider the integrated problem as
a Location-Routing Problem (LRP). However the proposed
approach does not fit exactly this category of problems.
According to Nagy and Salhi in their review [10] p.650: [...]
We do not classify as belonging to the LRP an approach that
deals with both location and routing aspects of a problem but
does not address their inter-relation. Because each vehicle
is assigned to a vehicle depot, it seems interesting to explore
strategies used for the facility location problem (FLP) which
is part of LRP. Among these strategies, one does often appear
in literature: clustering method. Mehrjerdi and Nadizadeh [8]
used a greedy clustering method to solve simultaneously the
FLP and VRP. Gao et al [3] have implemented a K-means
clustering algorithm to solve the FLP.

C. Objective functions

We define two criteria to optimize: minimizing the total
distance travelled by vehicles, and minimizing the highest
delay on demands, on sites and on route endings (maximal
tardiness). Solutions to the problem must answer the follow-
ing question: what are the best trade-offs between reducing
distance and introducing delays? To our knowledge, there
is no way to verify beforehand if a solution with no delay
(i.e feasible solution in the context of the [hard;hard] TW
problem) really exists and so if it can be found for a given
instance, because there is a fixed number of vehicles.

IV. A THREE STAGES ALGORITHM

Our approach is composed of three stages, each one
addressing sequentially one or several sub-problems of the

studied problem (Fig.1). The first stage uses three heuristic
algorithms to solve the assignment problem. It generates an
initial population of solutions. The second stage operates a
fast and quite efficient routing algorithm. It is based on an
iterative local search heuristic, exploring neighborhood on
weights of the developed greedy algorithm. Then another
greedy based algorithm builds routes for each vehicle, in-
spired by the first one in its mechanism. Vehicles do not
transfer demands at this stage yet. In the third stage, we
apply an improvement heuristic based on transfer insertion.

Fig. 1. Overview of the proposed approach

A. Stage 1

1) Assignment problem: Stage 1 first combines three
heuristic procedures to generate an initial population. Those
three heuristics work in a complementary way to cover
largely the search space. Given a number of demands |R|
and a number of vehicles |V |, the assignment problem
can be formulated as follows: which vehicle v ∈ V is best
suited to transport r ∈ R? With regard to the 2 objectives
defined above, it does not seem possible to prove with
certainty that one solution is better than another one. Indeed,
a solution to this problem gives the assignment of vehicles
to requests, but does not give a measure of the distance or
delay potentially reachable by a routing algorithm.

Greedy1 algorithm
We have first elaborated greedy algorithm called Greedy1.

Such an algorithm may be found in the literature, where
clustering strategies are based on geographical position of
sites and demands. However, time constraints bring a new
dimension which is considered by our heuristics. We aim at
providing not only good solutions but a quite wide Pareto
front. One major advantage lies in its O(n2 ) complexity
where n = |R|, which remains reasonable for this step in
terms of computational time. Greedy1 assigns each demand
to the best vehicle by concatenating three static indicators
PS r

v , TSS r
v and TSRr

v defined later. Those ones are a priori
computed for each pair (r ,v ) (demand r ∈ R and vehicle
v ∈ Br ). Three weights wps , wtss and wtrs are submitted
to the algorithm, associated with these static indicators.
Varying these weights from one run to another intends to
generate solutions which minimize either the distance, the
maximal delay on demands or the maximal delay on sites.

PSr
v = dij + dik , such as i = vwv , j = S+

r , k = S−r
Physical proximity indicator (lower is better)



TSSr
v = min(li ; lj )-max(ei ; ej )+min(li ; lk )-max(ei ; ek )

such as i = vwv , j = S+
r , k = S−r

Common time window between the vehicle depot
and the origin/destination sites (higher is better)

TRSr
v = min(li ; lrr )-max(ei ; err )

such as i = vwv , j = S+
r , k = S−r

Common time window between the vehicle depot
and the request (higher is better)

maxd = max(d)
Normalization criterion for distance unit, equal to
the highest distance among edges {i , j} ∈ E

maxt = max(l)-min(e)
Normalization criterion for time unit, equal to the
horizon of time of the instance

GSr
v = PS r

v · wps/maxd − (TSS r
v · wtss + TRS r

v · wtrs)
/maxt
Concatenated score for pair (demand r , vehicle v )

Each request is then associated with the vehicle minimizing
the concatenated score GS r

v . In case of equality, one of the
vehicles with the best score is randomly assigned.
Let us note that the indicators are based on static information.
Thus spatio-temporal distances are calculated with a static
reference point: the vehicle depot. However the vehicle
being a dynamic element, it is reasonable to assume that
indicators are not precise enough. For example, if two
or more vehicles are assigned to the same depot, then
there is a high risk of inconsistent assignment. In spite of
this identified drawback, we have verified that Greedy1
efficiently and fastly assigns requests on each vehicle.

Greedy2 algorithm
As we explained above, the assignment strategy followed

by Greedy1 is based on distance and time indicators. But
it does not consider parameters like the vehicle load. Thus
the resulting solutions can be fairly unbalanced regarding
load distribution among vehicles. Considering this potential
drawback we have developed a second heuristic algorithm
called Greedy2, with complexity also in O(n2 ), in which
we consider the theoretical average load to assign to each
vehicle so it satisfies all requests. This one is weighted
with a fixed rate (ltm) to define a maximal load allowed
per vehicle (labelled σ) which involves a change of vehicle
in the assignment procedure as soon as it is reached or
exceeded. The resulting value may be seen as a threshold
aiming at balancing the load between vehicles. The greater
the rate ltm is, the more unbalanced assignments are
allowed.

σ = (
∑
r∈R

qr / |V |) · ltm

Random assignment
This algorithm randomly chooses one vehicle v in Br for

every demand r ∈ R. We already ensured that the output
of this algorithm leads to feasible solution because delays
on any time window are allowed. If the capacity of the
assigned vehicle does not allow multiple requests to be

loaded at the same time then one solution is still to pick up
and to deliver requests one after another.

Generation of initial assignment solutions
Fig.2 explains how the three above heuristics are used

to generate a set of initial solutions solving the assignment
problem. Each one contributes equally to this generation
and provides one third of the population. At the end of this
step, the redundant solutions are erased to keep distinct ones.

Fig. 2. Generation of initial solutions with stage 1

The interest of combining the three heuristic procedures
is illustrated through the figures 3, 4 and 5 for the two
instances R01 and R04 (with respectively 3 and 12 vehicles,
30 and 150 demands, 2 and 4 transfer points). Indeed, we
can observe that greedy1 algorithm rather tends to fill the
vehicles as more as possible, then it may involve better
distance but more time window violations. Greedy2 algo-
rithm tends to balance the load of the vehicles, which may
increase the traveled distance but then may limit the delays.
If for R03, the two research sub-spaces explored with those
greedy procedures may overlap, they are obviously distinct
for R04, which justifies their combined use. As for random
assignment algorithm, it is used to ensure not to forget some
areas of the global search space. Its efficiency depends on
the studied instance and on the size of this one. It is shown in
figure 3 where the best distance is obtained with this random
procedure at stage 1.

2) Routing problem: At this step, each demand r ∈ R is
assigned to a vehicle v ∈ V . Thus it is possible to build a
route for each vehicle independently. Here we must solve a
Pickup & Delivery Problem with Time Windows and Paired
Demands (PDPTWPD). We consider for any v ∈ V a set
Ov containing pickup and delivery operations op assigned
to the vehicle. For each vehicle the assigned operations
are progressively inserted using a nearest neighborhood
strategy, where the next operation op, added at the end of



Fig. 3. Initial solutions for instance R01 after stage 1

Fig. 4. Initial solutions for instance R03 after stage 1

Fig. 5. Initial solutions for instance R04 after stage 1

the partial route is the one with the best minimal score
GS

′op
v . GS

′op
v is dynamically computed in the same way as

GS r
v used in Greedy1 and Greedy2, but by distinguishing

pick up and delivery operations. Three weights wps
′
, wtss

′

and wtrs
′

are also submitted to the algorithm. We define
the computation of GS

′op
v as follows:

PS
′op
v Physical proximity indicator (lower is better)

TSS
′op
v Violation of the operation site time window if

vehicle v visits it (higher is prioritized)
and the origin/destination sites (higher is better)

TRS
′op
v Violation of the demand time window if

vehicle v visits it (higher is prioritized)
Lop
v Load score used to forbid the insertion of op if the

resulting load of vehicle v exceeds its capacity Qv

after loading (= +∞). Else insertion is allowed (= 0)
GS

′op
v = Lop

v + PS
′op
v · wps/maxd

−(TSS
′op
v · wtss + TRS

′op
v · wtrs) / maxt

Concatenated score for pair (op, v )

Weights used in stage 1 are balanced, i.e. wps
′
, wtss

′

and wtrs
′

have the same value. At the end of stage 1,
the obtained solutions (assignment and routes) are filtered
to keep only non dominated solutions. Then we extract a
Pareto front of the explored sub-space. It constitutes our
initial set of solutions, to be improved in the two other stages.

B. Stage 2

For each solution of the initial set, we apply an iterated lo-
cal search using the principles of the above routing algorithm.
At a given iteration, we generate eight neighbors by varying
the values of the last defined weights (then modifying
the routes), with a given increment I. Two neighbors are
generated by randomly increasing two weights. Others result
from the increase (2 neighbors) or decrease (2 neighbors)
of a single weight randomly chosen; the last two neighbors
are obtained by randomly and simultaneously increasing one
weight and decreasing another one. If all neighbors are
dominated by the current solution, then this one is kept at the
next iteration. If one or more neighbors are not dominated
by the current solution (better for at least one criterion),
then one of them is randomly chosen for the next iteration.
The number of iterations is a priori fixed and constitutes
the stopping criterion. At the end of stage 2, each initial
solution (cross markers in Fig.6) has evolved towards a new
one through intermediate solutions (dot markers in Fig.6).
Different colours are used to keep track of the initial solution
during evolution process. This new set of resulting solutions
is an evolution of the initial Pareto front. We can see that
this stage enables us to improve substantially the quality of
the solutions in terms of distance and delays.

C. Stage 3

After improving the distance and the delays for the initial
defined assignments, we operate another improvement lever-
age by allowing transshipment which makes the satisfaction



Fig. 6. Solutions obtained for instance R01 after stage 2

of demands into a multimodal problem. Stage 3 applies a
transfer insertion heuristics. For a given solution, and for
each possible couple of vehicles (v1, v2), we determine the
common covering area of this couple (see figure 7). If a
transfer site is located in this area, and for each demand of v1
whose the destination belongs to this zone, the best transfer
insertion cost is computed. The insertion consists in testing
all the possible insertion positions of delivery at the new site
(transfer site) for v1 (after the associated pick up operation
of course); for v2, the routing algorithm is used to insert
both pick up at transfer point and delivery at destination of
the demand newly assigned. Fig.8 illustrates the potential
improvement level provided by this stage.

Fig. 7. Covering areas of two vehicles and their intersection where gains
on transfer insertions are computed

V. COMPUTATIONAL RESULTS

Algorithms are developed under Python 2.7 on a IntelTM

i7-6700HQ running on a single thread at 2.6 GHz. In stage 1,
2000 initial solutions were created, evenly distributed among
the 3 strategies (fig.2). In stage 2, we applied 100 iterations
for local search on each solution. Variation step for greedy
weights wpd

′
, wpd

′
and wpd

′
is set to 20%. Each weight

was initialized in stage 1 with value 1/3 . These weights are
normalized each time their value varies. In stage 3, we set

Fig. 8. Evolution of solutions obtained in stage 2 on instance R04

500 iterations for transfer insertion. If no gain was possible at
a given iteration, then we stopped the optimization process.
In order to assess our algorithm we have not found in the
literature instances gathering all the characteristics of our
studied problem (multiple vehicle depots, heterogeneous fleet
of vehicles, paired demands, TW on sites, TW on demands,
transfers between vehicles and so on). So we have generated
new instances. Table I provides a synthesis of the results
we obtained by running our algorithm on 9 among those
generated instances (with different sizes and configurations).
We got reference results for small size instances (optimal
for F01 to F03, and an upper bound for F04), by applying
a previously developed exact method (see Godart et al. [4]).
However it was not the case for bigger size instances (R0i)
as the exact methods failed to solve them in reasonable
time. Table I gives the couple (distance, delay) for two
particular solutions among those obtained: solution β with
the minimal found distance and solution α with the minimal
found delay (smallest maximal tardiness). But our algorithm
works on a population of solutions which are fast generated
and improved. Indeed, for small instances, the CPU time is
about 10 seconds. It varies from about one minute to less
than one hour for the biggest instances of Table I. The table
provides the part of the total CPU time for each stage of the
algorithm, which varies according to the size of the instances
and in particular the number of transfer insertions. For
small instances, the best known results (BKS) give the best
distance with no tardiness in demand and site time windows.
We also found solutions with no delay for almost all the
small instances, and we also provide solutions with better
distances with some delays. Then we provide potentially
flexible solutions, as such a trade-off may interest a carrier,
on condition that he may negotiate with his customers to
deliver goods not exactly on time. For the big instances,
which are much more complex and constrained, the obtained
solutions are associated with delays (however sometimes
small like for R02). Nevertheless, missing reference results,
it is difficult to know if there exist or not solutions with no
delay, knowing that: there is a limited amount of vehicles,



TABLE I
COMPUTATIONAL RESULTS OBTAINED ON 9 INSTANCES

some of these vehicles are not allowed to deliver some of the
requests (set Br ), and the time windows are rather tightened
on sites, and even more on demands.
Finally it is not so easy to qualify the improvement obtained
with our approach. However, between the solutions α and
β, we can observe variations from 11% to 35% for the
distance and from 36% to 100% for the delay. Besides, the
bigger the mean number of demands per vehicle is, the higher
the improvement potential is. We can suppose that it comes
from the great number of possible assignments of requests
to the vehicles, and also from the great number of possible
permutations within each route. Nevertheless, it let us hope a
strong efficiency of our algorithm for even larger instances.

VI. CONCLUSION

We have proposed an algorithm combining several heuris-
tics working on a population of solutions. This method has
provided encouraging results showing its efficiency to solve
a bi-objective variant of Pick up and Delivery problem with
transfers. The greedy strategy provides good solutions within
acceptable computation time. Further extensions may be
envisaged for this work, like solving large scale instances and
comparing solution metrics with mono-objective algorithms.
We could also adapt this method to a dynamic variant of the
problem (dynamic insertion of new requests). In this case, the
assignment procedure Greedy2 would start with current load
on each vehicle, according to previous scheduling. Routing
procedure would become an insertion procedure considering
the existing routes. Stage 3 would then be used as it is.
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