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Abstract— In this paper, we propose a Mixed Integer Linear
Programming model for solving a hoist scheduling problem
with several transportation resources. This model complements
initial work that neglected the risk of collisions between hoists.
This new model identifies and manages the various possible
collision situations, and it is intended to be integrated as a
solution evaluation module in a hybrid algorithm addressing
the broader and more complex joint problem of sizing transport
resources and scheduling surface treatment workshops. In this
global approach, an evolutionary algorithm first generates
partially feasible solutions, whose total feasibility is then verified
a posteriori, thanks to the proposed new model. This model is
validated through tests performed on instances of the literature.

I. INTRODUCTION

Surface treatment lines (Fig. 1) can be found in many in-
dustrial sectors (automotive, household appliances, jewellery,
etc.). They make it possible to modify the mechanical prop-
erties and/or external appearance of many types of parts. In
such systems, the movement of parts between processing re-
sources is ensured by automated handling hoists, which most
often perform cyclic sequences of alternated loaded moves
and empty repositioning. In this case, the challenge is to
optimize the line productivity by minimizing the cycle time.
However, the number and location of resources is also a lever
for improving workshop performance and optimizing costs.
The underlying idea is to be able to reconfigure the physical
system in the event of series’ change, in order to maintain
optimal steady-state operation for each new production. In
particular, our work focused on transport resources and we
have previously studied joint optimization (minimization) of
the couple number of hoists and cycle time [1], [2]. To
the best of our knowledge, the joint optimization problem
was not studied with both latter objectives together, and the
idea is to provide a decision support system that enables to
choose the best couple of parameters regarding productivity
and cost objectives. Nonetheless, the simultaneous use of
transport resources leads to a risk of collisions. We initially
neglected this risk [1], [2], [3], as have done most studies in
the literature. In this paper, we propose a mathematical model
integrating the management of collisions between hoists.
This model was developed as part of a hybridization with
a metaheuristic approach, that is dedicated in particular to
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solve the hoist assignment problem. It is tested and proves its
effectiveness on partially feasible solutions (without collision
treatment) for known benchmarks of the literature.

The organization of this paper is as follows: Section II
details the addressed problem. In Section III, a synthetic state
of the art situates our work within the literature. Section IV is
dedicated to the mathematical model that we develop. The
experimental environment and comparative test results are
provided in Section V. An analysis of these results is also
given in this section. Finally, Section VI concludes this paper
and opens perspectives for future work.

Fig. 1. Example of a treatment surface line [3]

II. PROBLEM DESCRIPTION
The studied system is an electroplating facility in which

parts are processed according to a single sequence of soaking
operations in several tanks. Material handling resources
called hoists generally move along a single track above the
line to transfer parts from tank to tank. In this case, to
optimize the performance of such a workshop, the hoists are
programmed to achieve cyclic sequences of alternate loaded
and empty moves. Each empty move is a repositioning
operation between two loaded movements. The problem is
known as the Cyclic Hoist Scheduling Problem (CHSP)
whose solving aims at minimizing the cycle time (period).
A production line is composed of n tanks (Fig. 1), including
a loading and unloading station (tank 1). The tanks from 2
to n are the soaking tanks. Then a processing sequence is
composed of n + 1 operations. In the workshop, H hoists
perform the transfer of parts between processing tanks (from
tank i to tank i + 1). In our work, the number of hoists is
a variable of the problem that we have a priori determined



by an assignment procedure [3] (not detailed here). This one
also provides the cyclic move sequence of each assigned
hoist, alternating loaded and empty moves. Then, at this
stage, those parameters are input data of our problem to
solve. The latter consists in determining the starting times
of each move, and the minimal common cycle time of the
hoists, while respecting various constraints, such as:
(a) Unitary capacity of tanks and hoists (both are disjunc-

tive resources,they process only one carrier at a time);
(b) The soaking time in each tank i is bounded by a minimal

and a maximal duration. Then after being processed, a
part must leave the tank without any delay to not exceed
the maximal time limit;

(c) It is a no-wait, no-storage problem. First, neither soak-
ing nor transfer operations can be interrupted; second,
no intermediate buffer is allowed;

(d) The hoists must have enough time to travel empty
between two successive transport tasks (loaded moves).

A schedule which would not satisfy any of those constraints
would be considered as a non-feasible solution.

III. STATE OF THE ART
The Cyclic Hoist Scheduling Problem (CHSP) [4] was

widely investigated in the literature, in both single and
multiple hoist cases. Works belonging to the first category
are numerous where first, Phillips and Unger [5] had pro-
posed a Mixed Integer Programming Model to maximize
the production throughput, and later, many researchers dealt
with the problem, using either exact [6], [7], [8], [9] or
approximate solving approaches [10]. In the multiple hoist
case, obviously, particular constraints must be considered
to avoid collisions between the hoists. The problem gets
then more complex. Researchers having studied this category,
have chosen different methods to solve the problem. Many
have opted for the so called “partitioning” or “zoning”
approach [11], [12], [13], [14]. It is a heuristic that partitions
the line into disjunctive sets of tanks, each one being assigned
to a single hoist. This portioning heuristic enables to solve
the problem while guaranteeing non-collision between hoists.
This assignment heuristic is followed by a resolution of
the scheduling problem. Here, Lei and Wang [11] have
proposed a “minimum common cycle” algorithm to find
the optimal common cycle for both hoists of the line,
whereas, Zhou and Li [14] have developed a mixed integer
linear programming model. Manier et al. [15] have also
investigated a static partitioning approach to solve the CHSP
in near real industrial lines (i.e., with multi-function and
duplicated tanks). However, their partitioning method may
accept that the divided zones overlap. They then identified
all possible configurations of collision and applied a branch
and bound like algorithm to solve the problem. Others studies
have differently coped with the multi-hoist CHSP. Che and
Chu [16] have written disjunctive inequalities to formulate
the collision-free constraints and used a branch and bound
procedure. Leung et al. [17] and Che et al. [18] built up
a mixed integer programming formulation to model the
problem. In a bi-hoist system, Chtourou et al. [19] have

suggested a collision test procedure to check collisions. Other
studies [20], [21] have focused on k-degree CHSP, where in
one cycle, k identical parts join and leave the production
line. Both of them developed a MILP model to solve the
problem for the multi-hoist case.

Still in the multi-hoist case, Manier and Lamrous [1], [2]
have considered both objectives of minimizing the cycle time
and the number of hoists H assigned to the line. They have
proposed a new assignment procedure based on empty moves
to generate move sequences for the hoists. They have applied
a mixed integer linear programming model to solve the
scheduling dimension of the problem, without considering
the collision avoidance constraints. In a previous work [3],
we have improved this assignment procedure to reach more
solutions and broaden the search space. In this paper, we
propose to deal with the different scenarios of collision
avoidance and incorporate collision-free constraints to the
model previously proposed in [1], [2].

IV. MATHEMATICAL MODEL

A. Preliminary remarks

In [3], we have developed a hybrid evolutionary algorithm
to solve the Cyclic Hoist Design and Scheduling Problem.
In this approach, the chromosomes are based on the hoists’
empty moves. Each one represents one solution of the prob-
lem and its decoding recognizes the hoists empty moves, the
associated move sequence and the number of transportation
resources used. Each generated solution is then evaluated.
The evaluation consists in solving a Mixed Integer Linear
Program (MILP) which provides both the optimal cycle time
of the considered scheduling and the associated starting times
of each move [2]. In case of non-compliance with model
constraints, the evaluation returns the value 0 for the cycle
time, which means that the solution is not feasible.

In our initial algorithm, the MILP does not consider the
spatial constraints. In this paper, we propose an extended ver-
sion of the model which includes them so as to guarantee the
total feasibility of any resulting solution. These constraints
are first inspired from the model of Leung et al. [17] and have
been adapted to fit with our choice of variables. Besides, we
have also modified and completed them to cope with some
special possible situations not previously considered.

For exhaustiveness, we present the complete model (first
model without constraints related to collisions’ test [2]
together with the new formulated constraints dealing with
the collision avoidance between hoists). In the following,
we first define the problem parameters.

B. Notations

• n: number of processing tanks of the line; Tank 1 is
the loading-unloading station and tanks from 2 to n are
the soaking tanks, Let N = {1, 2, ..., n} and N − 1 =
{1, 2, ..., n− 1},

For i, j ∈ N :
• (i, j): empty move from tank i to tank j,
• di,j : duration of the empty move (i, j),



• ri: duration of the loaded move i. Move i is the move
where the hoist transports a part from tank i to its
consecutive i+1, ri = di,i+1+ c, where c is a constant
time needed by the hoist to lift a carrier from tank i,
to pause if necessary above tank i and let the carrier
drip-off, then to stabilize when arrived to tank i+1 and
to lower the carrier into tank i+ 1. The times di,j and
ri are given constants.

• mi: minimal soaking time in tank i,
• Mi: maximal soaking time in tank i,
• M : a very big number to represent the value +∞,
• H: number of hoists associated to the line, deduced after

the decoding procedure;
• h: hoist number where h ∈ {1, 2, ...,H}; We assume

that hoist 1 is always the responsible of the loaded move
1, so the empty move (2, j),

• zh: number of empty moves performed by hoist h, with
H∑

h=1

zh = n,

• vh,u: the uth identified empty move for the hoist h;
u ∈ {1, 2, ..., zh},

• Movesh: ordered list of transport moves performed by
hoist h. This list associated to each hoist is given by
the assignment procedure; if move i is insured by hoist
h, then i ∈ {Movesh},

• p: transport move preceeding move i; if i ∈ {Movesh}
then p ∈ {Movesh},

• Movesk: ordered list of transport moves performed
by hoist k. If hoist k performs move j, then j ∈
{Movesk},

• q: transport move preceeding move j; if j ∈ {Movesk}
then q ∈ {Movesk},

• zhi : Boolean data such as:

zhi =

 1 if the empty move starting from tank i
is performed by hoist h,

0 otherwise.

Note that
n∑

i=1

zhi = zh,

.
The decision variables are the following. For i, j ∈ N ,

h ∈ {1, 2, ...,H} and u ∈ {1, 2, ..., zh}:
• T : time of the cycle period,
• ti,j : starting time of the empty move (i, j); For ease of

use, we will write it as ti, to refer to the empty move
beginning from tank number i,

• The Boolean variables bi, ah,u and yi,j , such as:

bi =

 0 if one carrier is introduced into tank i and
removed from it during the same cycle,

1 otherwise.

ah,u =


0 if the consecutive empty moves vh,u

and vh,u+1 are performed by hoist h
in the same cycle,

1 otherwise.

Note that vh,zh+1 = vh,1.

yi,j =

 1 if the loaded move i− 1 starts before the
loaded move j − 1,

0 otherwise.

C. Mixed Integer Linear Programming Model

The model that evaluates the feasibility of the hoists’ move
sequences and then schedules them to find the minimal cycle
time in the case of multiple hoists is formulated as a Mixed
Integer Linear Programming Model, as follows:

Minimize T (1)

Subject to
0 ≤ ti ≤ T, ∀i ∈ N, (2)

t2 = r1, (3)

t1 +mn+1 ≤ T, (4)

mi ≤ T, ∀i ∈ N, (5)

(bi − 1).M ≤ ti − (ti+1 − ri) ≤ bi.M, ∀i ∈ N − 1, (6)

(bn − 1).M ≤ tn − (t1 − rn) ≤ bn.M, (7)

mi−bi.M ≤ ti+1−ri−ti ≤Mi+bi.M, ∀i ∈ N−1, (8)

mi+(bi−1).M ≤ T + ti+1− ri− ti+1 ≤Mi+(1− bi).M,

∀i ∈ N − 1, (9)

mn − bn.M ≤ t1 − rn − tn ≤Mn + bn.M, (10)

mn + (bn − 1).M ≤ T + t1 − rn − tn ≤Mn + (1− bn).M,
(11)

zh∑
u=1

ah,u = 1, ∀h ∈ {1, 2, ...,H} (12)

If h = 1, ∀u ∈ {1, 2, ..., z1 − 1},

a1,u = 0 and a1,z1 = 1, (13)

∀h ∈ {1, 2, ...,H}, ∀u ∈ {1, 2, ..., zh} :

tj + dj,i ≤ ti+1 − ri + ah,u.M, (14)

tj + dj,i ≤ T + ti+1 − ri + (1− ah,u).M, (15)

with vh,u = (j, i), vh,u+1 = (i+ 1, l) and vh,zh+1 = vh,1.

tj+1 − rj − (ti+1 − ri) ≤M.yi+1,j+1, ∀i, j ∈ N, i 6= j
(16)

yi,j + yj,i = 1, ∀i, j ∈ N, i 6= j (17)

∀i ∈ {Movesh},∀j ∈ {Movesk},∀h ∈ {1, 2, ...,H} :

ti+1 + di+1,j − tq+1 − dq+1,j < M.(3− yi+1,j+1 − zhi+1

−
H∑

k=h

zkj+1), k > h, j < i, (18)



tj+1 + dj+1,i − tp+1 − dp+1,i < M.(3− yj+1,i+1 − zhi+1

−
H∑

k=h

zkj+1), k > h, j < i, (19)

ti+1 + di+1,j − tq+1 − dq+1,j < M.(3− yi+1,j+1 − zhi+1

−
h∑

k=1

zkj+1), k < h, j > i, (20)

tj+1 + dj+1,i − tp+1 − dp+1,i < M.(3− yj+1,i+1 − zhi+1

−
h∑

k=1

zkj+1), k < h, j > i, (21)

ti+1 + di+1,j − tq+1 − dq+1,j − T < M.(2− zhi+1

−
H∑

k=h

zkj+1), k > h, j < i, (22)

tj+1 + dj+1,i − tp+1 − dp+1,i − T < M.(2− zhi+1

−
H∑

k=h

zkj+1), k > h, j < i, (23)

ti+1 + di+1,j − tq+1 − dq+1,j − T < M.(2− zhi+1

−
h∑

k=1

zkj+1), k < h, j > i, (24)

tj+1 + dj+1,i − tp+1 − dp+1,i − T < M.(2− zhi+1

−
h∑

k=1

zkj+1), k < h, j > i, (25)

∀j ∈ {Movesh},∀i ∈ {Movesk},∀h ∈ {1, 2, ...,H} :

tj+1 − tp+1 − dp+1,i < M.(3− yj+1,i+1 − zhj+1

−
H∑

k=h

zki+1), k > h, i = j + 1, (26)

ti+1 − tq+1 − dq+1,j < M.(3− yi+1,j+1 − zhj+1

−
h∑

k=1

zki+1), k < h, i+ 1 = j, (27)

tj+1 − tp+1 − dp+1,i − T < M.(2− zhj+1

−
H∑

k=h

zki+1), k > h, i = j + 1, (28)

ti+1 − tq+1 − dq+1,j − T < M.(2− zhj+1

−
h∑

k=1

zki+1), k < h, i+ 1 = j, (29)

bi ∈ {0, 1}, ∀i ∈ N, (30)

ah,u ∈ {0, 1}, ∀h ∈ {1, 2, ...,H},∀u ∈ {1, 2, ..., zh},
(31)

yi,j ∈ {0, 1}, ∀i, j ∈ N, (32)

Equation (1) represents the objective function that aims
at minimizing the cycle time T . Equations (2) to (15)
correspond to the first model proposed in [2]: (2) to (5)
define and bound the decision variables T and ti, (6) and (7)
define the Boolean variables bi, (8) to (11) check the soaking
times’ bounds constraints, (12) to (15) are associated to the
transportation resources for constraints (a) and (d) of part II.

Equations (16) to (29) deal with the collision-free situa-
tions: (16) and (17) define the Boolean variables yi,j and
(18) to (29) avoid twelve possible scenarios where collision
between hoists may occur. The first eight equations (18)
to (25) are inspired from Leung et al. [17]. To exhibit the
collision scenarios, we consider the following state of the
line. In a multi-hoist case, hoist number 1 will be the nearest
hoist to tank 1 as it is responsible for unloading tank 1 and
then for the empty move (2, j). Each added hoist to the
line will stand after its preceding one, until the last hoist,
which will be the furthest from tank 1 but the nearest to tank
n. Obviously, collisions may occur when highly numbered
hoists must perform transport moves from lowest numbered
tanks, or vice versa. Therefore, if we consider two hoists h
and k and two moves i and j (i.e., two tanks i and j), h
performs i and k performs j, two collision scenarios may
appear here: either (k > h and j < i) or (k < h and j > i).
Furthermore, in each of these two scenarios, move i can
be performed before move j (yi+1,j+1 = 1) or inversely
(yj+1,i+1 = 1). Thus, the resulting number of scenarios is 4,
which are checked in constraints (18), (19), (20) and (21).
These same scenarios may also happen when the moves i
and j are performed in two consecutive cycles. In this case,
if move i is accomplished in the next cycle, then its starting
time is increased by the value T (constraints (23) and (25)).
If it is the move j that starts in the next cycle, its starting
time is also increased by T and these cases are represented
in constraints (22) and (24). As an example, Fig. 2 shows
the situation considered in the equation (18).

Fig. 2. Collision avoidance scenario corresponding to Eq. (18)



Equations (26) to (29) draw other possible scenarios of
collision avoidance that where not addressed by Leung et
al. [17]. In fact, the first situation (26) is when k > h, h
performs j and k performs i and i = j + 1 (i.e., i > j and
here the destination tank j + 1 of move j is the departure
tank i of move i). In this case, a collision should be avoided
above tank i. Constraint (27) is wanted to avoid a collision
in the situation where k < h, h performs j and k performs
i and j = i + 1. Constraints (28) and (29) investigate both
previous scenarios but in the case of two consecutive cycles.
Finally equations (30) to (32) give the definition intervals of
the binary variables bi, ah,u and yi,j .

The model that we propose complements our previous
MILP [2] by integrating the identification and management
of collisions between hoists. It also improves the model of
Leung et al. [17], in the sense that it extends the number of
the considered collision situations, in particular when one of
the hoists is waiting empty above a tank (Fig. 2). For the
sequences corresponding to such cases, our extended model
returns the mention not feasible (i.e., a cycle time of value
0). Our constraints (26) to (29) make it possible in particular
to avoid boundary collisions, as shown in Fig. 3.

Fig. 3. Collision avoidance when one hoist does not move

V. COMPUTATIONAL EXPERIMENTS

A. Experiments
Experimentation was performed on an Intel Core i5-6500

CPU @ 3.20 GHz 3.19 GHz, 16 Go RAM, 64-bit, using
the Matlab software under Windows Operating System. Our
model was tested on three well known benchmark instances:
the first was proposed in [5] that we label Phil, and the
two others can be found in [2] that we call Line 1 and
Line 2. These instances are composed of 12 or 13 tanks,
not including the loading-unloading station. The tests are
carried on the feasible solutions that are the outputs of our
first proposed approach [3], in which a genetic algorithm
combined with the first version of MILP [2] (not dealing with
collision avoidance) enabled us to obtain for each possible
number of hoists a list of best solutions. Nevertheless, these
provided solutions are partially feasible as they satisfy all the
constraints except the collision-free ones. Hence, in order to
validate the new proposed model integrating the collision-
free constraints, we have applied it to these solutions in a

post-verification procedure. Let us note that this one does
not depend on the method initially used to generate the
partially feasible solutions. But we can obtain good feasible
solutions only if we test good initial solutions!. Table I shows
an extract of these results (7 solutions) for the three tested
instances, for number of hoists from 2 to 5. T1 corresponds
to the cycle times got from the first proposed approach
without collision treatment [3], T2 are the new cycle times
obtained after checking the collision constraints of [17], and
T3 are those obtained after applying our new model. We
only provide multi-hoist solutions, since applying collision-
free constraints to single hoist solutions will not change the
resulting schedules. In the same way, we do not report the
solutions obtained for more than five hoists, which we found
not relevant here.

TABLE I
SOME OF THE BEST SOLUTIONS FOUND WITH AND WITHOUT COLLISION

AVOIDANCE, FOR THREE BENCHMARK INSTANCES

instance T1 T2 T3 instance T1 T2 T3
Phil 251 251 251 Phil 179 0 0

2 hoists 252 0 0 3 hoists 182 0 0
254 0 0 188 0 0
255 0 0 188 636 0
257 0 0 188 349 0
258 0 0 190 0 0
264 0 0 190.67 492 0

Phil 151 382 0 Phil 151 238 0
4 hoists 151 398 0 5 hoists 151 264 0

151 411 0 151 280 0
151 423 0 151 285 0
151 579 0 151 303 0
151 816 0 151 315 0
151 0 0 151 320 0

Line1 361 361 361 Line1 361 361 399
2 hoists 361 361 361 3 hoists 361 361 510

361 367 0 361 361 0
361 376 0 361 365 0
361 379 0 361 366 0
361 382 0 361 369 0
361 0 0 361 0 0

Line1 361 361 0 Line1 361 361 402
4 hoists 361 361 0 5 hoists 361 361 0

361 365 0 361 364 0
361 367 0 361 366 0
361 391 0 361 374.5 0
361 409 0 361 376 0
361 0 0 361 0 0

Line2 661 661 0 Line2 661 661 0
2 hoists 661 661 0 3 hoists 661 661 0

661 667 0 661 684 0
661 712 0 661 698 0
661 712 0 661 712 0
661 796 0 661 744 0
661 0 0 661 0 0

Line2 661 661 0 Line2 661 661 0
4 hoists 661 ... ... 5 hoists ... ... ...

661 712 0 661 661 0
661 0 0

B. Discussion

In a first step, the conducted tests have enabled us to
validate our model, in particular on instances for which we
find again feasible solutions. Secondly, the comparison of



the results of table I has helped us to analyze the interest of
our a posteriori procedure that checks collision avoidance.
Indeed, it shows that many of the best solutions of relaxed
problems (without collision management) are not actually
feasible (as collisions occur). This is particularly obvious for
line 2, where none of the solutions initially selected as the
best for 2 to 5 hoists are finally retained. Fortunately, we have
obtained the best solution for the single hoist problem. Let
us also note that many solutions obtained with Leung et al’s
model become not feasible after applying our last constraints,
as they correspond to the particular identified cases.

In table I, we also observe that for a given instance
and a given number of hoists, many solutions obtained
have the same initial cycle time T1, resulting in a false
impression of repetition, because they are actually associated
with different solutions in terms of assignment and/or move
sequences. Thus, the cycle times 151, 361 and 661 for the
three respective studied instances come from the temporal
characteristics of the leading machine which is a tank here
(because increasing the number of hoists means that transport
resources are no longer the critical resources of the system).

Overall, we distinguish three cases: in the first one, the
solution obtained by the hybrid metaheuristics remains the
same after applying the collision constraints (T3=T1). The
second case is the one already mentioned where a solution
becomes a non-feasible one (T3=0). In the third case, the
application of collision constraints results in a solution with
the same assignment and sequence of movements, but with
different execution dates and bigger cycle time (T3>T1) (see
line 1 with 3 or 5 hoists in Table I).

These results show that achieving collision-free solutions
is not so trivial. They highlight that in the post-verification
process of the generated solutions got from the relaxed prob-
lem, there is a significant risk that there is no longer feasible
solution among those retained for each number of hoists.
This implies either to keep more or all of the best generated
solutions after executing the initial algorithm, or to include
collision-free constraints in the initial assessment MILP.
However, the MILP solving time was already identified as
the penalizing part of our previous hybrid metaheuristics [2].
A trade-off between this approach and a posteriori collision
check would be to solve the initial MILP for all generated
solutions, and just after that apply the collision constraints,
but only to a relevant selected set of solutions.

VI. CONCLUSION

This paper has proposed a new MILP integrated in a
hybrid approach and dedicated to address the problem of
both sizing and scheduling the transportation resources in
a surface treatment workshop. The collision avoidance con-
straints were integrated in a post verification procedure which
allows to guarantee the whole feasibility of the final provided
solutions. Several research perspectives are opened up as
a result of this work, including the integration of these
constraints at specific stages of the resolution algorithm.
Constraints could also be improved by allowing one hoist
to push itself in order to make way for another hoist. This

implies new additional constraints to verify the temporal
feasibility of these atypical movements.
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