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We report on the development of an ultrafast beam shaper capable of generating Bessel beams
of high cone angle that maintain a high-intensity hot spot with subwavelength diameter over a
propagation distance in excess of 8 mm. This generates a high-intensity focal region with extremely
high aspect ratio exceeding 10 000:1. The absence of intermediate focusing in the shaper allows for
shaping very high energies, up to Joule levels. We demonstrate proof of principle application of the
Bessel beam shaper for stealth dicing of thick glass, up to 1 cm. We expect this high energy Bessel
beam shaper will have applications in several areas of high intensity laser physics.
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Glass and transparent dielectrics are ubiquitous in modern technology. They are used for consumer electronics,
microelectronics, automotive, construction. High speed and high quality cutting of thin and thick glass is therefore
an important technological problem. Interestingly, the recent development of stealth dicing of glass has enable to
cleave glass at speeds in the range of 10 to 100 cm/s using lasers with a high repetition rate of several 100’s kHz [1, 2].
Stealth dicing is a two-step technique where the first step consists in generating with individual ultrafast laser pulses
a series of high aspect ratio nanochannels which define a weakening plane, serving as a fracture initiator. The second
step consists in stressing the material, for instance with a small bending, which is generally sufficient to cleave the
glass along the pre-defined plane. The process is ablation-free, does not generate debris and is extremely fast.

Infrared ultrafast Bessel beams are ideal tools to process transparent materials with high aspect ratio such as index
modifications [3, 4] or high aspect ratio nanochannels and voids [5, 6]. They are formed by the cylindrically-symmetric
interference of plane waves with wavevectors distributed on the generatrix of a cone [7]. In the nonlinear regime at
high intensities, Bessel beams are quasi distortion-free, provided the cone angle is sufficiently high [8]. The high
stability of the Bessel beams and the confinement of the intense laser-matter interaction makes it possible to create
with a single laser pulse a nanochannel with a diameter typically ranging between 200 and 800 nm [5] and has led to
a number of advances in terms of materials processing via bulk excitation [9, 10]. Stealth dicing using Bessel beams
or filaments is now widely used for glass and sapphire separation [11–14]. Until here, stealth dicing has been limited
to thicknesses of typically sub-mm. The limit is the available Bessel beam length.

Bessel beams have also a number of different other applications in the field of nonlinear optics [15, 16] where they are
expected to provide natural tools for amplification with wideband tunability via Kerr instability [17], high intensity
laser physics [18]. Ultrafast Bessel pulses are also emerging in the field of particle acceleration [19, 20] because the
interference creates along the optical axis a high intensity peak that velocity can be tuned and that can even exceed
speed of light [21–26]. Therefore, Bessel beam shapers that can sustain high intensities and high energy over several
millimeters are desirable.

FIG. 1. Schematic representation of the beam shaper which is formed by a pair of ±10◦ axicons and a third axicon with 45◦

wedge angle. The Bessel beam of length LB and angle θ is generated at a working distance dw from the last axicon.

At present, most of Bessel beam shaping techniques for high intensity applications are based on the imaging of
an initial Bessel beam formed via an axicon, a spatial light modulator or a diffractive optical element, which is then
de-magnified using relay lenses [1, 25, 27, 28]. This approach has several benefits: the Bessel beam is created at a
distance from the last optics, enabling a working distance to process thick materials or to realize the generation of
the Bessel beam with a smooth injection in the nonlinear medium [29]. In addition, the de-magnification factor of the
imaging system effectively increases the cone angle of the Bessel beam. This makes possible generating highly focused
beams even if the initial shaping element has relatively low spatial frequencies or even if it is difficult to fabricate high
angle axicons [30].

However, this approach has important drawbacks. First, the Bessel beam length after imaging is reduced by the
square of the magnification factor, which drastically reduces the length that can be reached when high angles are
needed and high magnifications used. Second, and most importantly, the imaging techniques make the first Bessel
beam prone to distortions during its propagation in air and increase the risks of laser damage. Indeed, during imaging,
the Bessel beam field is Fourier-transformed several times. The Fourier transform of a Bessel beam is an annulus. Its
width is proportional to 1/LB, LB being the length of the Bessel zone [31]. Therefore, high intensities can be reached
either within the initial Bessel beam, and/or in the relay optics. Kerr effect, thermal lensing, or optical damage occur
when high peak power and high average power pulses are used.

Here, we develop a Bessel beam shaper that has no intermediate focus and which is capable of handling extremely
high energies. It improves the Bessel beam zone length by two orders of magnitude for a high angle of 23◦ similar to
state of the art for single shot nanochannel machining [5]. Its working distance is adjustable, and the full system is
much more compact than those involving relay lenses. We experimentally characterize the Bessel beam distribution
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up to 1 mJ in air and show it is constant. We demonstrate a proof of principle application to stealth dicing of thick
glass, where we reached cleaving up to 1 cm thick soda-lime glass.

The laser source is a Ti:Sapphire Chirped-Pulse Amplified (CPA), Coherent Legend USP, emitting ∼ 30 fs pulses
at a central wavelength of 800 nm, pulse energy of 5 mJ and repetition rate 1 kHz. The pulses can be temporally
compressed up to the Fourier-transform limit or stretched using the compressor of the CPA and were characterized
just before the beam shaper using an autocorrelator. The concept of the Bessel beam shaper is shown in Figure 1. We
use a combination of three high-purity fused silica axicons: the first two are respectively negative and positive with
the same wedge angle α. This transforms the input Gaussian beam, with waist w0 = 4 mm (i.e. radius at 1/e2) from
the laser source into a thick annulus of collimated light propagating parallel to the optical axis. In the framework of
geometrical optics, the width of the annulus is the waist w0 of the input Gaussian beam; the diameter is determined
by the axicons wedge angle and the distance d between the first two axicons. The cone angle θ is determined only by
the wedge angle β and index nax = 1.45 of the last axicon:

θ = arcsin

(
nax sin

(
β − arcsin

(
sinβ

nax

)))
(1)

The typical length of the Bessel zone LB is determined by:

LB = w0(1 + tanβ tan γ)/ tan θ (2)

Similarly, the working distance dw is evaluated from geometrical optics by:

dw =
d tanϕ (1 + tanβ tan γ) − eax tan γ

tan θ
(3)

in which eax stands for the third axicon thickness (tip to plane).
With the experimental values α = 10◦, β = 45◦, eax = 17.8 mm and d = 10 cm, we get ϕ = 4.6◦, γ = 15.8◦,

θ = 23.3◦, dw = 12.2 mm and LB = 9.7 mm. Our concept is extremely compact because the full length of the beam
shaper is ∼15 cm, which is much smaller than the Bessel beam shapers based on relay imaging, which length typically
exceeds 1 m [25]. Because of the high angle of the last axicon, it is oriented with the tip to the laser source to prevent
total internal reflection. In this configuration, the distance d must be sufficiently large so that the Bessel beam is
formed out of the axicon.

We note that a close concept has been developed by another group [32], used in Optical Coherence Tomography
(OCT) imaging [33] and recently applied to induce up to 10 mm long modifications in glass [34]. However, the latter
concept involves a first axicon in focusing geometry such that non-linearities, thermal lensing and optical damage, that
we aim to avoid here, might happen for high average input power. The detrimental disruptions in the modifications
that are reported to prevent cleaving, might also arise from a too low cone angle and/or detrimental nonlinearities
[8].

We remark that all along the optical path in the beam shaper, the pulse energy is spread over areas that remain
on the order of a few cm2, such that with a typical damage threshold of optics of several J/cm2, the beam shaper is
expected to handle extremely high pulse energies close to Joule level. With 1 J illumination at 50 fs pulse duration,
the peak intensity reached in the Bessel beam would be on the order of 1018 W.cm−2, which is relevant for high-energy
physics applications. Similarly, because the pulse energy is quasi uniformly spread over the axicon’ surfaces, thermal
lensing is largely reduced and its potential focal length would be large, with negligible impact on the Bessel beam
structure.

Experimental characterization of the ultrafast beam was performed via an imaging setup made of two lenses (f1
= 3.6 cm, f2 = 1 m) in confocal configuration such that the beam is imaged onto a camera. The magnification of
this imaging setup is 27.4. The first lens is 2 inches diameter so that the imaging has a high numerical aperture of
0.58, exceeding the Bessel cone angle. The longitudinal position of the imaging setup is controlled by a motorized
translation stage. This allows for scanning the beam over a range exceeding 2 cm. Neutral density filters are placed
in the optical path of the imaging setup so as to avoid saturation of the CCD sensor. The damage threshold of the
imaging setup is limited to an output pulse energy of 1 mJ (because of the intermediate focusing involved in the
imaging), but we could operate the Bessel beam shaper up to the maximal pulse energy available, i.e. 5 mJ input
pulse energy.

Figure 2 shows experimental characterizations of the beam with different input pulse energies ranging between
12 µJ and 1 mJ with compressed 50 fs pulses. The characterization is shown with a log scale so as to enhance the
visualization of the low-intensity parts and show the high quality of the beam even outside the central lobe. We
see the high parallelism and roundness of the profiles in the cross-cuts. The quality of the axicon manufacturing
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FIG. 2. Fluence distribution maps of the Bessel beam in air for different energies from 12 µJ to 1 mJ. The maps are displayed
in logarithmic scale. The white dashed line on longitudinal sections shows the plane where the maximum intensity is reached,
for which we show the beam transverse profiles.

is an important parameter. Imperfect axicons generate a non-diffracting intensity pattern with multiple hotspots
unusable for applications. The Bessel beam has a homogeneous transverse distribution over its ∼ 8 mm range in air,
in agreement with the model described above. This makes the aspect ratio of the beam to be of >10 000:1 because the
central spot diameter is 740 nm FWHM. The aspect ratio is two orders of magnitude higher than previously achieved
with telescopic arrangements for the same cone angle of 23.3◦.

The beam profile does not vary when the pulse energy is increased, evidencing the absence of distortion in the
optical system. In addition, we have experimentally verified that varying d and w0 respectively changes the working
distance dw and the length of the Bessel zone LB, without modifying the beam transverse cross-section.

Now, we demonstrate a proof-of-principle application of the high energy Bessel beam shaper to stealth dicing of
thick glass. For stealth dicing, high cone angles have been shown essential for high quality cleaving [1], but one of
the key limitations for thick glass dicing is to generate material modification on a significant part of the thickness
of the material. We demonstrate here that the multi-mm long Bessel beam allows for glass separation up to 10 mm
soda-lime glass.

The parameter space is potentially very large and we restricted our study by choosing a fixed translation speed
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FIG. 3. Images of the cleaved edges of glass for thicknesses varying between 3 to 10 mm and for laser pulse durations of 2.2,
4.2 and 6.2 ps. Chipping occurs at the rear surface of the samples for shorter pulse durations and tends to disappear for the
longer pulse durations.

of 5 mm.s−1 with 1 kHz repetition rate, so that individual Bessel pulses create material modifications separated by
5 µm, as found nearly optimal in other studies [12, 35]. We used a fixed input pulse energy of 2.5 mJ and varied
the input pulse duration in the picosecond regime since pulse duration was evaluated as an important parameter
for material excitation. Specifically, material modifications induced by 50 fs pulses were uncleavable. In contrast,
picosecond durations have been reported to enhance cleavability in stealth dicing [12, 36].

We processed 10 × 10 cm2 soda-lime samples of thickness varying between 3 and 10 mm for 3 different pulse
durations. Our procedure for stealth dicing was the following. The samples were first laser-processed in single pass.
The onset of the Bessel beam was positioned at ∼ 0.5 mm before the sample front surface. Then, the samples were
mechanically stressed on a 3-lines bending stage. The experiment was repeated 3 times for each set of parameters.
Typical results are shown in Figure 3. We show macro-photography images of the cleaved edges of the samples.

For the 2.2 ps pulse duration, the 3 and 5 mm thick samples are cleaved without observable chipping. Excellent
results are observed to separate glass with thickness up to 10 mm, but for longer pulse durations of 4.2 ps and 6.2 ps.
For the shortest pulse duration, chipping is observed for 6 to 10 mm mainly in the vicinity of the rear surface. The
chipping area increases with glass thickness. We interpret this result as originating from the decrease of local fluence
in the central lobe of the Bessel beam for increasing propagation distance. We note a slight increase in the quality of
the results between 4.2 and 6.2 ps for the 8 mm case where we report the absence of chipping on all our samples. For
the 10 mm case, chipping extends over a distance of some 100 µm along the laser beam direction and the deviation
from flatness is typically of the same order of magnitude. We note that this could be improved after investigating
a wider set of parameters (position of the beam, pulse energy, pulse duration, etc). We determined with optical
profilometry that the RMS roughness of the cleaved samples for 6.2 ps pulse duration is quasi-constant among the
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samples, with values in the range [1.00 − 1.25] µm. This is close to the roughness of ground glass (typ. 1.0±0.2 µm).
We finally note that the translation speed of 5 mm.s−1 is relatively low in comparison with state of the art stealth
dicing, but we believe that high power lasers with high repetition rate will enable improving this parameter.

In conclusion, we have developed a compact Bessel beam shaper producing high energy pulses shaped with 23◦

cone angle, over a propagation distance exceeding 8 mm in air. Experimental demonstration has involved energies
up to 5 mJ, but we highlight that this Bessel beam shaper has no intermediate focus such that high average power
and pulses with extremely high energies, in the range of several 100 mJ to Joules could be shaped. Using such a
beam shaper, we manage to upscale stealth dicing technique up to 10 mm millimeters thick glass. With 6 ps pulse
duration, the surface roughness of the cleaved glass is similar to the one of ground glass. Therefore, we expect that
this technique can save a lot of the energy used at present to post-processed thick glass after mechanical cleaving.
Therefore, we anticipate that our results will impact on applications of thick glass processing as well as on more
fundamental research for laser plasma physics and high energy laser physics.
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[24] P. Bowlan, H. Valtna-Lukner, M. Lõhmus, P. Piksarv, P. Saari, and R. Trebino, Opt. Lett. 34, 2276 (2009).
[25] L. Froehly, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Courvoisier, J. Opt. Sco. Am. A 31, 790 (2014).
[26] D. Turnbull, P. Franke, J. Katz, J. Palastro, I. Begishev, R. Boni, J. Bromage, A. Milder, J. Shaw, and D. Froula, Phys.

Rev. Lett. 120, 225001 (2018).
[27] M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, Opt. Express

18, 566 (2010).
[28] S. Mitra, M. Chanal, R. Clady, A. Mouskeftaras, and D. Grojo, Appl. Opt. 54, 7358 (2015).
[29] P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. D. Trapani, Phys. Rev.

Lett. 99, 223902 (2007).
[30] P. Boucher, J. D. Hoyo, C. Billet, O. Pinel, G. Labroille, and F. Courvoisier, Appl. Opt. 57, 6725 (2018).
[31] V. Jarutis, R. Passkauskas, and A. Stabinis, Opt. Commun. 184, 105 (2000).



7

[32] B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, Opt. Commun. 283, 1678 (2010).
[33] N. Weber, D. Spether, A. Seifert, and H. Zappe, J. Opt. Sco. Am. A 29, 808 (2012).
[34] K. Bergner, M. Müller, R. Klas, J. Limpert, S. Nolte, and A. Tünnerman, Appl. Opt. 57, 5941 (2018).
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