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Abstract— In this paper, the goal is to optimize the electrical
power of a rectangular piezoelectric plate which is under
application of external in-plan force. The most challenging
problem for in-plane force is the charge cancellation which
is due to combination of tension and compression in different
parts of the plate resulted by the external force. To remedy,
the topology optimization method is utilized to find the best
possible design of the piezoelectric plate to overcome the
charge cancellation and produce maximum voltage. To do so,
first a detailed two dimensional finite element modelling of
the piezoelectric material suitable for topology optimization is
presented. Then, the topology optimization method known as
solid isotropic material with penalization (SIMP) is extended
for the 2D FEM piezoelectric model which is faster than the 3D
FEM modelling in case of in-plan force and stress. The perfor-
mance of the topology optimization is investigated for different
boundary conditions in addition to classical cantilever plate
with clamped-free boundary condition. Finally, the optimized
designs for different boundary conditions are implemented in
COMSOL multiphysics platform. The results demonstrate that
the optimized design by topology optimization method can
produce more voltage in comparison to simple full plate while
having less volume of piezoelectric material.

I. INTRODUCTION

In recent years, a huge industrial and research budget
is devoted to smart materials specially the piezoelectric
materials. Thanks to their electromechanical coupling effect,
they have applications in three main areas: actuation using
inverse piezoelectric effect, sensing and energy harvesting
using the direct piezoelectric effect. Due to their satisfying
power density at small scales [1] they have applications in
micro-electromechanical systems (MEMS) [2] and wireless
sensor networks (WSN) [3] for the purpose of sensing or
energy harvesting. In these applications, for non piezoelectric
sensors, energy refueling is a critical challenge since some-
times there is no access to sensors for changing the batter-
ies. Even solar panels are not a perfect solution in places
where there is no sunlight. Besides solar panels needs a
considerable surface to collect the energy from light sources
which is not possible in small scale applications. That’s why
the researchers considered the piezoelectric materials as an
alternative solution which can convert the mechanical energy
of the environment to the electrical energy. On the other
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hand, although piezoelectric materials provide acceptable
power densities in small scales, researchers tried to optimize
their power densities in many ways including parametric op-
timization of the piezoelectric structures [4], [5], increasing
the bandwidth [6], designing their structures on the basis
of interval techniques [7] such that prescribed performances
are robustly satisfied [8], designing nonlinear and Bi-stable
systems [9], optimization of the electrical circuit [10], etc.

One of the recent approaches for optimization of the piezo-
electric energy harvesters is using the topology optimization
(TO) method [11]. The basic idea behind this method, is
to distribute the material in a design domain to minimize a
cost function subjected to one or several constraints while
using finite element model of the system. The works in the
area of TO primarily focused on compliance problems in
which the goal was minimizing the structure’s deformation
in a predefined boundary and load conditions. Among many
works in this area, Sigmund [12] proposed a 99 line code
which implements the TO for the compliance problem and it
shows a promising performance to reach the optimal designs.
This code later used as main engine for developing other
codes in the area of compliance problems [13], [14]. The
idea behind the TO is also interesting for the researchers to
optimize the power density of the piezoelectric structures. To
do so, they defined different cost functions and constraints
to optimize the power density of the piezoelectric energy
harvesters under static force [15], dynamic or harmonic
force [16] and random force [17]. However, in all of the
aforementioned researches, the main configuration of the
piezoelectric structure is cantilever plate in which the bound-
ary condition is a classical clamped-free boundary condition.
This configuration is interesting for the researchers since it
is easy for real implementation. Therefore, to the knowledge
of the authors, there is no work in the area of using TO for
piezoelectric energy harvesters considering other boundary
conditions as alternatives for classical clamped-free beam.

Generally, in case of in-plane force for the piezoelectric
material, stack configuration has been used to take advantage
of bigger d33 piezoelectric electromechanical coefficient in
comparison to d31 [3] which results bigger electrical output
due to mechanical input. On the other hand, piezoelectric
stack configuration has bigger stiffness in direction of the
polarization which prevents big deformation and decreases
the efficiency of energy harvesting. In addition, stack config-
uration can just absorb energy from the force in direction of
the polarization. However, a plate with polarization direction
perpendicular to the plan of plate can absorb energy from
forces in plane of plate in 2 different directions. On the



other hand, the problem of in plan forces for plates is that it
induces tension on some part of the plate and compression on
other parts of the plate. This results in opposite sign of local
potentials on the surface of same electrode which known
as charge cancellation and it will reduce the final harvested
electrical energy.

In this paper, we suggest using the piezoelectric plate
energy harvester to harvest the energy from in-plane external
force and taking advantage of lower stiffness of plate in com-
parison to stack configuration. Different boundary conditions
are imposed on the plate to investigate the energy harvesting
performance for each of them. To tackle the charge cancella-
tion problem and maximizing the harvested energy topology
optimization is utilized to modify the structure of the plate
based on the direction of the applied force and boundary
conditions.

The structure of the paper is as follows: in section two,
a detailed two dimensional finite element modelling for
piezoelectric plate is presented. The FEM is presented in
a way which makes it easy for implementation in TO. In
section three, the cost function proposed by Zheng [15] is
used to maximize the electrical energy for the given input
mechanical energy so the final optimized results can be used
for energy harvesting purpose or sensor applications. The
sensitivity of cost function regarding each element’s density
is calculated by a method known as Solid Isotropic Material
with Penalization (SIMP) which considers intermediary den-
sities for the elements. Section four is devoted to simulation
results in which a rectangular design domain is considered
to harvest the electrical energy from a given amplitude of
input force. The optimized results by TO are transferred to
COMSOL multiphysics platform and the power density and
terminal charge of the electrode for different configurations
are compared to each other.

II. MODELLING

A. 2D Finite Element Modelling of Piezoelectric Material

The linear coupled mechanical and electrical behavior of
piezoelectric materials by neglecting the thermal coupling
can be written in the following compact matrix form [15],
[16],

T = cES − eE
D = eTS + εSE (1)

In which [18],

c =

 c11 c13 0
c13 c33 0
0 0 c55

 (2)

e =

[
0 0 e15
e31 e33 0

]
(3)

ε =

[
ε11 0
0 ε33

]
(4)

In (1)-(4), T and S are the vectors of mechanical stress
and strain while cE is the stiffness matrix. D and E are
the vectors of electrical displacement and electrical field. e

is the coupling matrix while T shows the transpose of the
matrix and εS is the matrix of permittivity. To discrete the
design domain, the 4 node rectangular element which is the
mapped form of bilinear quadrilateral element is employed
as shown in Fig. 1. Therefor, for this 4 node element, the
displacements in natural coordinates ξ and η can be written
with the help of the shape functions as follows [19],

Fig. 1. Plate meshed with bilinear quadrilateral element

ξ = ξ1N1 + ξ2N2 + ξ3N3 + ξ4N4

η = η1N1 + η2N2 + η3N3 + η4N4 (5)

In which the shape functions are,

N1 =
1

4
(1− ξ)(1− η), N2 =

1

4
(1 + ξ)(1− η)

N3 =
1

4
(1 + ξ)(1 + η), N4 =

1

4
(1− ξ)(1 + η) (6)

Since the selected element is rectangular itself, no extra
mapping is required to transfer the global coordinates x and
y to the natural coordinates ξ and η . Now, by considering
additional potential degree of freedom for each node, strain
and electric field can be written based on the shape functions
in the following form,

S = Buu

E = Bφφ (7)

u and φ are the mechanical displacement and electric poten-
tial vector. Bu and Bφ are the strain displacement matrices
where,

Bu =


∂N1

∂ξ 0 ∂N2

∂ξ 0 ∂N3

∂ξ 0 ∂N4

∂ξ 0

0 ∂N1

∂η 0 ∂N2

∂η 0 ∂N3

∂η 0 ∂N4

∂η
∂N1

∂η
∂N1

∂ξ
∂N2

∂η
∂N2

∂ξ
∂N3

∂η
∂N3

∂ξ
∂N4

∂η
∂N4

∂ξ


(8)

Bφ =

[
∂N1

∂ξ
∂N2

∂ξ
∂N3

∂ξ
∂N4

∂ξ
∂N1

∂η
∂N2

∂η
∂N3

∂η
∂N4

∂η

]
(9)

Now, by substituting (5)-(9) to (1), after performing a
mathematical procedure which is explained in [15], the
element matrix equation for deriving the mechanical dis-
placement and electric potential due to external mechanical
force (f ) and electric charge (q) is [15],[

kuu kuφ
kφu −kφφ

] [
u
φ

]
=

[
f
q

]
(10)

In which,

kuu =

∫
v

BTu c
EBudv, kuφ =

∫
v

BTu eBφdv

kφu =

∫
v

BTφ eBudv, kφφ =

∫
v

BTφ εBφdv (11)



In 11, kuu is the elastic stiffness matrix, kuφ and kφu are
the piezoelectric stiffness matrices and kφφ is the dielectric
stiffness matrix. Now, with the following equations, element
matrices are assembled to form the global stiffness matrices,

Kuu =

NE∑
i=1

kuu,Kuφ =

NE∑
i=1

kuφ

Kφu =

NE∑
i=1

kφu,Kφφ =

NE∑
i=1

kφφ (12)

Therefore, the global matrix equation is,[
Kuu Kuφ

Kφu −Kφφ

] [
U
Φ

]
=

[
F
Q

]
(13)

B. Boundary Conditions

The global matrix equation in (13), can not be solved
in this format. Since the stiffness matrices are all singular.
To solve this equation, proper mechanical and electrical
boundary conditions should be applied on the system. for
the electrical boundary condition, the potentials on all edges
are considered to be zero which is the case when we have the
polling direction on the perpendicular axis to the plate and
the electrodes on top and bottom surface of the piezoelectric
plate. In this form, the charges on the side surfaces of plate
will be zero which in 2D results in zero charges on all edges.

For the mechanical deformations, classical boundary con-
ditions like clamped, pin and free boundary conditions
are considered. By applying the mechanical and electrical
boundary conditions on the stiffness matrices, they will be
non-singular and then the global matrix equation in (13) can
be solved.

III. TOPOLOGY OPTIMIZATION

A. Cost Function

In energy harvesting or sensing applications there is no
external electric field applying on the system then Q = 0.
In this case, the goal is to maximize the electrical output of
the system regarding the input mechanical force applying on
the system. To do so, the mechanical and electrical energy
stored in the piezoelectric material are respectively defined
in the following form,

ΠS = (
1

2
)UTKuuU (14)

ΠE = (
1

2
)ΦTKφφΦ (15)

Now, a cost function is defined as,

J =
WF

ΠE
(16)

By defining the cost function as (16), we pursue to maximize
the electrical energy regarding input mechanical force. The
work due to the input force can be calculated with the help
of (13) as,

WF =
1

2
UTF =

1

2
(UTKuuU + UTKuφΦ) =

1

2
(UTKuuU + ΦTKφφΦ) = ΠS + ΠE (17)

Therefore, the new format of the cost function is,

J = 1 +
ΠS

ΠE
(18)

To minimize the cost function mentioned in (18), there is a
constraint on the volume for the final designed space which
can be expressed as,

V (x) =

NE∑
i=1

xivi ≤ V (19)

where xi is the density of the element i and NE is the
maximum number of elements.

B. Solid Isotropic Material with Penalization (SIMP)

In order to deal with the optimization method mentioned in
(18) and (19), there are several topology optimization method
like binary compliance problem, Homogenization method
and SIMP. These later one is the most famous one which
is proposed in detail in several references [11], [12], [18]
for compliance problems. The first step in implementation of
SIMP method is to do the sensitivity analysis in which the
sensitivity of cost function regarding each element is derived
in the following format [15],

∂J

∂xi
=

1

ΠE
i

[(
1

2
uTi + λT1,i)

∂kuu,i
∂xi

ui + λT1
∂kuφ,i
∂xi

φi

+µT1,i
∂kφu,i
∂xi

ui − µT1,i
∂kφφ,i
∂xi

φi]−
ΠS
i

(ΠE
i )2

[
1

2
φTi

∂kφu,i
∂xi

φi−

µT2,i
∂kφφ,i
∂xi

φi + λT2,i
∂kuu,i
∂xi

ui + λT2
∂kuφ,i
∂xi

φi + µT2
∂kφu,i
∂xi

ui]

(20)

It should be noted that the sensitivity analysis is performed
on the element matrices in which λ and µ are the element
size adjoint vectors which can be calculated by the following
global matrix equation,[

Kuu Kuφ

Kφu −Kφφ

] [
Λ1

Υ1

]
=

[
−KuuU

0

]
[
Kuu Kuφ

Kφu −Kφφ

] [
Λ2

Υ2

]
=

[
0

−KφφΦ

]
(21)

In (21), Λ and Υ are the global adjoint vectors which should
be resolved to give the element adjoint vectors λ and µ
respectively. But the other problem in sensitivity equation in
(20) is the derivative of stiffness matrices respect to element
densities (∂kxx,i

∂xi
) which leads us to the core conception of

the SIMP methodology that is based on the material density
distribution. In this methodology, density of each element
can have a continuous values between 0 and 1. Therefore,
in the color space of the design domain, if one considers
white for the zero density and black for the density equal
to one, then in the SIMP method we can have also grey
elements which have densities between 0 and 1. However,
the problem with grey elements is the production of the final
design for the real applications. Therefore, a penalization
factor p is defined to push the optimized design toward the
0 and 1 structure. Based on the aforementioned explanation,



SIMP method started by defining a relation between element
density and element’s young’s modulus of elasticity [11],

Ēi = Ēi(xi) = xpi Ē0, xi ∈ [0, 1] (22)

In (22), Ē0 is the young’s modulus of elasticity of the
isotropic material. For non-isotropic piezoelectric materials
the same concept as (22) applied for all of the stiffness
matrices,

kuu,i(x) = xpi k
e
uu, kuφ,i(x) = xpi k

e
uφ, kφφ,i(x) = xpi k

e
φφ

(23)

Still some numerical instabilities like mesh dependencies,
local minima, etc. can be encountered. To deal with such
kinds of problems density filter should be used which is
explained in 99 line MATLAB code by Sigmund [12] and
re-mentioning those explanations is avoided here. After ap-
plying the density filter, following equations can be written
for the derivatives of the stiffness matrices[16],

∂kuu,i(x̃)

∂x̃i
= px̃i

p−1kuu

∂kuφ,i(x̃)

∂x̃i
= px̃i

p−1kuφ

∂kφφ,i(x̃)

∂x̃i
= px̃i

p−1kφφ (24)

In which, x̃ is the density of the element after applying
the density filter. It should be noted that p can be different
for each stiffness matrix. However, here it is considered to
be equal for all of them. After sensitivity analyis for each
element, to optimize the densities for all elements based on
the (18) respect to the volume constraint in (19), Optimality

Fig. 2. Topology Optimization Algorithm

Criteria (OC) method is used. This method is an iterative
method to update the design variables for minimizing the
cost function based on the constraint. The MATLAB im-
plementation algorithm for this method also mentioned in
[12] and the same line of codes of that paper is used in the
algorithm of this paper.

The general diagram of topology optimization method
which is described above can be seen in Fig. 2. The general
optimality criteria method stops when there are no significant
changes in design variables (here are densities). In this case
it is necessary to define a minimum value of changes in
densities. For compliance problem mentioned in [12], the
minimum value is considered to be 0.01. In compliance
problems, the cost function just consists of mechanical work
due to external force. However, the cost function in this paper
is a fraction of mechanical work to the electrical output.
Then, changing the densities for minimization of mechanical
deformation may lead to minimization of the electrical output
and vice versa. Therefore, the minimum change of densities
should be considered bigger than the compliance problems
or a maximum number of iteration should be defined for
the code. In the former stopping method it is possible to be
trapped in the local optimums.

When the optimization stops, the next step is post pro-
cessing. Actually, it is true that penalization will push the
densities to zero and one. However, still in the final design,
there are some grey elements. To tackle this problem, the
post processing method mentioned in [20] which consist two
steps of Gaussian filter and thresholding is used here.

IV. RESULTS

In this section, the results of TO algorithm on the design
of effective (EH or sensor) for different configuration is
presented. A rectangular design domain with 10mm×5mm
with 0.2mm thickness is chosen and it is meshed by 200×
100 rectangular element. The piezoelectric material for this
plate is (PZT-4) with the polarization direction perpendicular
to the plate (in z direction) and full characteristics are men-
tioned in table I. A point force with amplitude of 1 newton or
two point force with amplitude of 0.5 newton are considered
as external mechanical force. To analyze the performance
of the optimized design, COMSOL multiphysics is used to
evaluate the voltage and charge due to applied force on the
optimized design and the result is also compared with the
full plate performance. the applied force is considered to be
static and harmonic with frequency of 1 KHZ.

TABLE I
PIEZOELECTRIC PLATE PROPERTIES

Parameter Value Parameter Value

c11 1.38999e+011[Pa] e15 12.7179[C/m2]
c13 7.42836e+010[Pa] ε11 762.5 ×ε0
c33 1.15412e+011[Pa] ε33 663.2 ×ε0
c55 2.5641e+010[Pa] Length 10[mm]
e31 -5.20279[C/m2] Width 5[mm]
e33 15.0804[C/m2] Thickness 2[mm]



Fig. 3. Configuration: 1 force PP, a) Design domain with boundary condi-
tions and applied force, b) Full plate deformation, c) Topology optimization
result, d) Deformation of the optimized design

In figures 3 to 7 different optimized design for differ-
ent boundary conditions and different application force are
shown. In the first part of these figures the design domain
with defined boundary conditions and point of the applied
force is illustrated. In the second part of these figures the
deformation of the full plate due to applied force are shown.
In part c, the proposed design by TO is illustrated then the
deformation of this optimized design due to applied force is
shown in the last part of the figures.

It is important to note that in all of the figures, the
distribution of the deformation in the optimized design is
much more than the full plate deformation. The reason is
that the full plate is much more stiffer than the optimized
design while in piezoelectric material more strain is required
to produce more electrical charge. Therefore, this better
distribution of displacement results in more applied voltage
in piezoelectric material which are reported in table II.

In Fig. 3, force is applied on the plate which is rested
on two pins. The pin element gives the rotation freedom to
the elements in the vicinity of the pins. The TO proposed a
design in which applied force results in compressive stress in
the most part of the design while in full plate the stress can be
tension near to the force application point and compressive
stress in upper part of the plate. This is highly important
since a combination of compression and tension in electrodes

Fig. 4. Configuration: 1 force CC, a) Design domain with boundary
conditions and applied force, b) Full plate deformation, c) Topology
optimization result, d) Deformation of the optimized design

Fig. 5. Configuration: 1 force Longitudinal CF, a) Design domain
with boundary conditions and applied force, b) Full plate deformation, c)
Topology optimization result, d) Deformation of the optimized design

may lead to cancellation of charges and reducing the final
voltage of the piezoelectric material. By referring to table II,
it is obvious that the power density of the optimized design
is more than 2 times bigger than the power density of the
full plate.

In Fig. 4, force is applied on the plate which is clamped on
both sides. The clamped boundary condition is more strong
than pin boundary condition since it prevents the elements
from rotation near to the clamped side. By comparing the
total displacement in optimized design and the full plate, it
is obvious that the total deformation in optimized design is
severely more than the full plate since the clamped boundary
condition is a strong boundary condition which prevents the
deformations in plate. On the other hand, almost all part of
the optimized design are under tension while it is expected
to have a combination of tension and compression in the full
plate.

By inspecting the table II, it is interesting to see that the
power density of the optimized design for 1 force clamped-
clamped is significantly more than the power density of
full plate (almost 6 times bigger). In addition, this power
density is even more than the power density of the previous
optimized design of the 1 force Pin-Pin condition. It is
inferred that the TO algorithm take advantage of stronger
clamped boundary condition to provide more voltage in the

Fig. 6. Configuration: 2 force Longitudinal PP, a) Design domain
with boundary conditions and applied force, b) Full plate deformation, c)
Topology optimization result, d) Deformation of the optimized design



TABLE II
ENERGY HARVESTING PERFORMANCE FOR DIFFERENT CONFIGURATION

90 Configuration Volume Voltage for 1 KHZ force Charge for Static Force Power Density Full Plate Power Density Full Plate Voltage

1 Force PP 5.0261[mm3] 1.52E-02 [v] 2.41E+00 [nC] 22.83 [nW/mm3] 8.51 [nW/mm3] 1.30E-02 [v]
1 Force CC 5.0702[mm3] 2.31E-02 [v] 4.21E+00 [nC] 52.43 [nW/mm3] 8.52 [nW/mm3] 1.31E-02 [v]

2 Force Latitudinal PP 5.0117[mm3] 2.42E-02 [v] 3.85E+00 [nC] 58.6 [nW/mm3] 7.48 [nW/mm3] 1.37E-02 [v]
1 Force Longitudinal CF 4.9968 [mm3] 4.02E-02 [v] 6.40E+00 [nC] 164.32 [nW/mm3] 28.037 [nW/mm3] 2.59E-02 [v]
2 Force Longitudinal PP 5.0173[mm3] 2.03E-02 [v] 3.22E+00 [nC] 41 [nW/mm3] 12.8 [nW/mm3] 1.60E-02 [v]

Fig. 7. Configuration: 2 force latitudinal PP a) Design domain with bound-
ary conditions and applied force, b) Full plate deformation, c) Topology
optimization result, d) Deformation of the optimized design

piezoelectric material.
In Fig. 5, the classical configuration of clamped-free plate

is shown. The total deformation shows a greater deformation
for the optimized design. In this configuration all area of the
design for full plate and optimized one are under tension.
So, this configuration has now charge cancellation problem.
By referring to table II it becomes clear that the optimized
design has a huge power density.

But Now consider the configuration in Fig. 6 which is
a rectangular plate under tension of two force with the
amplitude of F/2. So, the over all amplitude of the force
remains the same in comparison to previous designs. Again,
the optimized design is under tension in most of the design
area and it has more deformation in comparison to full plate.
By checking the table II, it is clear that this configuration has
a power density almost equal to 1 force clamped-clamped
configuration. The last configuration can be seen in Fig. 7
in which the rectangular plate is under tension of two force
in the longitudinal direction of the plate.

V. CONCLUSIONS
In this paper, topology optimization method is used to

maximize the harvested electrical power for a rectangular
PZT plate under different configurations of force and bound-
ary conditions with finding the best design by considering
the static force applied on the design domain. Comparison
between the power density of the optimized design and the
simple full plate design reveals that topology optimization
method was successful to overcome the problem of charge
cancellation which is common in plan applied force. Future
work would investigate the optimization of the plate to
harvest the energy from forces that come from different
directions at the same time.
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