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Abstract This chapter is dedicated to the Dynamical Mechanical Thermal Analy-
sis of Shape Memory Polymers. Temperature obviously plays a major role in the
mechanical properties of these materials, hence the understanding of the physical
phenomena driving the shape memory effect is of first importance for the design
of practical applications in which Shape Memory Polymers are used. The Shape
Memory effect being closely related to the viscoelastic behavior of the polymer,
it is important to properly describe it with appropriate tools. The objective of this
chapter is to describe characterization methods, models and parameters identifica-
tion techniques that can be easily used for the description of the thermo-mechanical
behavior of SMPs. The associated models can easily be implemented in finite ele-
ment codes for time or frequency domain simulations. The experimental results and
all numerical values of the models are provided for three Shape Memory Polymers:
the tBA/PEGDMA and a Vitrimer, which can easily be manufactured according to
the data provided in open literature, and a Shape Memory Polymer filament for 3D
printing, which is available on the shelf.

1 Introduction

As all polymers, Shape Memory Polymers (SMPs) exhibit a strong viscoelastic be-
havior. The stable rubbery and glassy states play a major role in the Shape Memory
effect, which is associated to a fast transitions between these states with a large
elasticity gap, inducing high loss factor values at glass transition [50, 2]. The typical
values of the loss factor which are reported in SMP-related open literature typicaly
vary between 0.5 [4] and more than 2.5 [39, 7], most of them being between 1 and 2
[49, 53, 20, 8]. These qualitatively high values of loss factor must be considered for
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practical applications since they can have strong impact on the efficiency and the be-
havior of the SMP-based devices. For applications in which only static phenomena
are involved, the intrinsic losses may be neglected but as soon as dynamical phenom-
ena contribute to the mechanical response, viscoelastic effects must be considered.
This has been highlighted for years now, and numerous works can be found in the
literature that present models of the shape memory effect based on rate-dependent
viscoelastic models [11, 34, 17, 56, 21, 55, 32]. Recently, these materials have been
identified as able to play a major role in damping-related applications, thanks to
the high damping capacities associated to the glass transition [13]. In these appli-
cations, the shape memory material acts as a classical passive damping treatment,
which is known to be a reliable, low cost and robust solution for vibration control
[22, 40], whose damping and stiffness can be tuned by a temperature control [6].
The polymer layer is classicaly used as a core in a multilayered composite, in order
to enhance the shear effects in the material, leading to high damping performances.
Many articles have been published on composite structures embedding viscoelas-
tic materials to damp vibrations [24, 1]. The design optimization of multilayers
structures has particularly been investigated [33, 31, 3, 19] by varying the thickness
of the viscoelastic layer, the fiber orientation or the aspect ratio of the structure.
When dealing with these materials, it is important to precisely describe the behav-
ior of interest with adequate models based on confident parameters. The most usual
way to obtain the viscoelastic mechanical properties of a polymer is the Dynamic
Mechanical Analysis (DMA), also called Dynamical Mechanical Thermal Analysis
(DMTA), which consists in conducting mechanical tests on a small frequency band
and a large temperature range [16, 48, 25]. By using laws as Williams-Landel-Ferry
(WLF) law [51] or Arrhenius law [45], in a Time-Temperature Superposition (TTS)
model, DMA measurements are used in order to obtain the mechanical behavior
of the polymer on a large band of frequencies and temperatures. The extrapolated
properties obtained can then be used to design composite structures. Even if some
limitations of this apparatus have been reported, (effect of the instrument compli-
ance [26], of the specimen dimensions [15] or even of the chosen TTS model [8]),
and despite of the fact that viscoelastic properties are often obtained only for a spe-
cific loading mode, DMA remains a confident way to obtain a description of the
behavior which is valid for different loading modes, for different scales, on wide
temperature and frequency ranges, even for Shape Memory Polymers [7]. Among
others, these materials are very good candidates for temperature-controlled damping
devices [6, 5].

In this chapter, original results are presented for three Shape Memory Polymers:
the tBA/PEGDMA and the Vitrimer, which can easily be manufactured according
to the data provided in open literature, and a Shape Memory Polymer filament for
3D printer, which is available on the shelf. For each of these materials, DMA results
are performed by varying frequency and temperature, the TTS is checked and a cor-
responding model is described. Finally, a viscoelastic model (Generalized Maxwell
Model) is identified in order to describe the behavior of the material on a wide fre-
quency and temperature ranges. All numerical values of the models are provided in
order that readers can use the data in their work.
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The chapter is organized as follows: section 2 describes the three materials used
in this work, section 3 presents the DMA apparatus and protocol, section 4 describes
the viscoelastic and TTS models, and section 5 provides all the results.

2 Materials

In this section, the three materials considered in this chapter are presented.

2.1 tBA/PEGDMA

The tBA/PEGDMA is a Shape Memory Polymer which has been originally stud-
ied by Srivastava et al. [47]. This material is used in this work, based on sam-
ples elaborated in FEMTO-ST Institute in the Department of Applied Mechanics
in accordance with the procedure described in Yakacki et al. [54]. The chemi-
cals components were provided by Sigma-Aldrich and used as received and with-
out purification. The shape memory polymer was synthesized by manually mixing
95 wt% of the monomer tert-Butyl Acrylate (tBA), with 5 wt% of cross-linking
agent poly(ethylene glycol) dimethacrylate (PEGDMA) (with a typical molecular
weight Mn=550 g/mol). The photo-initiator, 2.2-dimethoxy-2-phenylacetophenone
(DMPA), was added to the solution at a concentration of 0.5 wt% of the total weight.
The liquid mixture was then injected between two glass slides. A plastic seal was
used as a spacer to ensure constant thickness. The polymerization was initiated by
exposing the solution to UV light for 10 min and was completed by heating the
polymer at 90◦C for 1 h. The produced plates were machined whenever necessary
for the execution of the mechanical tests.
The tBA/PEGDMA is a thermoset amorphous polymer. A DSC analysis has high-
lighted the absence of crystallite and full cross-linking of the polymer. More-
over, optical imaging analyses have not shown any polymer heterogeneity. Fi-
nally, it should be emphasised that the tBA/PEGDMA is thermo-rheologically sim-
ple, as mentioned in Butaud et al. [7]. The mass density of the tBA/PEGDMA
is ρ = 1000 kg/m3 (determined by pycnometer). The Poisson’s ratio of the tBA/-
PEGDMA, determined during quasi-static tests (10−4 Hz) at room temperature [7],
is ν = 0.37 .

2.2 SMP filament

The shape memory polymer filament was provided from SMP Technologies Inc.
This polymer is available on the shelf for 3D printing. The filament was used as
received and without any printing to avoid structural aspects in the evaluation of the
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mechanical properties. The SMP filament is a thermoplastic polymer with a mass
density of 1260 kg/m3 (determined by measuring the sample’s mass and volume).
This material may be used in most of FDM-based 3D printers to obtain the shapes
of interest.

2.3 Vitrimer

The third shape memory polymer studied in this paper is a vitrimer. The vitrimer
has been developed by Ludwik Leibler [29]. The hard networks is tested in this
work. The material was elaborated at the FEMTOST Institute in the Department
of Applied Mechanics in accordance to the procedure described in Montarnal et
al. [36]. The chemicals were provided from Sigma-Aldrich and used as received
and without any purification. The vitrimer was synthesized by reaction of the digly-
cidyl ether of bisphenol A (DGEBA) with glutaric anhydride with epoxy/acyl 1:1
in the presence of 5 mol% zinc acetyl acetonate [Zn(acac)2]. The reaction mixture
was homogenized with mechanical stirring at 140◦Cuntil phase miscibility. The liq-
uid mixture was then molded in plate (210×300×20 mm3) and the polymerization
was performed in a thermal chamber at 140◦C for 12 h. The produced plates were
machined whenever necessary for the execution of the mechanical tests. The mass
density of this hard networks is 1290 kg/m3 (determined by measuring the sample’s
mass and volume).

3 Dynamical Mechanical Thermal Analysis

3.1 tBA/PEGDMA

Samples are cut to 29× 6× 3 mm. Viscoelastic properties are measured using a
Metravib DMA50 apparatus at temperatures varying by 5◦C steps (near the glass
transition temperature) or 10◦C steps (far from the glass transition) at heating rate
of 2◦C/min, between 30◦C and 90◦C. The frequency of the excitation varies from
0.1 Hz to 180 Hz. A sinusoidal tensile displacement is applied on the sample with a
peak-to-peak amplitude of 10 µm allowing to ensure a linear viscoelastic behavior.

3.2 SMP filament

A Metravib DMA300+ apparatus is used at temperatures varying by 5◦C steps at
heating rate of 2◦C/min, between 33◦C and 83◦C. The temperature was stabilized
during 1 minute before each measurement to ensure a homogeneous temperature
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inside the specimen. Specimen’s shape is cylindrical, with a diameter of 1.75 mm.
The length is cut to 6 mm between the jaws. The frequency of the excitation varies
from 0.1 Hz to 180 Hz. A sinusoidal tensile displacement is applied on the sample
with a peak-to-peak amplitude of 5 µm allowing to ensure a linear viscoelastic
behavior.

3.3 Vitrimer

Viscoelastic properties are measured using a Bose Electroforce 3200 apparatus
in isothermal conditions at temperatures varying by 5◦C steps at heating rate of
3◦C/min, between 36◦C and 102◦C. The temperature was stabilized during 2 min-
utes before each measurement to ensure a homogeneous temperature inside the
specimen. The temperature was measured by using a thermocouple placed in a ref-
erence sample located in the heating chamber close to the tested specimen. The
frequency of the excitation varies from 0.01 Hz to 10 Hz. In order to obtain reliable
measurements, the specimens dimensions, 80×2×2 mm, have been determined to
have a ratio of 20 between the stiffness of the sample in the glassy state and the stiff-
ness of the load cell. On this DMA apparatus, the load is directly measured using a
load sensor and not determined from the actuating system. The compliance of the
test set-up was taken into account for the determination of the viscoelastic proper-
ties. A sinusoidal tensile load was applied on the sample with a mean amplitude of
4 N and a peak-to-peak amplitude of 6 N, in order to test the specimen in the linear
viscoelastic range.

4 Models for linear viscoelasticity

Linear viscoelasticity has been studied by many authors in the context of continuous
mechanics. Historically, Caputo [10] proposed in 1971 a linear modeling of the
dissipation taking into account the history of the solicitations applied to the material.
Later, Ferry [22] and Lakes [28] proposed a framework on the basics of modeling
viscoelastic behavior. This work has been enhanced by many contributions such
as that of Lesieutre [30] in which the constitutive equations of viscoelasticity are
formulated in the time domain based on a method called ”Anelastic Displacement
Fields” (ADF). A general objective of these works was to understand and model
the physical phenomena before adapting the formulations to numerical simulation
tools. Among others, Salençon [43] and Chevalier [12], propose some syntheses of
the mechanical phenomena linked to viscoelasticity.

A viscoelastic material has a response that varies over time even if the loading
it undergoes is constant over time. If the loading is carried out in stress and the
response is observed in strain, one speaks of creep test. The reciprocal is called re-
laxation test. In addition, if a succession of loadings (in stress or strain) is applied to
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the material then its final state corresponds to the sum of the modifications brought
by each loading. The history of the loads applied to the viscoelastic material over
time hence plays a major role in the behavior of the material, hence on the asso-
ciated models required to describe it. The following constitutive law, which relates
the stress tensor σi j to the strain tensor εkl , includes this dependency:

σi j(t) =C∞
i jklεkl(t)+

∫ t

0
C∗i jkl(t− τ)ε̇kl(τ)dτ +Ci jkl(t)εkl(0) (1)

where σi j(t) =C∞
i jklεkl(t) corresponds to the elastic part of the constitutive law, C∞

i jkl
being the long-terme elasticity tensor. The tensor C∗i jkl(t) is called relaxation func-
tion and can be determined by measuring the evolution of the stress as a function
of time when the material is subjected to a constant displacement. The rheologi-
cal models used in viscoelasticity are typically built according to the assumptions
made on the kernel of the relaxation function C∗i jkl . The Fourier transform of this
viscoelastic law is

σ̂i j(ω) =C∞
i jkl ε̂kl(ω)+ jωĈ∗i jkl(ω)ε̂kl(ω), (2)

where ·̂ corresponds to the Fourier transform and ω is the circular frequency. In
order to simplify the writing for the introduction of the rheological models, in the
following we restrict equations to the mono-dimensional case when the sample is
subjected to a stress in tension. The constitutive law can then be written as

σ̂(ω) = E∞ε̂(ω)+ jωÊ∗(ω)ε̂(ω) (3)

where E∞ represents the long-term elasticity modulus of the material for t→+∞ or
ω → 0. This is classically written as

σ̂(ω) = E∗(ω)ε̂(ω) (4)

where E∗(ω) is called Complex elastic modulus: in the frequency domain, linear
viscoelastic problems can be solved as linear elastic problems with a complex mod-
ulus that depends on frequency. The real part of E∗(ω) is usually called storage
modulus, its imaginary part being the loss modulus and the loss factor η(ω) being
equal to the ratio between the imaginary and the real part of the complex modulus:

η(ω) =
Im(E∗(ω))

Re(E∗(ω))
. (5)

4.1 Standard rheological models

Rheological models are classicaly used to define the frequency dependency of the
complex modulus E∗(ω). The simplest model corresponds to constant values, which
is called structural or hysteretic damping model:
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E∗ = E(1+ jη). (6)

This corresponds to a very simple representation of the average viscoelastic behavior
of the material. It is therefore generally used for lightly damped materials, such as
metallic materials, that present a dissipated energy per cycle independent of the
frequency when subjected to cyclic loading. The main drawback of this model is
that it is non-causal which limits its use to the frequency domain [23]. Nevertheless,
there is a way to make this model causal so that it can be used both in the frequency
and time domain. The work carried out on the subject by Makris [35] leads to the
formulation of a causal hysteretic model where the imaginary part is the same as
that of the ideal hysteretic model:

E∗(ω) = E(1+ jηsgn(ω)) (7)

and where the real part is defined in order to make the model causal. Note that
the ideal hysteretic model is equivalent to that expressed in Eq. (6) for positive
frequencies.

In order to define a frequency dependency, rheological models have been his-
torically built by combining simple mechanical elements like elastic springs and
dampers. Figure 1 presents four standard rheological models commonly used in the
literature.

Ee Ev = τEe

Ee

Ev = τEe

E∞

Ev = τEe

Ee

a) b) c)

Fig. 1 Viscoelastic standard rheological models: a) Kelvin-Voigt b) Maxwell c) Zener

The Kelvin-Voigt model (Figure 1 (a)) is a simple model composed of a spring
(with a stiffness Ee) and a damper (with a viscous damping constant Ev) in parallel.
Its complex modulus is written as

E∗(ω) = Ee + jωEv. (8)

It can be used as a first approximation to represent a viscoelastic behavior, event if
the applicability is generally restricted to a narrow frequency band. In addition, this
model is only suitable for low frequencies since the damping force tends to infinity
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when the frequency increases.

The Maxwell model (Figure 1 (b)) is composed of a spring and a damper in series
and the associated complex modulus can be expressed as

E∗(ω) = Ee
jωτ

1+ jωτ
(9)

where τ = Ev/Ee is the relaxation time. This model can be used to describe the vis-
coelastic behavior but it is only applicable for a reduced frequency range as for the
Kelvin-Voigt model and is not realistic at low frequency since it does not include a
pure elastic component.

The Zener model, also named Standard Linear Solid model (Figure 1 (c)) repre-
sents a first realistic approximation of the viscoelastic behavior. Its complex modu-
lus can be written as

E∗(ω) =
E∞ +E0 jωτ

1+ jωτ
(10)

where E0 corresponds to the instantaneous modulus of the material (i.e. when t→ 0
or ω → +∞) and E∞ corresponds to the long term modulus (i.e. when t → +∞ or
ω → 0).

The three parameters of the Zener model may however be unsufficient to describe
the complexity of the frequency-dependency of the viscoelastic properties for some
materials. In this case, higher degree model may be used. Figure 2 illustrates the
Generalized Maxwell Model (GMM) which is able to generate more complex evo-
lutions of the viscoelastic behavior of materials. By combining N Maxwell cells in
parallel, it is possible to accurately represent the experimental viscoelastic behav-
ior over a wide band of frequency in dynamics thanks to a distribution of rational
fractions shifted in frequency. The complex modulus associated with this model is
written as

E∗(ω) = E∞ +
N

∑
i=1

Ei
jωτi

1+ jωτi
= E∞

(
1+

N

∑
i=1

αi
jωτi

1+ jωτi

)
(11)

where Ei and τi represent the dynamic stiffness and the relaxation time of cell i. Up
to the end of this chapter, the stiffening (or the dynamic stiffness ratio) is refered as
αi = Ei/E∞. In addition, it may be noted that E0 = E∞ +∑

N
i=1 Ei.

At the price of an increase in the number of parameters that need to be identified,
increasing the number of cells provides the ability of the model to describe more
complex frequency dependencies (materials exhibiting several glass transitions for
example).

The GMM may also be interpreted as a modelling strategy based on internal
variables where the relaxation function C∗i jkl(t) is approximated by a Prony series
development [46]. Numerous commercial software packages propose to take into
account the viscoelastic behavior of a material by using Prony series: in the time
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E∞

E1τ1

E1

E2τ2

E2

Enτn

En

Fig. 2 Generalized Maxwell model

domain, one has

σ(t) =
∫ t

−∞

E(t− s)ε̇(s)ds, (12)

with

E(t) = E∞ +
N

∑
i=1

Eie−t/τi , (13)

which is sometimes written as

E(t) = E0

(
1−

N

∑
i=1

α
′
i (1− e−t/τi)

)
(14)

where α ′i = αi/(1+αi), with αi = Ei/E∞ and E0 = E∞ +∑
N
i=1 Ei.

These one-dimensional rheological models are not sufficient to serve for 3D im-
plementation, because of the couplings existing between the directions. However,
the materials studied in this chapter being isotropic,the properties of the material are
identical in the three directions of space. In this case, the tensor of the 3D viscoelas-
tic constitutive law can be fully described with only two material characteristics. If
we call this operator C∗i jkl , such that

σ̂i j(ω) =C∗i jkl(ω)ε̂kl(ω) (15)

then, C∗i jkl may be written as

Ĉ∗i jkl =
E∗(ω)

(1−2ν)(1+ν)



1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

 (16)

where ν is the Poisson’s ratio, which may also be frequency-dependent, even if its
variation is of second order compared to the evolution of the modulus. Nevertheless,
for some materials, it may be important to access to the frequency evolution of



10 Pauline Butaud et al.

ν . The viscoelastic behavior of the shape memory polymers characterized in this
chapter will be modeled by generalized Maxwell models.

4.2 Time-Temperature Superposition

As indicated above, the behavior of polymers is highly dependent on frequency, but
is also highly dependent on temperature, this is particularly true for shape memory
polymers. A lot of polymers behave, on specific temperature and frequency ranges,
according to the Time-Temperature Superposition Principle [22], in particular in the
glassy and rubbery states, together with the glass transition. This comes from the
observation that temperature plays a role which is the opposite of frequency: an in-
crease in frequency has the same effect as a decrease in temperature. This principle
has been shown to be valid for a wide wariety of polymers but is not justified for
polymer blends or composites. It can be interpreted as follows: considering a refer-
ence frequency evolution of the complex modulus E∗(ω,T0) at a given temperature
T0, the frequency evolution of the complex modulus at another temperature T is

E∗(ω,T ) = E∗(aT (T )ω,T0). (17)

E∗(ω,T0) is called the master curves. Hence, from a reduced set of measurements in
frequency and temperature, the behavior of the materials can be described on larger
ranges. Only the knowledge of the master curves and the shift factor aT (T ) are
required for this purpose. aT (T )ω is usually called reduced frequency, it is identified
by shifting in frequency the curves measured at temperature T to the ones measured
at reference temperature T0. Manual shifting is possible but automatic procedures
are preferred [14, 42]. Several parametric models are available in literature to fit
the temperature evolution of the shift factor. The Williams-Landel-Ferry (WLF) law
[51], based on empirical data, is one of the most popular techniques. It consists in
writing the shift factor as

log(aT (T )) =
−C0

1(T −T0)

C0
2 +(T −T0)

, (18)

where C0
1 and C0

2 are two constants.
Another popular way to interpolate the value of the shift factor is the Arrhenius law
[44]:

log(aT (T )) =
Ea

R
(

1
T
− 1

T0
), (19)

where Ea is the activation energy, R = 8.314× 103 kJ.mol1.K1 is the constant of
perfect gas and T should be expressed in degree Kelvin. For a given material, the
evolution of the shift factor may be fitted by one of these two equations (but may
also be such that none of these models fits the experimental data).
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In the following, the explicit dependency of the complex modulus to the temper-
ature will be omitted (ie E∗(ω,T ) will be identified to E∗(ω). The identification of
the model parameters will be directly done on the master curves.

4.3 Identification of the parameters of the generalized Maxwell
models

In this section, a method to identify the parameters of a generalized Maxwell model
(GMM) representing the evolution of the mechanical behavior of the shape memory
polymers is proposed. A hypothesis concerning the location of the 1/τi poles of the
GMM is formulated to facilitate its integration into computational routines in the
frequency and time domains.

The identification of the parameters of a viscoelastic model requires the mini-
mization of the difference between the measured and calculated storage and loss
moduli, which is classically done using a least squares method. The real and imagi-
nary part of the GMM can be separated by expressing respectively the storage mod-
ule E ′ and the loss module E”:

E∗(ω) = E ′(ω)+ jE”(ω) (20)

with E ′(ω) = E∞ +
N

∑
i=1

Ei
ω2τ2

i

1+ω2τ2
i

(21)

and E”(ω) =
N

∑
i=1

Ei
ωτi

1+ω2τ2
i

(22)

A total of 2N +1 parameters to be identified from the master curves.

The identification of the parameters of a GMM can be conducted by an algorithm
based on graphical methods such as those proposed by Dion [18]. These methods
are based on a Pole-Zero formulation of the rheological model and make it possible
to determine the number and the value of the Pole-Zero pairs which will be used for
the construction of this model. Renaud [41] proposes to use these methods as ini-
tialization step then to add an optimization step in order to locate more accurately
these couples and thus obtain a model which has a minimal number of cells.
In this chapter, another approach, used in [27], is used. Indeed, the poles of the
GMM, which are 1/τi, are fixed by the user a priori. Such a constraint tends to in-
crease the number of Maxwell cells needed to correctly represent the viscoelastic
behavior but makes the identification problem easier to implement. On this basis,
only the long-term modulus E∞ and the dynamic moduli Ei have to be found, corre-
sponding to only N +1 unknowns. There is no precise rule to define the number of
poles to use, but it seems that a distribution of three poles per decade with, at least,
an additional decade beyond and above the frequency range of interest leads to con-
fident results, and helps to stabilize the procedure at the same time. This approach is
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preferred here since it is very easy to implement and provides good results in a very
short time, at the price of a model order which is most of the time larger than the
”optimal” one. Readers who are interested in finding lower order models can refer
to [41].

The identification procedure consists in estimating the unknown parameters by
solving in a least square sense the linear system

1 τ2
1 ω2

1
1+τ2

1 ω2
1
· · · τ2

N ω2
1

1+τ2
N ω2

1
0 τ1ω1

1+τ2
1 ω2

1
· · · τN ω1

1+τ2
N ω2

1
...

... · · ·
...

1 τ2
1 ω2

M
1+τ2

1 ω2
M
· · · τ2

1 ω2
M

1+τ2
N ω2

M
0 τ1ωM

1+τ2
1 ω2

M
· · · τN ωM

1+τ2
N ω2

M




E∞

E1
...

EN

=


E ′exp(ω1)

E”exp(ω1)
...

E ′exp(ωM)
E”exp(ωM)

 (23)

where ω1, ... , ωM are the M measured frequency points. The pseudo-inverse of the
above matrix (whose size is [2M,(N + 1)]) is required to obtain the values of E∞

and Ei (i = 1, ... , N). It should be noted that in specific cases, some Ei parameters
may be computed as negative values. In this kind of situation, it is necessary either
to add new cells in the GMM, or to use a constrained minimization algorithm [9] to
solve the following problem:

min
E ′,E”

∑
M
i=1
(
|E ′−E ′exp(ωi)|2 + |E”−E”exp(ωi)|2

)
with
E∞ > 0
Ei > 0, i = 1, ..., N

(24)

All the results presented hereafter use this strategy for the GMM identification.

5 Results

5.1 tBA/PEGDMA

Mechanical characterizations of the tBA/PEGDMA are already available in litera-
ture. Among others, the shape memory effect has been reported in [37], the recovery
has been analyzed in [54], nano-indentation tests have been described in [52], while
a dynamic mechanical analysis at 1 Hz has been reported in [39]. Nevertheless all
these mechanical properties are not obtained for the same wt% components. The
material used in this analysis has been deeply investigated in [7], the analysis cov-
ering large frequency and temperature ranges, but also several scales of characteri-
zation and several loading modes.
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Figure 3 shows the whole set of measurements performed on the tBA/PEGDMA.
The storage modulus E ′ varies from 0.7 MPa at low frequency, to 2200 MPa at high
frequency, corresponding to a ratio of 3000 between the glassy modulus and the
rubbery modulus. This impressive fall of the storage modulus at the glass transition
state is accompanied by the rise of the loss factor η . Indeed the DMA results high-
light very interesting tBA/PEGDMA viscoelastic properties: the value of the loss
factor is higher than 1.5 in a wide range of frequencies and can reach a maximal
value of 2.4. These values are particularly high, and this material has been used as
a composite core which provides an extremely damped structure when the environ-
mental conditions are close to the glass temperature [6].
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Fig. 3 DMA results on the tBA/PEGDMA.

Figure 4 shows the master curves. Except at very high temperature, the TTS
works quite well. The shift factors are very well captured by the WLF law with
C1 = 10.87 and C2 = 32.57 K, for a reference temperature T0 = 40◦C.

The results of the identification of the GMM model is shown in figure 5. The plots
show the storage and loss moduli, and the loss factor. The crosses on the pictures
correspond to the measured points coming from the DMA, after TTS according
to WLF law. The GMM captures very well the behavior of the material on more
than 12 decades, including the glassy and rubbery states, together with the glass
transition. The numerical values of the cells components are provided in Appendix.
In order to cover the 12 decades, a total of 42 cells have been used in the GMM.
The total number of parameters is quite high compared to models like the 2S2P1D
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Fig. 4 Master curves of the storage modulus E ′ and the loss factor η according to the reduced
frequency f .aT at a reference temperature T0 = 40◦C.

[38] already used for this material in [7], which requires only 7 parameters. The two
models have almost the same precision in the frequency domain, however the GMM
can be used for time computations, which is not the case of the 2S2P1D.
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Fig. 5 Identification of the Generalized Maxwell Model for the tBA/PEGDMA at T0 = 40◦C (solid
lines: identified GMM; dots: measurement points).

5.2 SMP filament

Figure 6 shows the whole set of measurements performed on the SMP filament. The
glass transition has been measured, the maximum value of the loss factor is about
1.5. Storage modulus has been measured around 4-5 MPa in the rubbery state, and
around 1.5 GPa in the glassy state. The measurements at high temperature show a
slight increase in the loss factor.

The TTS is also well verified on this material on the frequency and temperature
ranges of interest. The master curves are shown in figure 10. Some discrepancies
can be observed in the lower temperature range. The shift factors are well fitted by
the WLF law with C0

1 = 9.66, C0
2 = 55.9 K and T0 = 58◦C.

As shown in figure 8, the GMM appears to be quite representative of the be-
havior of the SMP filament. The model fits well on the 13 decades of reduced fre-
quencies. Only the loss factor at the glass transition is a little bit under-estimated by
the model. The increase of loss factor at higher temperatures is also well captured
by the GMM. Users of the model should we aware that the loss factor at very low
frequency or very high temperature ( f .aT < 2.7×10−4) may be erroneous since no
measurements have been done in this range where another physical phenomenon
occurs. The numerical values of the model are provided in appendix.
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Fig. 6 DMA results on the SMP filament.
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Fig. 8 Identification of the Generalized Maxwell Model for the SMP filament at T0 = 58◦C (solid
lines: identified GMM; dots: measurement points).

5.3 Vitrimer

Figure 9 shows the whole set of measurements performed on the hard network of
vitrimer. The glass transition has been measured and the maximum value of the loss
factor is about 0.72.

The TTS works quite well on this material on the frequency and temperature
ranges of interest. The master curves are shown in figure 10. Some discrepancies
can however be observed in the lower temperature range. The shift factors are well
fitted by Arrhenius law with an activation energy Ea = 1.70× 105 J.mol−1.K−1

and T0 = 46◦C. The GMM appears to be quite representative of the behavior of the
vitrimer. As in the master curves, some difficulties appear in the zone corresponding
to the lowest temperatures analyzed during the DMA tests. The GMM has some
difficulties to fit the experimental data because in the glassy state, where the storage
modulus stay constant, correspond to a loss factor which is not converging to zero
as expected by the model: it seems that the vitrimer has a constant loss factor at
low temperature. The numerical values of the model are provided in appendix, and
users should be aware that the data provided should not be used for values outside
the reduced frequency band 10−11 < f .aT < 10 Hz.
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Fig. 9 DMA results on the hard network of vitrimer.
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6 Conclusion

The viscoelastic properties of Shape Memory Polymers have been described and
discussed in this chapter. An easy procedure for model identification has been pre-
sented and applied on the three materials which have been benchmarked. Starting
from Dynamical Mechanical Thermal Analysis performed on reduced sets of fre-
quencies and temperatures, the storage modulus and loss factor are measured. Then,
the Time-Temperature Superposition has been used to identify the master curves.
For the three materials, this principle is found to be representative of the measured
behaviour. The shift factors are then fitted using either WLF or Arrhenius laws.
Finally, a Generalized Maxwell Model has been used to describe the master curve,
using a very simple identification procedure, which provides a model with 3 cells by
decade. The complexity of the model is higher than the optimal one, but still repre-
sentative of the behavior of the material on wide frequency and temperature ranges.
For the three materials, the model is found to be effective on more than 11 decades.
All numerical values are provided to the readers, hence anyone can use these models
which are in accordance with the measurements performed on the three materials
of interest. Among others, these models may be used to describe the shape memory
effect in the time domain [21] or to describe the mechanical properties of com-
posite structures embedding Shape Memory Polymers for vibration control in the
frequency domain [6]. Users should be aware that the identified models should only
be used in the reduced frequency range which has been considered for the fitting:
out of this range, they could no longer be representative of the physical behavior.
Typical illustrations are the behavior of the Vitrimer, which keeps a high loss factor
at low temperature, or the SMP filament, having an increase of the loss factor at
high temperatures.



DMTA of Shape Memory Polymers 21

Appendix - Numerical values of the GMM for the master curve
of tBA/PEGDMA

Cell Id (i) ∞ 1 2 3 4 5
τi [s−1] 0 6.3559×10−8 1.0593×10−7 3.1780×10−7 7.2089×10−7 1.6353×10−6

Ei [MPa] 0.97769 47.494 12.824 36.857 25.597 38.480
6 7 8 9 10 11 12

3.7094×10−6 8.4144×10−6 1.9087×10−5 4.3297×10−5 9.8215×10−5 0.00022279 0.00050538
35.509 44.348 45.331 51.465 54.857 60.001 63.611

13 14 15 16 17 18 19
0.0011464 0.0026005 0.0058989 0.013381 0.030354 0.068854 0.15619

68.674 72.789 77.466 82.927 90.182 100.64 117.60
20 21 22 23 24 25 26

0.35430 0.80368 1.8231 4.1354 9.3808 21.279 48.270
147.41 195.49 236.00 181.53 88.156 38.936 17.638

27 28 29 30 31 32 33
109.50 248.38 563.42 1278.1 3149.0 7758.6 19116
8.4675 4.2157 2.0917 1.1444 0.59268 0.28032 0.13926

34 35 36 37 38 39 40
47100 1.1605×105 2.8593×105 7.0448×105 1.7357×106 4.2766×106 1.2830×107

0.067803 0.032689 0.017485 0.0050210 0.0028528 0.0049602 0.013080
41

2.1383×107

0.021141

Appendix - Numerical values of the GMM for the master curve
of SMP filament

Cell Id (i) ∞ 1 2 3 4 5
τi [s−1] 0 1.3656×10−10 6.8280×10−10 1.5076×10−9 3.3288×10−9 7.3499×10−9

Ei [MPa] 0.00041175 122.25 27.421 46.242 31.513 57.238
6 7 8 9 10 11 12

1.6228×10−8 3.5832×10−8 7.9117×10−8 1.7469×10−7 3.8571×10−7 8.5164×10−7 1.8804×10−6

46.875 62.971 58.318 66.349 68.579 73.597 81.764
13 14 15 16 17 18 19

4.1519×10−6 9.1673×10−6 2.0241×10−5 4.4693×10−5 9.8681×10−5 0.00021789 0.00048109
91.310 100.64 121.28 127.62 153.02 151.15 152.60

20 21 22 23 24 25 26
0.0010622 0.0023454 0.0051786 0.011434 0.025247 0.055744 0.12308

123.22 90.911 58.486 35.484 20.420 11.493 6.0686
27 28 29 30 31 32 33

0.27176 0.60005 1.3249 2.9254 6.4592 14.262 31.490
3.2138 1.3316 0.87233 0.46338 0.63790 0.32339 0.65854

34 35 36 37 38 39 40
69.529 153.52 338.97 748.43 1652.5 3648.8 18244
0.24972 0.86167 0.87394 0.00047364 2.6729 0.66321 0.00059484
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Appendix - Numerical values of the GMM for the master curve
of Vitrimer

Cell Id (i) ∞ 1 2 3 4 5
τi [s−1] 0 0.012689 0.063445 0.14123 0.31438 0.69983

Ei [MPa] 10.806 1517.2 9.9502 790.00 0.049548 500.70
6 7 8 9 10 11 12

1.5579 3.4678 7.7195 17.184 38.252 85.151 189.55
203.33 345.30 251.11 289.77 249.72 254.53 229.18

13 14 15 16 17 18 19
421.94 939.26 2090.8 4654.3 10361. 23063. 51339.
217.72 193.13 171.00 142.87 115.73 88.780 65.993

20 21 22 23 24 25 26
1.1428×105 2.5440×105 5.6630×105 1.2606×106 2.8062×106 6.2466×106 1.3905×107

47.155 33.193 22.616 15.297 9.7769 6.3134 3.8148
27 28 29 30 31 32 33

3.0954×107 6.8904×107 1.5338×108 3.4144×108 7.6005×108 1.6919×109 3.7662×109

2.6396 1.6391 1.3584 0.83093 0.87719 0.46957 0.69845
34 35 36 37 38

8.3838×109 1.8663×1010 4.1544×1010 9.2478×1010 4.6239×1011

0.41526 0.00059210 0.0012208 0.0050371 14.355

Acknowledgements This work has been performed in collaboration with EUR EIPHI Graduate
School (project ANR 17-EURE-0002). The authors would like to thank people who contributed to
the experimental parts of this work: Renan Ferreira, Xavier Gabrion, Thomas Jeannin.

References

1. Araujo, A., Soares, C.M., Soares, C.M., Herskovits, J.: Optimal design and parameter esti-
mation of frequency dependent viscoelastic laminated sandwich composite plates. Composite
Structures 92(9), 2321 – 2327 (2010)

2. Barwood, M.J., Breen, C., Clegg, F., Hammond, C.L.: The effect of organoclay addition on
the properties of an acrylate based, thermally activated shape memory polymer. Applied Clay
Science 102, 41–50 (2014)

3. Berthelot, J.M., Assarar, M., Sefrani, Y., Mahi, A.E.: Damping analysis of composite materials
and structures. Composite Structures 85(3), 189 – 204 (2008)

4. Biju, R., Nair, C.R.: Synthesis and characterization of shape memory epoxy-anhydride system.
Journal of Polymer Research 20(2), 1–11 (2013)

5. Billon, K., Ouisse M. Sadoulet-Reboul, E., Collet, M., Butaud, P., Chevallier, G., Khelif, A.:
Design and experimental validation of a temperature-driven adaptive phononic crystal slab.
Smart Materials and Structures (2019). DOI 10.1088/1361-665X/aaf670

6. Butaud, P., Foltête, E., Ouisse, M.: Sandwich structures with tunable damping properties: on
the use of shape memory polymer as viscoelastic core. Composite Structures 153, 401–408
(2016). DOI 10.1016/j.compstruct.2016.06.040

7. Butaud, P., Ouisse, M., Placet, V., Renaud, F., Travaillot, T., Maynadier, A., Cheval-
lier, G., Amiot, F., Delobelle, P., Foltête, E., Rogueda-Berriet, C.: Identification of the
viscoelastic properties of the tBA/PEGDMA polymer from multi-loading modes con-
ducted over a wide frequency–temperature scale range. Polymer Testing (2018). DOI
10.1016/j.polymertesting.2018.05.030

8. Butaud, P., Placet, V., Ouisse, M., Foltete, E., Gabrion, X.: Investigations on the frequency
and temperature effects on mechanical properties of a shape memory polymer (veriflex). Me-
chanics of Materials 87, 50–60 (2015). DOI 10.1016/j.mechmat.2015.04.002



DMTA of Shape Memory Polymers 23

9. Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques
for nonlinear programming. Meathematical Programming 89(1), 149–185 (2000)

10. Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. La Rivista del
Nuovo Cimento (1971-1977) 1(2), 161–198 (1971)

11. Chen, Y.C., Lagoudas, D.C.: A constitutive theory for shape memory polymers. part i: large
deformations. Journal of the Mechanics and Physics of Solids 56(5), 1752–1765 (2008)

12. Chevalier, Y., Tuong, J.V.: Mechanics of viscoelastic materials and wave dispersion. Iste
(2010)

13. Chun, B.C., Cha, S.H., Chung, Y.C., Cho, J.W.: Enhanced dynamic mechanical and shape-
memory properties of a poly (ethylene terephthalate)–poly (ethylene glycol) copolymer
crosslinked by maleic anhydride. Journal of applied polymer science 83(1), 27–37 (2002)

14. Dealy, J., Plazek, D.: Time-temperature superposition-a users guide. Rheol. Bull 78(2), 16–31
(2009)

15. Diani, J., Gilormini, P.: On necessary precautions when measuring solid polymer linear vis-
coelasticity with dynamic analysis in torsion. Polymer Testing 63, 275–280 (2017)

16. Diani, J., Gilormini, P., Agbobada, G.: Experimental study and numerical simulation of the
vertical bounce of a polymer ball over a wide temperature range. Journal of Materials Science
49(5), 2154–2163 (2014)
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