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Abstract—Photonic networks are considered a promising sub-
strate for high-performance future computing systems. Com-
pared to electronics, photonics has significant advantages for
a fully parallel implementation of networks. A promising ap-
proach for parallel large-scale photonic networks is realizing
the connections using diffraction. Here, we characterize the
scalability of such diffractive coupling in great detail. Based
on experiments, analytically obtained bounds and numerical
simulations considering real-world optical imaging setups, we
find that the concept in principle enables networks hosting over a
million optical emitters. This would be a breakthrough in multiple
areas, illustrating a clear path toward future, large scale photonic
networks.

Index Terms—Optical networks, Diffraction, Coupling, Pho-
tonic neural networks.

I. INTRODUCTION

ETWORKS are the underlying basis for a large range of

physical systems and information processing concepts.
Particularly in computing, they support a wide range of pow-
erful algorithms such as Hopfield [1] and neural [2] networks
as well as in coherent Ising machines [3]]. Especially neural
networks have recently resulted in a revolution of modern
computing [4]. One of the fundamental aspects of networks
is the propagation of information via parallel communication
between nodes. Parallelism is therefore an essential aspect of
networks-based computing, and simultaneously the Achilles’
heel in current computing substrates.

Today, communication over long and intermediate distances
relies almost entirely on optical fibers. Optical communication
is now moving towards shorter ranges, even approaching the
level of inter-chip signal transmission. Besides the superior
energy efficiency and bandwidth, inherent parallelism is a
main asset of optical signal transduction. This property turned
optical neural networks into a field with a long-standing
history of interest [5], [6].

Recently, the field has been revitalized by a series of
new neural network algorithms [7], which have resulted in
numerous novel demonstrations of neural network computing
based on photonic delay systems [8]], [O, [L1O], [L1], [12].
However, one fundamental property of delay systems is their
serial nature, not exploiting the potential parallelism offered
by optical processes like diffraction. Deep feed-forward neural
networks have been realized or discussed using diffraction
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by complex phase modulations [13]], [14)], or even volume
holograms [[15]. We have recently demonstrated the creation
of a spatio-temporal photonic reservoir using diffraction [16].
In our fully-parallel approach, the diffractive coupling concept
was leveraged to create a large scale photonic recurrent neural
network [17]]. Using a digital micro-mirror device, the photonic
network was made trainable based on Boolean connections
implemented according to the orientation of micro-mirrors.
Crucially, the system demonstrated that diffractive coupling
is valid for connecting networks hosting hundreds of discrete
photonic elements.

In this paper, we investigate fundamental and practical limits
to the size of photonic networks coupled via diffraction. We
consider networks consisting of discrete photonic emitters, the
network’s nodes, arranged in a periodic array. We evaluate
coupling of such an node array via a single diffractive optical
element (DOE) with a periodic phase-structure, such as in
[16], [17]. Crucially, we do not require the DOE to be
located in the system’s Fourier planes. For infinity-corrected
microscope objectives this requirement is hard to fulfill, and
we generalized our numerical model to include propagation
from and to Fourier planes. Based on a simple analytical
description, we are able to derive the fundamental limit for
such a network’s size. This limit is ultimately linked to the
paraxial approximation’s validity-range. Outside this range, lo-
cations of diffractive-orders and periodically arranged photonic
nodes significantly deviate. Diffractive orders therefore fail to
re-inject a photonic node’s emission into its neighbors and
coupling is lost. We characterize the practical boundaries based
on two independent experiments, each designed to elaborate on
fundamentally different limitations. Finally, detailed numerical
simulations enable clearly identifying the underlying cause and
illustrate strategies to go beyond. We experimentally confirm
coupling for networks hosting up to 30000 photonic nodes.
Noteworthy, by simply using low magnification microscope
objectives with a large numerical aperture (NA), this upper
limit can potentially be extended to networks hosting over a
million elements, connected fully in parallel.

The paper is organized as follows: we begin with a gen-
eral introduction to the diffractive coupling scheme and its
application to recurrent neural networks in Section II. The
concept’s state of the art is discussed and a simple yet
powerful analytical description which provides the upper limit
for diffractive networks’ size is given. In Section III, we
experimentally investigate the concept. A single mode optical
fiber emulates optical nodes, and coupling for different spatial
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Fig. 1: Scheme of a diffractively coupled photonic network.
Network nodes are pixels of a spatial light modulator (SLM),
and filtering by a polarizing beam splitter (PBS) brings for-
ward their nonlinearity. A diffractive optical element (DOE)
located in the beam-path creates coupling between individual
photonic nodes. Network training is implemented with a
digital micro-mirror device (DMD) realizing Boolean selection
of SLM-pixels transmitted on the output power meter. This
system was used to demonstrate learning in the context of a
recurrent neural network [17].

positions within a network is characterized by translation of
the optical fiber’s position. In a second experiment we emulate
this translational effect by tilting the DOE, which allows
us to go beyond the practical limitations encountered in the
first experimental scheme, and to confirm the analytical limit.
Finally, Section IV numerically models beam propagation,
diffraction and collimation/imaging for an array with an area
of 100 mm?.

II. DIFFRACTIVE COUPLING

A primary motivation for optical network technology is to
establish connectivity fully in parallel for a large number of
photonic nodes. Nodes are discrete elements arranged into a
periodic array with a period d. Node emission is vertical to
the array surface, with 2I" and \ as their mode field diameter
(at 1/e%) and emission wavelength, respectively. We have
previously implemented a photonic network consisting of 900
nodes, using the pixels of a spatial light modulator (SLM)
[L7], as schematically illustrated in Fig.

The SLM is illuminated via a plane wave, and its reflection
is filtered by a polarizing beam splitter (PBS). Infinity cor-
rected microscope objectives one and two (MO1 and MO2, re-
spectively) image the SLM in the PBS’s transmission direction
onto the mirror. Within this optical path we located a DOE,
and each SLM pixel is spatially multiplexed by the DOE’s
diffractive orders. Coupling nodes requires that some of the

diffractively multiplexed optical fields overlap. The distance
p between diffractive orders therefore needs to be close to
the array’s lattice constant d, with a difference A smaller
than I'. This is particularly important for coupling photonic
nodes with single-mode emission, i.e. laser arrays [16], [18].
In order to enable self-coupling within the network, the overall
imaging setup requires a 4 architecture. In the setup of Fig.
we therefore included a A/4-waveplate. After reflection by
the mirror, the optical field double-passes DOE and the \/4-
waveplate. Due to the resulting 90 degree polarization rotation,
the signal is reflected by the PBS and imaged on the camera
via MO3. The camera’s image is used to drive SLM, and hence
a recurrent network is established by the closed loop between
the SLM and the camera.

Besides internal network connections, the system repre-
sented in Fig. [I|and demonstrated in [17] was coupled to infor-
mation injection. Furthermore, the signal reflected by the PBS
was simultaneously imaged onto the surface of a digital micro-
mirror device, which allowed the detection of a weighted
network state. The weighted state was iteratively adjusted
according to a learning rule, and the system corresponds to
a large scale photonic neural network which was successfully
trained for prediction of the injected chaotic signal.

Here, we explore the principles and limits of diffractive
coupling. Figure 2fa) illustrates the functional principle, and
elements not essential to this concept have been removed for
clarity. Optical nodes are periodically arranged at positions
x = k- d in object plane O and imaged onto image plane
I, with k being the node index. The system’s magnification
is given by MAG=/f5/ f1, and the position of a node’s image
is therefore x;q = MAG - z;,. Between MO1 and MO2 we
locate the DOE, and in plane I we illustrate nodes and
their diffracted images by black and red dots, respectively.
Infinity-corrected microscope objectives typically have short,
in cases even negative back-focal lengths. This renders placing
the DOE inside Fourier planes FP; and FP, of MOI1 and
MO?2 impractical or impossible. We therefore explicitly do
not consider a 4f-system [19], a fact which is of particular
relevance for numerical simulations.

In this setting, coupling nearest neighbors requires that in
plane I the optical fields of node k’s first diffractive order
overlaps with node k+1’s zero diffractive order. As the DOE is
located in the imaging system’s collimated space, we can treat
its action according to diffraction at infinity, i.e. exclusively
considering plane waves. The propagation angle GEOE for
diffractive order n of node k can be obtained by the grating
equation

sin(@ﬁgE

) = sin(0},) + RW’ (1)
where 0% = arctan(kd/f) is the angle impacting onto the
DOE for the collimated beam of node k. According to Eq.
(I), we approximate the DOE’s action by a periodic diffraction
grating with a modulation period of p?“F. Crucially, imaging
a periodic array through a periodic diffraction grating creates
spatially multiplexed images of different properties. The zero-
order image, n = 0, will reproduce the original array’s pe-
riodicity. However, images formed by other diffractive orders
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will experience a distortion which continuously increases with
larger viewing angles, schematically illustrated in Fig. 2{a).
In order to capture this effect, we inspect the angular spec-
trum and the resulting image-positions as a function of n and
k. Focusing by MO2 results in position &, ; = f2 -tan(ﬁfz‘k)E).
This needs to match the position of node (k+n)’s zero order
image, and hence we define the mismatch between both as
A" = |24 =7, ;|- Using tan(f) = sin(0)/(y/1 — sin(6)?)

and sin(0%) = kd/+/f? + k2d?, we obtain

kd A
(\/f12+k2d2 +npD()E> f2

2
kd A
\/1 - (\/f12+k‘2d2 + nPDOE)

This equation corresponds to a simplified analytical model
to explore the diffractive coupling concept’s limits. It only
considers the effects of diffraction and imaging, assumes that
all optical elements are thin, not separated by a physical
distance (effects of propagation are not included) and free of
aberrations. Finally, we scale the mismatch by the imaging
system’s magnification to obtain A,, , = A7, ; /MAG.

According to Eq. [2} coupling is only established for corre-
spondingly adjusted values of p??F, d and \. Generally, we
impose A = 0|x=0, hence optimize coupling for the array’s
center. This leads to

1 _f2

n,k — E(k—i_n)d_

)

i = arctan(i), 3)

h
Hng = arcsin(lm)7 4)
oP0" — gi. )

as the alignment condition for the system. In the experiment
shown in Fig. |1 pP°F and d are predetermined, which
leaves wavelength A as a free parameter. As the SLM hosting
the photonic nodes is a broad-band device, the choice of A
is sufficiently flexible to select a commercial DOE which
satisfies coupling for the spacing between SLM pixels. In other
experimental setting this might not be the case. In particular
for arrays with active photonic nodes, A may not be adjustable
for satisfying Eq. 5] There, one requires to either specifically
tailor pitch d or pPOF,

III. EXPERIMENTAL EVALUATION

We emulate the original array of photonic nodes by translat-
ing a single mode source along the (x,y)-plane. We precisely
measure the displacement of the diffraction maxima and study
the limits posed by fundamental mechanisms of diffractive
coupling, and by limitations of our experimental system.
The experiment is schematically illustrated in Fig. [3[(a). This
particular setup emulates the relevant physical mechanisms
of a photonic network, such as illustrated in Fig. [I] The
point source impersonating the photonic nodes is the tip of
a single-mode optical fiber mounted on a x/y-stage (Thorlabs
ST1XY-D/M), which gives us micrometer-precision control of
its displacement. The fiber guides the emission of a laser diode
(Thorlabs LP660 SF20, A = 662.1 nm) and has a mode field
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Fig. 2: Scheme to explain the fundamental principle of
diffractive coupling. (a) Emitters in the plane O are imaged
through microscope objectives MOI1, MO2 with respective
focal lengths f; and fo in the plane I. The angle of the
principle ray of a node with respect to the optical axis is (6;)
and the angle of the +1 diffractive order corresponding to the
node is (Apog). The distance between zero and +1 orders
is p and the distance between two nodes is d. (b) Mismatch
between the positions of nodes and the coupling term due to
diffraction versus node positions in plane O.

diameter at its output of 2I" = (4 £ 0.5) pm. Its output tip
is placed at the focal plane of a microscope objective (MO1:
Olympus RMS10X, f; = 18 mm, NA1=0.25). After the DOE
(HOLOOR MS-443-650-Y-X, pD OE 13 mm), a second
microscope objective (MO2: Olympus RMS4X, f, = 45 mm,
NA2=0.1) focuses the diffracted beams. Thus, the emission
emulating a photonic neuron is uniformly distributed along an
array of (3x3) diffractive orders, which are recorded with a
CMOS camera (IDS U3-3482LE-M).

Figure b) shows coupling mismatch |A| versus a node’s
position = over two orders of magnitude and on a double-
logarithmic scale. Experimental data was obtained from fitting
the image recorded by the camera with an array of nine
Gaussian modes, whose center-positions are used to calculate
mismatch A Analytically calculated data (green line) are
compared to experimentally measured mismatches (red stars).
While the analytic dependence shows a clear polynomial
increase of mismatch A, we observe a number of unclear
features in the experimental data. For node displacements
below 0.5 mm, experimental data is dispersed and does not
follow a clear trend. For displacements in this range the
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Fig. 3: (a) Experimental setup testing diffractive coupling lim-
its by translating a single-mode fiber across the object plane.
(b) Mismatch |A| identifies the validity limit of diffractive
coupling. Equation [2] (green line) illustrates the fundamental
limit. Experimental (red stars) and numerical results (blue
circles) excellently agree (NA1=0.25, NA2=0.1). The black
squares numerically demonstrate that for NA1=0.45, NA2=0.2
the system would approach the analytical limit.

expected A is blow 100 nm. Detection noise of the camera
and a limited precision of the fitting routine therefore result
in uncertainties larger than the expected |A|.

Experimental and analytical results agree well in the range
of 0.1 mm < x < 0.5 mm. However, for experimental data
obtained with a node displacements of x > 1 mm, we observe
a strong divergence with respect to the analytical law. We
postulate this divergence is due to a beam-vignetting effect
caused by a too small NA of the first microscope objective
(NAT). As the photonic node moves out of the object plane’s
center, the outer-parts of its emission-cone leave MO1’s clear
aperture. Detrimental diffraction at the clear aperture’s edge
is the consequence, inducing additional aberrations. We test
this hypothesis by numerical simulations of the experimental
setup, which are discussed in Section IV.

From the previous results we can conclude that the size of
a photonic network would not be limited by the diffractive
coupling concept per se. In a second experiment, we exclude
possible limitations caused exclusively by imaging nodes at
large displacements in the (X,y)-plane. Instead of translating
the fiber tip we therefore tilt the DOE relative to the now
continuously centered, collimated beam. Figure f(a) illustrates
this experimental approach. There, DOE-tilt angle §° emulates
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Fig. 4: (a) Experimental scheme to test limits of diffractive
coupling by tilting DOE relative to the optical system’s central
axis. The motivation is to emulate positions 0 mm< z <8 mm
without causing beam-vignetting by the microscope objectives.
(b) The diffractive coupling mismatch |A| obtained by the ex-
periment (red stars) and the analytical limit (Eq. 2) excellently
agree.

translation of the fiber tip according to = = f7 -tan(6;). In the
experiment we used f; = 20 mm (MO1: Nikon N10X-PF).

Figure [4b) illustrates the distance mismatch for tilt angles
0’ ranging from 0 to 22 degrees, which is equivalent to
emulating photonic neuron positions z ranging from 0 to
8 mm. This isolates the effects of a node’s position onto
diffractive coupling, and we obtain an excellent agreement
between the analytical model (green line) and the experimental
data (red stars). Results confirm the validity of diffractive
coupling far beyond what is currently demonstrated.

However, establishing high-quality optical coupling between
the elements of a periodic photonic node array also depends of
the system’s points spread function, i.e. its optical resolution.
Figure 5| demonstrates the impact of various effects upon width
T" obtained from fitting the diffractive orders in image plane I.
The all-important diffraction limit is illustrated by the dashed
line. Figure [5(a) characterizes I' of a single-mode photonic
node for different positions x in the object plane O, showing
red stars (blue circles) as the experimental (numerical) data for
NA1=0.25 and NA2=0.1. As previously reported for mismatch
A, width T" also diverges from the fundamental limit for node
positions beyond x = 0.8 mm. This similarity suggests beam
vignetting as the underlying reason, which we confirm by



JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. , NO. , MONTH? 2019 5

3 3
(a) é (b)
£ of £
2 o ﬁ 2
e g =
§ ;p—ﬂ—ué—%*—@——@——o—— §
= =
1 1
0 0.5 1 1.5 0 1 2 3 4 5
Emitter position x (mm) Emitter position x (mm)
3
(c)
€
2
- 2+ -
I TR
2

2.5 5 7.5 10
Emitter position x (mm)

Fig. 5: Width of the diffractive orders (red stars) relative to the
diffraction limit (dashed line), and comparison to numerical
simulations (blue circles). (a) Experimental data obtained with
the setup shown in Fig.[3(a). For NA1=0.25, vignetting leads to
a rapid increase of the width I' for > 0.5mm. (b) Numerical
simulations based on NA1=0.45 indicate the potential for
significant improvements. Data in panel (c) was obtained with
the setup shown in Fig. f(a). Diffractive coupling does there-
fore not significantly influence the system’s optical resolution.
Comparison between (b) and (c) illustrates the high sensitive
of the systems resolution to even small vignetting.

fury
o

numerical simulations using the large NA setting (NA1=0.45,
NA2=0.2), Fig. 5[b). The MOs’ larger collection angle signif-
icantly increases the vignetting-free zone in the object plane.
Finally, we turn to the experimental setting of Fig. f[(a), and
emulate different object-plane positions by tilting the DOE.
Experimental data is shown as red stars Fig.[5{c). As vignetting
is avoided, I" does not exhibit any significant broadening for
DOE-tilt angles corresponding extreme positions x > 10 mm.
We would like to point out that > 10 mm corresponds
to DOE tilt-angles beyond 20°, and while non-paraxial con-
tributions fundamentally limit the concept through |A|, they
do not affect the system’s optical resolution. However, what
our results illustrate is the concept’s sensitivity to general
limitations of the imaging system. Considering an array with a
radius of 2 mm and nodes spaced by 10 pum, our experiments
confirm the potential for creating photonic networks hosting
30.000 nodes with our current experimental setup. In this
entire region width I' remains close to the resolution limited.

IV. NUMERICAL METHOD

In the previous section we observed effects in experiments
(i.e. strong divergence of A and increase of I' due to vi-
gnetting) which cannot be accurately captured with the simple
analytical treatment of Section II. A correct description of the
underlying optical processes requires considering effects of co-
herent light propagation through the imaging system.Crucially,

we cannot make use of the paraxial approximation as it
imposes sin(f) = tan(f) ~ O, which in turn leads to A =0
for any x;. Two main propagation algorithms are used.

First, we use the non-paraxial plane wave spectrum ap-
proach between MO1 and MO?2. This is a common method
for describing propagation of an electromagnetic field with
a particular spatial amplitude and phase distribution [19].
Propagating the optical field from one plane to the next utilizes
the field’s fast Fourier Transformation (F'T), resulting the
fields planar wave spectrum A(v,,v,) . The FT creates a
decomposition of the incident field into complex-valued plane
waves located in spatial frequency space with dimensions v,
and v,,. For each resulting plane-wave component propagation
simply corresponds to translating their phase determined by
the distance to be propagated. Crucially, phase-translation p for
each planar wave component is calculated without employing
approximations tan(f) = sin() ~ © and cos(f) ~ 1 — 6%/2,
resulting in p = |/1/A\? — v2 — v2. Finally, with an inverse
Fourier transform of the such propagated plane wave com-
ponents, one obtains the final optical field at new position
(z,y, z). Propagation between optical elements along the z-
direction is computed in the (z,y)-plane according to

A(z,y,2) = FT {A(vy, vy )e®™ P} . (6)

To include the effect of the DOE we modulated the optical
beam between both microscope objectives according to the
DOE’s phase profile. The phase profile was obtained directly
from the component based on a phase retrieval technique [24].
Based on the such obtained characterization we approximated
the DOE by the likely assumption that the DOE implement a
binary phase modulation.

Second, we employ the Debye integral method to simulate
the propagation through high NA microscope objectives [20],
[21], [22], [23]. Propagation of an optical beam with A\ =
660 nm and a radius of 5 mm through a microscope objective
with a focal distance of 18 mm (i.e. Olympus RMS10X)
creates of the order of ~ 2 - 10% phase-slips across each
direction of the (x,y)-plane. Considering the Nyquist sampling
criteria, this requires sampling the wave’s phase profile with
at least (4 - 103 x 4 - 10%) data points. Arrays of such size
render the use of a standard desktop PC unpractical. As can
be seen in Fig. 3(b), our characterization is highly sensitive
to artifacts, which would most likely results in an even larger
sampling matrix.

In the Debye-method, optical field components are pro-
jected onto the microscope objective principal planes, one
of which is a sphere centered at the image’s focal point.
This approach does not employ the scalar field simplification
and is valid if the differential phase-change with respect to
the principal plane is small. The field in the image plane is
closely approximated by the Fourier transform of the such
projected incident field. We therefore first project the incident
field onto cylindrical coordinates (r,0,¢), decomposing the
optical field into its radial (p-polarized) and tangential (s-
polarized) components. The transformed field is then projected
onto the microscope objective’s principle plane in spherical
coordinates. The resulting electric field E ata point (z,y, 2)
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near the focus is obtained by integrating the propagated plane
waves [23]],

B(e.g2) = 5L [ sin(o)
o o @
/ E(0, p)e'F===keo=kut) gy,
0

Equation|[/|can be rearranged using the Fourier transformation,

which results in
—if Ey(0, p)e’k=2)
E = FT . 8
(x7y72) Aok? { COSG ( )

However, the field-distribution calculated by Eq. (§) must
be corrected, as the result is only correct inside a lateral
surface of the order of (ﬁ)% This criteria is equivalent to a
Fresnel approximation. In the frame of our work we require the
numerical model to be valid outside this limit, as the objective
is to simulate networks of a size exceeding 1 mm. We therefore
implement a treatment with larger generality, which enables
the extension of the Debye-method to ranges outside the focal
volume. The principle is a coordinate-rescaling which accounts
for the relation between spatial positions (z,y) and spatial
frequencies (v, ) in an imaging system beyond the paraxial
approximation. In the paraxial approximation, the relation
between image plane and the spatial frequency coordinates
are simply o|yo = f - A - V), Whereas in the non-paraxial
case the relation is x|y = (f - X - vgy)/ (/1 = A% - (Vg)y)*
Hence, both coordinate systems are connected via x|y =
(f - zolyo)/(v/ % — (x0|yo)?), which is the rescaling which
we applied to all numerical simulations. The results are in
remarkable agreement with the experiment.

Both techniques are combined in a sequence in order to
describe our optical system. First, we use the inverse Debye-
method to calculate the optical field in FP1. From there,
we propagate the field to the DOE, apply the DOE’s phase
modulation, propagate to FP2 and finally calculate the optical
field in image plane I via the Debye-method. Results of the nu-
merical simulations are shown in Fig. Ekb). Here, we simulated
an area of 25 mm? with an overall number of (10'2 x 10'?)
samples. We accurately reproduced the experimental setup,
including the directly measured distances from the MOI1 to
the DOE and from the DOE to the MO2, plus the physical
properties of both microscope objectives as obtained from
their data sheets. Results are shown as blue circles, and they
agree with the experimental findings (red stars) exceptionally
well, both, qualitatively as well as quantitatively. Crucially,
we used the same fitting and data-extraction routing as for the
experiment. The dispersion of A for x smaller than ~ 0.5 mm
is consequence of the fitting routine’s uncertainty and of the
limited spatial resolution.

The confirmed divergence between our experimental results
and the analytical limit through the aberration-free numerical
imaging system suggests beam vignetting as the underlying
cause. We therefore modified the numerical simulation and
replaced MO1 with a high NA, low magnification microscope
objective. Crucially, such devices are available off-the-shelf.
As we can see, for this configuration the numerical simulation
collapses on top of the analytical upper limit of the system’s

size. This is an excellent results, as it confirms the validity of
diffractive coupling under conditions comparable to a realistic
experimental setting. Crucially, data of Fig. [3(b) suggests that
for optimized microscope objectives the mismatch |A| remains
below 1 pm when coupling nodes in an array of a radius
of 4 mm. Considering a realistic spacing of 10 pm between
photonic nodes, this confirms the diffractive coupling concepts
for networks hosting over a million optical nodes.

V. DISCUSSION

Our experimental, numerical and analytical investigation
provides the first systematic analysis of size-limits for op-
tical networks coupled via diffraction. The here employed
experiments only serve the identification of different limiting
effects, and other considerations have to be taken into account
when coupling real networks. A vitally important parameter
is the distance between microscope objectives, as too long
distances results in very strong beam-vignetting at MO2. The
same consideration prohibits increasing NA1 through a high
magnification MO, as this results in a steepening relationship
between z;, and ©%, again amplifying beam-vignetting at
MO2. Finally, in an all optical network, for using arrays of
semiconductor lasers [16], [18], coupling takes place in the
object plane. This results in M AG = 1, and the second
microscope objective can be ignored as long as vignetting is
avoided. Another effect to consider is that the DOE’s highest
spatial frequency will be the leading term in A. Divergence
will therefore be amplified using DOE’s to realize longer-range
as well as more complex than next-neighbor coupling, as well
as in systems where array-pitch d is large.

One could argue that the breakdown of diffractive coupling
due to A can be interpreted as an aberration, and hence
aberration-management could be employed to increase the
size of potential networks even further. However, according
to Eq. 2 and as illustrated by Fig. 2[b), the signs of diffractive
order n and of displacement A are related. When interpreted in
terms of optical distortions, then 7 > 0 results in pincushion-
type distortions, while n < 0 leads to barrel-type distortions.
Correctional optics for compensating A therefore would have
to compensate for both effects at the same position (z,y) and
for very similar (v,v,) simultaneously. We have for now
not been able to identify a mechanism capable of devising
corrections to beams which, after passing the DOE, are nearly
degenerate. It appears that the here derived limit is a funda-
mental hurdle.

VI. CONCLUSION

In our work we have analyzed the validity range for diffrac-
tive coupling with great detail. Mismatch A determines the
mismatch between a diffractive order’s ideal and real position,
and we determine its dependency on the node’s position in two
complementary experiments.

By translation of a single-mode fiber’s output, the exper-
iment emulates different node positions and is sensitive to
aberrations as they would be found in an optical setup for
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photonic networks. Mismatch A quickly increases in polyno-
mial fashion for nodes located further than ~ 0.7 mm away
from the array’s center. Crucially, the found dependency does
not agree with the fundamental limit of diffractive coupling,
and we identify beam vignetting as the underlying cause.
Despite this limitation, the setup is well suited for coupling
up to 30000 photonic nodes for a spacing of d = 10 pm.
In a second experiment we emulate diffraction of nodes at
different positions by tilting the DOE. This removes the
angled propagation of the system’s zero order, hence isolates
fundamental coupling limitations from the vignetting effect.
We are able to demonstrate excellent agreement between the
experimental and analytical description.

Based on this insight, we modify system parameters in the
numerical simulation and simulated a low magnification, high
NA microscope objective (NA1=0.45). Here, beam vignetting
is strongly reduced and mismatch A perfectly agrees with the
analytically derived limit for nodes located up to 6 mm away
from the array’s center. Importantly, mismatch A remains
below 1 pm within an area of ~ 50 mm?, which for the size
of typical optical nodes such as SLM pixels or laser’s could
be seen as a limit for coupling. We can therefore estimate an
upper bound of diffractively coupling over 1 million nodes
located in an array spaced by d = 10 pum.

We have adjusted the numerical model such that it does
not make use of the typically employed approximations. Most
notably, we do not employ the paraxial beam approximation
during the propagation of plane wave. Furthermore, we have
introduced a rescaling of the image plane. This novelty was
made necessary by the use of the Debye integral when
calculating the action of the microscope objectives. The phase
profile of the DOE was obtained by a phase-retrieval method,
and hence our simulation represents an excellent description
of the diffractively multiplexed imaging system.
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