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Abstract

We develop a fully spatio-temporal numerical model, based on stochastic simulations, simulating

the generation of spatio-temporal multi-mode spontaneous parametric down conversion, the prop-

agation of the signal and idler beams through a Hong-Ou-Mandel interferometer and the detection

of the outgoing beams with two separate detectors arrays. Spatial and temporal properties of

the two-photon interference are investigated by measuring the spatial distribution of the momenta

correlations between the time integrated outgoing far-field images and a full spatio-temporal HOM

dip is exhibited. Numerical results also demonstrate that the spatio-temporal coherence proper-

ties of bi-photon wave packets can be fully characterized with detectors arrays with no temporal

resolution.
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I. INTRODUCTION

Spatial entanglement of photon pairs in images offers new opportunities to develop pro-

tocols for communication and parallel treatment of quantum information of potentially very

high dimensionality. Although entangled photon pairs of high Schmidt number are easily

produced by optical Spontaneous Parametric Down-Conversion (SPDC), the manipulation

and the detection of images with quantum features is tricky. Fortunately, detector ar-

rays with high sensitivity and high quantum efficiency, such as electron multiplying charge

coupled devices (EMCCDs) or intensified charge-coupled devices (iCCDs), have been avail-

able since the early 2000s and are now widely used for quantum imaging experiments [1]

like demonstration of Einstein-Podolsky-Rosen (EPR) paradox in twin images [2, 3], ghost

imaging [4, 5], quantum adaptive optics [6], quantum holography [7], sub-shot-noise imaging

[8, 9] and quantum imaging with undetected photons [10].

Among the whole experiments using entangled pairs of photons, the famous experiment

of two-photon interference known now as Hong-Ou-Mandel (HOM) interference [11, 12],

is probably one of the most fascinating. This groundbreaking experiment paved the way

for a multitude of experiments showing the richness of the quantum properties of SPDC

and their application to original communication protocols [13]. Most of these experiments

and protocols use the coherence time property of the bi-photon state and measurement

of the quantum properties are performed by means of bucket detectors and coincidence

counters. Recently, Jachura et al. [14] extended the applications of the camera systems

to the observation of HOM interference with an intensified scientific complementary metal-

oxide-semiconductor (sCMOS) camera. Nevertheless, it is still the properties of temporal

coincidences that are studied.

Only few studies report the spatial coherence of two-photon state by measuring the

coincidence counts rate through a HOM interferometer as a function of the relative transverse

displacement or rotation of one SPDC beam [15, 16]. However, spatial coherence only in one

dimension is investigated by the measurement of time coincidences with bucket detectors

and coincidence circuits.

The work reported here is motivated by the development of a bi-dimensional imaging

device with two cameras through a HOM interferometer which is currently in progress in

our laboratory. Considering the large number of degrees of freedom of our setup and the
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high dimensionality of the bi-photon state involved in our experiment, the development of

analytical and/or numerical models to understand the effect of the experimental parameters

on expected or observed results is essential. Due to the complexity of the system to be

studied, we report the development of a numerical model, based on stochastic simulations,

to model the generation of bi-photon states of high dimensionality and their propagation

through a HOM interferometer and their detection onto two separate detectors arrays. In

our model, realistic parameters are considered and the effects of principal experimental

parameters on the HOM interference is investigated. Thanks to this numerical model, we

show how a HOM interferometer with a two cameras setup, used to detect purely spatial

correlations between the two outgoing images of the interferometer, should fully resolve the

spatio-temporal coherence properties of entangled photons pairs of high dimensionality.

II. NUMERICAL MODEL AND PARAMETERS OF THE SIMULATION

In previous works [7, 17], we used stochastic simulations based on the Wigner formalism

which reproduce, when repeated several thousand times and averaged, all specific quantum

features of SPDC. With the current model, two independent stochastic input fields with the

appropriate phase-probability distribution in space and time, corresponding to the signal

and idler vacuum fields in the Wigner representation (i.e. Gaussian white noise with zero

mean and a random phase), are generated. The propagation and the nonlinear interaction,

in a thin type 2 BBO nonlinear crystal, of these stochastic fields and of the Gaussian pump

pulse are then calculated by integrating the classical nonlinear propagation equations [18],

which are solved with a split-step algorithm. We emphasize that all features involved in

the three-wave-mixing interaction along the crystal length such as chromatic dispersion,

diffraction, walk-off and phase-mismatch, are considered.

Then, propagation of the output fields through the two arms of a HOM interferometer,

depicted in Fig. 1, is performed. From the output face of the nonlinear crystal, the signal

and idler fields are propagated up to the two input ports of a 50/50 beamsplitter (BS).

The near-field plane of the crystal O is imaged through the two arms of the interferometer

such as the transmitted and the reflected images are conjugated through semi-transparent

interface of the BS. Possible defocusing distances ds and di of the image planes O′s and O′i

are considered. Time integrated far-field intensities of the outgoing fields at the two output
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ports of the BS are calculated to simulate the image detection on two independent detectors

arrays with no temporal resolution placed in the focal planes of two identical lenses. Spectral

filtering with narrow interferential filters (IF), limiting the bandwidth detection around the

degenerated wavelength (λs = λi = 2λp), is included in the model. 2D transverse spatial

phase shift between the transmitted and reflected beams (induced by the rotations θBS and

φBS of the BS) is also considered. The symbols |H〉 and |V 〉 denote the polarization state

of the two beams at different locations on the device and more particularly before and after

the half-wave plate (HWP).

Finally, these calculations are repeated a thousand times. The spatial distribution of

the momentum correlations between the two far-field images is obtained by calculating the

normalized cross-correlation of image pairs, after subtraction from these images of their

deterministic part (i.e. the mean of the images)[2, 3, 5, 7].

Thanks to the numerical model, the influence on the correlations of several parameters

of the interferometer, like an optical path delay between the two input ports of the BS,

a spatial frequency shift along vertical and horizontal axes of the reflected beams and a

defocusing of the signal and idler images are investigated. The realistic numerical values of

the model parameters are gathered in table I.

III. NUMERICAL RESULTS

A. Characterization of the entangled state

First, we have used the numerical model to characterize the dimensionality of the entan-

gled bi-photon state in space and time at the output of the crystal. From time-integrated

mean intensities in the near-field and in the far-field and space-integrated mean time and

wavelength spectra of the signal and idler beams, we have calculated the widths of SPDC

beams in space and time domains, expressed in standard deviations, which gives :



σSPDCx ' σSPDCy ' 5.2× 10−2mm

σSPDCνx ' σSPDCνx ' 38.2mm−1

σSPDCt ' 40.3 ps

σSPDCλ ' 0.14nm

(1)
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Indices (x, y) and (νx, νy) are related to the tranverse coordinates in the near-field and

far-field space domains, respectively.

In order to evidence the correlations in space and time, we calculate the SPDC inten-

sities obtained with a single numerical realization (Fig. 2) when the amplification gain is

significantly increased. In good agreement with the correlation properties in space and time

domains of SPDC, we can observe in near-field domain and in the temporal domain cor-

related fluctuations between pixels of transverse coordinates rs and ri = rs + ∆r (Fig.2

a,b) and between times ts and ti = ts + ∆t (Fig.2 e,f). On the other hand, in the far-field

domain, correlated fluctuations are observed between pixels of opposite coordinates (Fig. 2

c,d), corresponding to the opposite transverse momenta qs and qi = −qs + ∆q. Momentum

coordinates are related to the spatial frequencies by qx,y = 2πνx,y. In the wavelength domain,

correlations are observed between the conjugated wavelengths λs and λi = (λ−1p −λ−1s )−1+∆λ

(Fig. 2g,h). ∆r, ∆q, ∆t and ∆λ denote the correlation uncertainties in the different domains

that can be associated to the coherence properties of the bi-photon state.

Then, from the numerical results we have estimated the total Schmidt number of the

bi-photon state corresponding to its whole dimensionality in space-time dimensions. For

this purpose, we have calculated all the normalized cross-correlations of the twin beams in

the space domain (between near-field and far-field images) and in time domain ( between

time and wavelength spectra). Fig. 3 shows these cross-correlations in the near-field (3a), in

the far-field (3b), in time (3c) and in wavelength (3d). Then, we have calculated the widths

of the correlation peaks in space and time domains, expressed in standard deviations, which

gives : 

σx ' 8.9× 10−3mm; σy ' 7.6× 10−3mm

σνx ' 5.1mm−1; σνy ' 4.5mm−1

σt ' 2.7 ps

σλ ' 9.4× 10−3 nm⇒ σνt ' 5.6GHz(@709.4nm)

(2)

Though the pump beam profile and the phase matching function are symmetric, we can

notice that the spatial widths of the correlation peaks are not equal in both dimensions. This

is due to the walk-off in the considered noncollinear type 2 three-wave-mixing interaction

[19]. Indeed, for non degenerate conjugated wavelengths, the symmetry centers of near-

field and far-field spatial correlations are shifted along the horizontal axis, which enlarges

the widths of the correlation peaks along this direction. Consequently, the larger is the
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bandwidth of the IF, the larger are the widths of the correlation peaks in the x dimension.

With these values we have estimated the Schmidt numbers for each dimension as follows :
Kx = 1

4σ2
xσ

2
νx
' 121

Ky = 1
4σ2
yσ

2
νy
' 213

Kt = 1
4σ2
t σ

2
νt

' 1094

(3)

In the spatial domain, these values can be compared to the definition of the

Schmidt number given by [20]. For example along the x dimension it gives : Kx =

1
4

(
σxp2πσ

SPDC
νx + 1

σxp2πσ
SPDC
νx

)2
, where σxp is the pump width and 2πσSPDCνx is the phase

matching function width in momentum space. With this definition, a Schmidt num-

ber Kx = 71 is obtained, in rather good agreement with the value given by Eq. 3.

Finally, the full space-time dimensionality of the entangled state can be estimated as

V =
√
KxKyKt ' 5310. This value confirms the high dimensionality of the simulated

bi-photon state.

B. Simulation of the spatio-temporal Hong-Ou-Mandel dip

To simulate the two-photon interference, we have calculated the propagation of the SPDC

beams from the crystal output up to the 50/50 BS, the coherent superposition of the two

beams at the input ports of the BS and the time integrated detection of the far-field images

at the two output ports of the BS in agreement with the setup described in Fig. 1.

First we have investigated the influence of a time delay δt, between the propagation times

of the signal and idler beams from the crystal output to the BS, on the correlations between

a set of 100 pairs of images. Fig. 4a shows the temporal HOM dip which depicts the relative

degree of correlation between the two far-field images of the BS output ports as a function

of the time delay. The relative degree of correlation is obtained by summing all the spatial

correlations between the far-field images of the two output ports of the BS divided by the

sum of all the spatial correlations between the far-field images of signal and idler beams at

the crystal output. In good agreement with the theory and the experiments [11], the degree

of correlation falls to zero when the SPDC beams are perfectly synchronised (δt = 0) and

reaches a relative value of 0.5, with respect to the degree of correlation in the absence of BS,

when the time delay is much larger than the coherence time of the bi-photon wave-packet.

From the numerical data fitted with a Gaussian shape, we have estimated the standard

6



deviation of the temporal HOM dip to σHOMt = 2.95 ps. This value is in good agreement

with the standard deviation of the temporal correlation peak calculated between the signal

and the idler time spectra : σt ' 2.7 ps (Fig. 3c). It also demonstrates that temporal

properties of two-photon interference can be revealed with detectors arrays that have no

temporal resolution [5]. Figures 4b to 4d show the spatial distribution of the momentum

correlations for different time delays. We can observe that, while the spatial width of the

correlation peak remain constant, its amplitude decreases when the time delay tends toward

zero. The ripples observed in Fig. 4a around the HOM dip and the correlation peaks in

figures 4b to 4d are due to the background noise fluctuations inherent to the numerical

model. We stress that by increasing the number of realizations the amplitude of the noise

fluctuations will be reduced. Quantitatively, in the far-field domain, the spatial correlation

pattern can be expressed in momentum space and as a function of the time delay as :

R(∆q, δt) =
R0(∆q)

2

(
1− e

− δt
2

σ2
t

)
, (4)

where R0(∆q) = |Φ(∆q)|2 is the spatial distribution of the correlations between the input

twin beams. It is related to the far-field bi-photon wave function Φ(qs, qi) given by [20]:

Φ(qs, qi) = Φ0e
− |qs+qi|

2

2σ2
q e

− |qs−qi|
2

2σ2
SPDC , (5)

where σq and σSPDC are the standard deviations of the Fourier transform of the pump field

and of the phase matching range in momentum units, respectively.

In a second time, we have investigated the influence of a phase shift of the reflected

beams, along the two transverse spatial dimensions, induced by angular tilts θBS and φBS of

the BS (Fig.1). The spatial correlations are still calculated in the far-field domain between

pixels corresponding to opposite momenta. For these numerical simulations, we assume that

signal and idler images are superimposed at the BS interface (i.e. ds = di = 0). Moreover,

no time delay (δt = 0) is considered here.

Fig. 5a presents in spatial frequency units, the 2D shape of the relative degree of corre-

lation that exhibits a HOM dip, as a function of the spatial frequency shifts along the both

dimensions. Spatial frequency shifts are related to the angular tilts as follows : δνx =
θBS
λp

,

δνy =
φBS
λp

. The black stars correspond to the numerical data and the mesh surface corre-

sponds to a Gaussian fit of the HOM dip. Figure 5b shows the spatially resolved correlations
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between the two outgoing images of the interferometer for different phase shifts. In Fig. 5b1

two correlation peaks can be observed : one corresponds to the correlations between the

two transmitted images and the second one is related to the correlations between the two

reflected images. The amplitudes of the correlation peaks are normalized with the ampli-

tude of the correlation peak between the signal and the idler beams with no BS (Fig. 3b).

In Fig. 5b1 we have drawn an arrow emphasizing the relationship between the phase shift

and the relative positions of the correlations peaks. While correlations between transmitted

images are centered at the zero spatial frequency, correlations between reflected beams are

shifted along the horizontal direction with an amplitude twice of the phase shift δνx. No

shift along the vertical direction is observed whatever the vertical tilt of the BS. Indeed,

while a horizontal tilt of the BS induces a spatial frequency shift of reflected images in the

same directions, a vertical tilt of the BS induces a shift of reflected images in the opposite

directions. In addition to the shift of one of the correlation peaks, we can observe that the

amplitude of both correlation peaks decrease when the phase shift decreases (Fig. 5b3).

Finally, when there is no phase shift, no more correlations are recorded between images

(Fig. 5b2) leading to a two-photon interference visibility of 100 %. This result proves that

twin photons exit in pairs with an equal probability through output channels 1 or 2 of the

interferometer.

With a Gaussian fit, we have estimated the standard deviations of the 2D spatial HOM

dip along the horizontal dimension as σHOMνx = 5.1mm−1, in good agreement with the

dimension σνx of the bi-photon wave-packet (Eq. 2). However, along the vertical dimension

the standard deviation of the HOM dip is σHOMνy = 39mm−1, which is much larger than

the estimated standard deviation of the bi-photon wave-packet along this dimension (σνy =

4.5mm−1) and corresponds to the standard deviation of phase matching (see Eq. 1). The

slightly negative values found at the bottom of the HOM dip are due to the background

noise fluctuations introduced by the stochastic model.

In order to explain these non intuitive numerical results, we use the same formalism

proposed in [11] to write the analytic expression of the joint probability of detection of

photons at both detectors arrays CCD1 and CCD2 between momenta q1 and q2 = −q1+∆q.

If we take into account the momentum shifts δqs and δqi induced by vertical and hor-

izontal tilts of the BS, we can write the positive-frequency parts of the fields at detectors

arrays CCD1 and CCD2 as follows:

8




Ê

(+)
1 (q1) =

1√
2

[
Ê

(+)
i (qi,t) + iÊ

(+)
s (qs,r + δqs)

]
Ê

(+)
2 (q2) =

1√
2

[
Ê

(+)
s (qs,t) + iÊ

(+)
i (qi,r + δqi)

] (6)

where qi,t and qs,t are the momenta of the transmitted beams. qi,r + δqi and qs,r + δqs

are the momenta of the reflected beams. Because we assume that SPDC beams propagate in

the horizontal plane, the BS induces a left-right symmetry between the transmitted and the

reflected beams in the propagation plane. Then, qxs,r = −qxs,t, qys,r = qys,t and qxi,r = −qxi,t,

qyi,r = qyi,t. Moreover, phase shifts for both reflected images induced by a BS tilt verifies :

δqxs = δqxi and δqys = −δqyi.

The joint probability of the detection of photons at both detectors arrays CCD1 and

CCD2 at momenta q1 and q2 = −q1 + ∆q, respectively, is given by:

P12 ∝ 〈Ê(−)
1 (q1)Ê

(−)
2 (−q1 + ∆q)Ê

(+)
2 (−q1 + ∆q)Ê

(+)
1 (q1)〉. (7)

Using equations 6 and 7, we show that the joint probability is :

P12 ∝
1

2

(
|Φ(qs,t, qi,t)|2 + |Φ(qs,r, qi,r)|2 − [Φ∗(qs,t, qi,t)Φ(qs,r, qi,r) + cc.]

)
, (8)

where Φ(qs, qi) is the bi-photon wave function in the far field domain (see Eq. 5) with

qs,t = −qi,t + ∆q for the transmitted beams and qs,r + δqs = −(qi,r + δqi) + ∆q for the

reflected beams. This equation corresponds to the spatially resolved correlations depicted

by figures 5b to 5d. The first term is related to the correlation peak centered at the zero

spatial frequency, the second one corresponds to the shifted correlation peak and the last

term leads to the two-photon interference.

Then, with Eq. 5, Eq. 8 yields:

P12 ∝
1

2

(
e
− |∆q|2

2σ2
q e
− |2qs−∆q|2

2σ2
SPDC − e

− |∆q−δqs−δqi|
2

2σ2
q e

− |2qs−∆q+δqs−δqi|
2

2σ2
SPDC

)2

, (9)

2D space integration of Eq. 9 leads to the degree of correlation of the output images as a

function of the phase shift δq and of the degree of correlation of the input images C0 as

follows:

C(δq) =
C0

2

(
1− e

− δq
2
x

σ2
q e
−

δq2y

σ2
SPDC

)
. (10)
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In good agreement with numerical results depicted by Fig. 5a, this equation confirms that

the spatial widths of the HOM dip depends of the coherence width of the bi-photon wave-

packet along the horizontal dimension and of the phase matching bandwidth along the

vertical dimension. In agreement with Lee et al. [15], this results show that the observed

spatial coherence is clearly linked to the geometry of the interferometer and more specifically

to the odd or even number of reflections experienced by the SPDC beams.

We have also investigated the impact of defocusing of the signal and idler image planes

with respect to the BS, combined with a momentum shift of the reflected beams. To do this,

we assume that the defocusing distances are equal : ds = di. When the defocusing distances

are varied between 0 and 5 mm, the numerical simulations show (Fig. 6 depicts the HOM

dip obtained with a defocusing distance of 5 mm) that two photon interference is more or

less insensitive to defocusing of the image planes when the BS is tilted along the horizontal

axis. In that case, the width of the HOM dip along the x axis remains constant and equal

to the coherence width of the bi-photon in this direction : σHOMνx = 5.0mm−1 w σνx . On

the contrary, along the vertical direction (y axis), the two-photon interference exhibits an

increasing sensitivity to the defocusing when BS is tilted along the vertical axis. Indeed,

while the HOM dip is much larger along y axis than the coherence width of the bi-photon and

is limited by the phase-matching bandwidth when there is no defocusing, it becomes quickly

narrower than the coherence width of the bi-photon when defocusing occurs : σHOMνy =

1.8mm−1 < σνy for ds = di = 5mm. In this case, the degree of correlation given by Eq. 10

is no more valid. A formalism involving for each beam (reflected and transmitted beams)

two point spread functions (one from the image plane to the BS and one from the BS to the

camera) could be developed [21], leading to double integrals which must be calculated for

each couple of momenta (q1, q2). This results is an extreme difficulty to obtain an analytical

solution and justifies the use of a numerical model to study the influence of experimental

parameters in a realistic way when the modelled situations no longer allow the use of a

simplified analytical model.

IV. CONCLUSION

In conclusion, a numerical model based on stochastic simulations has been proposed

to model the spatio-temporal properties of the two-photon interference in a typical Hong-
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Ou-Mandel interferometer. With this numerical model we have properly quantified the

dimensionnality of the bi-photon wave-packet in space and time and we have modeled the

two-photon interference signature revealed by the calculation of the 2D spatial distribution

of quantum correlations in momentum between the far-field images at the two outgoing

ports of the interferometer. By tuning some parameters, like time delay between the two

arms of the interferometer, spatial frequency shift of the reflected beams and defocusing of

the image planes, we have fully characterized the spatio-temporal properties of the HOM

dip which is related to the coherence properties of the bi-photon wave-packet. We would

like to emphasize that the temporal coherence properties are obtained by the detection of

purely spatial correlations with detectors arrays that have no temporal resolution.

This numerical model is now available to simulate all the possible configurations of two-

photon interference that can be proposed as well as all unitary operations that can be

applied to images at the ongoing and/or at the outgoing ports of the interferometer or spatio-

temporal phase shaping of the pump pulse [22], allowing full bi-dimensional manipulation

of bi-photon states with high Schmidt number. This numerical model is also useful for the

experimental implementation of this HOM interferometer currently in progress. Indeed, it

demonstrates, in good agreement with previous works [15, 16], that the geometry of the

interferometer is a crucial element for the measurement of two-photon interference. It also

makes it possible to evaluate the sensitivity of the interference phenomenon according to

the experimental parameters and the precision of the settings required to observe the HOM

dip.
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FIG. 1: Diagram of the HOM interferometer : Strongly multi-mode signal and idler beams gener-

ated in a type 2 BBO crystal propagate up to the two input ports of a 50/50 beamsplitter (BS).

Images O′s and O′i of the near field of the crystal O are made at the BS interface. Far-field of

the outgoing images are detected with two separate detectors arrays. Narrow interferential filters

(IF) limit the spectral bandwidth detection. Some features like optical path delay (δt), images

defocusing (ds, di) and transverse spatial phase shift between the transmitted and reflected beams

(θBS , φBS) are considered within the numerical model. |H〉 and |V 〉 symbolize the horizontal and

vertical polarization states of the signal beam and of the idler beam before and after the half-wave

plate (HWP).
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FIG. 2: For a single numerical realization, normalized intensity in the near-field (a,b) and in

the far-field (c,d), in time (e,f) and the wavelength spectra (g,h) of the signal and idler beams,

respectively.
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FIG. 3: Correlations (a) in the near-field, (b) in the far-field, (c) in time and (d) in the wavelength

domains. In (c) and (d), red curves correspond to a Gaussian fit of the numerical data depicted

with blue squares. In the correlation images (a) and (b), the sum of the pixel values is normalized

to unity. In the curves (c) and (d), the peak value is normalized to unity.
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FIG. 4: (a) Temporal HOM dip as a function of the time delay between the signal and idler

beams. The relative degree of correlation is obtained by summing all the spatial correlations

between the far-field images of the two output ports of the BS divided by the sum of all the

spatial correlations between the far-field of signal and idler images (Fig. 3b). The red curve

corresponds to a Gaussian fit of the HOM dip and blue stars correspond to the numerical data.

The width of the temporal HOM dip, expressed in standard deviations, is σHOMt = 2.95 ps. (b,

c, d) far-field spatial correlations between the two output ports of the BS at different time delays:

δtA = −16.7 ps, δtB = 0 ps, δtC = +1.7 ps. To make easier the comparison between the spatially

resolved correlations patterns, the color dynamics are adjusted in order to use the same colorbar.
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FIG. 5: (a) HOM dip as a function of the spatial frequency shift induced by horizontal and vertical

tilts of the BS. Numerical data are represented by black stars and the mesh surface corresponds to

a Gaussian fit of data. Each point corresponds to the relative degree of correlation between far-field

images at the output ports of the interferometer. (b) far-field 2D-spatial distribution of correlations

between the two output ports of the BS for different phase shifts : (1) δνx1 = −8.5mm−1, δνy1 =

−42mm−1, (2) δνx2 = δνy2 = 0 (3) δνx3 = 1.5mm−1, δνy3 = 28mm−1. In (1) the arrow denotes

the relationship between positions of the two correlations peaks and the phase shift. To make

easier the comparison between the spatialy-resolved correlations patterns, the color dynamics are

adjusted in order to use the same colorbar.
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FIG. 6: For a 5 mm defocusing of the signal and idler image planes with respect to the BS, spatial

HOM dip as a function of the frequency spatial shift induced by horizontal and vertical tilts of

the BS. Data are represented by black stars and the mesh surface corresponds to a Gaussian fit of

data.
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Parameter Symbol Value (unit)

Pump duration σtp 42 (ps)

Pump size σxp = σyp 0.1 (mm)

Pump wavelength λp 354.7 (nm)

Amplification gain g 4.2 (mm−1)

Crystal length LC 0.8 (mm)

Crystal width lC 1 (mm)

Sampling grid nx × ny × nt 128× 128× 128

Spatial sampling step dx = dy 7.8× 10−3 (mm)

Temporal sampling step dt 2.3 (ps)

IF central wavelength λFI 709.4 (nm)

IF width σλFI 0.2 (nm)

TABLE I: Numerical values of the model parameters.
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