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Neural networks are transforming the field of computer algorithms, yet their emulation on current
computing substrates is highly inefficient. Reservoir computing was successfully implemented on
a large variety of substrates and gave new insight in overcoming this implementation bottleneck.
Despite its success, the approach lags behind the state of the art in deep learning. We therefore
extend time-delay reservoirs to deep networks and demonstrate that these conceptually correspond
to deep convolutional neural networks. Convolution is intrinsically realized on a substrate level by
generic drive-response properties of dynamical systems. The resulting novelty is avoiding vector-
matrix products between layers, which cause low efficiency in today’s substrates. Compared to
singleton time-delay reservoirs, our deep network achieves accuracy improvements by at least an
order of magnitude in Mackey-Glass and Lorenz timeseries prediction.

Neural networks have emerged as the current disrup-
tive computational concept. When cascading multiple
network layers, these systems set the benchmark in mul-
tiple challenging tasks [1]. In such deep neural networks,
layers are dedicated to highlight specific aspects of the
input-information, and previous layers commonly serve
as input of consecutive layers. Such a hierarchical ar-
rangement is crucial for boosting the computational per-
formance. In deep convolutional neural networks (CNN),
layers convolute their input with spatial filters. By in-
creasing filter width and step size, deeper layers focus on
more general features, while local features are highlighted
in earlier layers [2].

In the wake of deep neural networks’ success, it was
realized that their emulation on Turing / von Neumann
machines is highly inefficient. This stimulated strong in-
terest in the realization of neural networks in physical
substrates whose architecture submit to the networks’
topology. Particularly photonic systems, which offer key
advantages for parallelization, are considered a promising
future alternative. However, directly mapping the com-
plex topology of a deep neural network onto a hardware
substrates presents a significant challenge. Of essential
importance are therefore concepts which strike a balance
between architectural complexity and hardware imple-
mentation simplicity.

Among the various neural network architectures, reser-
voir computers [3] have emerged as especially interest-
ing theoretical model-systems [4–6] and promising can-
didates for hardware implementations. A reservoir com-
puter is a complex recurrent neural network and concep-
tually corresponds to a high-dimensional nonlinear dy-
namical system. Training is restricted to the connec-
tions between the reservoir and its output, and hence
the nonlinear dynamical system’s topology remains con-
stant. This strongly assists implementations in physi-
cal substrates, resulting in a large number of realizations
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FIG. 1. Schematic of cascaded nonlinear oscillators acting
as deep network, here consisting of two layers. Two coupled
nonlinear delay systems x1(t) with states x2(t) implement in-
dividual time delay reservoir layers. Information is injected
into the first system, and nonlinear nodes are coupled instan-
taneously according to weights w1,2 and w2,1. The readout-
layer has access to all layers.

in nonlinear photonic [7] and other physical systems [8].
Yet, precisely this simplicity raised fundamental concerns
regarding deep reservoirs. Recently it was found that,
comparable to deep convolutional networks, a continu-
ous change of spatial -frequency in the response of con-
secutive layers appears beneficial [9, 10]. The workhorse
of the field have been nonlinear delay systems implement-
ing time delay reservoirs (TDRs) [7, 11, 12]. These offer
a compromise between good computing performance and
exceptional ease of hardware implementation and serve
as model-systems for more complex hardware substrates
[13–15].

We report on a deep reservoir scheme comprising hier-
archically coupled nonlinear delay oscillators exhibiting
dynamics on multiple timescales. Crucially, coupling be-
tween different layers is constant and training remains
limited to the readout weights, in contrast to a proposed
deep hardware TDR [16]. This is an essential simplifi-
cation as it adheres to the conceptual simplicity motive,
which strongly fosters hardware implementation. We find
that cascading significantly and qualitatively improves
computational performance when compared to a single
layer reservoir of identical size. Crucially, our architec-
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FIG. 2. Neuron responses (xσii (n)) found in layers i = 1
(a), i = 2 (b) and i = 3 (c), illustrated in a spatio-temporal
(σi, n) representation. The spatial frequency along virtual
space σi continuously decreases for the higher layers. Com-
parable functionality is implemented in deep convolutional
networks or deep reservoirs.
tural simplicity curbs the challenges particular to physi-
cally implementing complex and large networks.

In Fig. 1, we schematically illustrate our deep TDR
concept. Dynamics are governed by the following set of
equations:

τiẋi(t) = −xi(t)− δiyi(t) + βi sin2[di(t) + bi] (1)

ẏi(t) = xi(t) (2)

di(t) = xi(t− τDi) +
∑
p=±1

wi+p,ixi+p(t) + ρiu(t) (3)

ρi 6=1 = 0, δ1 = 0. (4)

The state of the delay-coupled node in layer i ∈
{1, · · · , I} is given by xi(t), and we use the sin2-
nonlinearity often employed in photonic TDRs [17, 18].
Due to inertia, dynamics generally experience low-pass
(LP) filtering according to a fast time constant τi, which
can be extended to band-pass (BP) filtering when a slow
time constant δi is added [19]. Each layer’s nonlinearity
is weighed by bifurcation parameter βi, and the nonlin-
earity’s argument contains constant bias bi and a time-
dependent drive di(t), see Eq. (3). Drive di(t) fea-
tures self-feedback delayed by τDi and potentially bidi-
rectional coupling to adjacent layers according to coeffi-
cients wi±1,i. Only the first layer is coupled to u(t), see
Eq. (4). External drive u(t) encodes the information to
be processed s(t) according to the temporal masking pro-
cedure which implements a linear matrix multiplication
[12, 20]. We have employed a de-synchronized informa-
tion injection procedure in which each value of s(t) is
kept for an input-masking length of 0.8 · τDi.

According to Eq. (3), layer i is coupled to layer i + 1
(i − 1) according to the fixed connection-weight wi+1,i

(wi−1,i), and coupling to i − 1 = 0 is unphysical and
hence eliminated. Therefore, a recurrent layer simply
consist of one hardware nonlinearity, one linear delay
line and its fixed connections to previous or consecutive
layer. This has multiple consequences. First, inter-layer
coupling is instantaneous and constant in time. Training
of the inter-layer connections, a long-time open question
for deep reservoirs [10] and significant challenge for full

hardware integration [21], is therefore avoided. Second,
such a minimal complexity architecture [22] can readily
be implemented in hardware [8]. Finally, it allows es-
tablishing a clear mapping from deep TDRs onto deep
convolutional neural networks.

The fact that TDR-layers can be termed convolutional
originates from a nonlinear dynamical node’s response to
perturbations. The state of a nonlinear node in layer i
is given by the convolution between its impulse response
function hi(t) and its drive di(t). Combined with a nor-
malization of continuous time t by feedback delay τDi,
one can express the dynamical evolution by

t

τDi
= n+ σi/Ni, σi ∈ {1, Ni}, n ∈ {1, 2, . . . }, (5)

xσi
i (n) =

∫ n+σi

−∞
hi (n+ σi − ξ) sin2 [di(ξ − 1) + bi] dξ,

(6)

with Ni as the number of neurons in layer i, see Fig. 1.
Firstly, Eqs. (5) and (6) map continuous time t onto dis-
crete time n and node σi’s position relative to delay time
τDi. Details of this temporal embedding technique can
be found in [11, 12, 23]. Secondly, expressing the dynam-
ical evolution via the convolution operation shows that
a node’s impulse response function corresponds to the
convolution kernels of a CNN-layer. Crucially, coupling
created with such a dynamical convolution can directly
be translated to the convolution kernel of spatio-temporal
networks [12, 24].

The analogy between cascaded TDRs and deep convo-
lutional networks goes further. Layers of a CNN com-
monly feature convolution kernels whose width increases
the further back in the cascaded hierarchy a layer is lo-
cated [2]. This operation is often associated with gener-
alization: convolution with wider filters reduces the im-
portance of local features in their input, while more gen-
eral aspects are highlighted. The cascaded arrangement
of layers in CNNs therefore produces layers which ac-
centuate different input information features. In TDRs,
increasing the convolution kernel’s width corresponds to
widening hi(t), see [25]. Here this is realized by an ad-
ditional low-frequency cut-off according to timescale δi
in Eqs. (1) and (2), and we enforce widening kernels.
In Fig. 2 we show the response of a three-layer deep
TDR driven by the chaotic Mackey-Glass sequence. Each
sample corresponds to δt = 1 time-step of the Mackey-
Glass system, for which we used the same parameters
as in [3]. Parameters are β2,3 = 1.1, τ1 = 6 · 10−3,
τ2,3 = 7 · 10−3, τDi = 17.85, Φ0 = 0.2, δ2,3 = 0.01,
w1,2 = 0.7, w2,3 = 0.8, w2,1 = w3,2 = 0. Responses are
plotted in spatio-temporal representation [23, 26], where
nodes are arranged along σi and the temporal evolution is
along discrete time n, with n typically close to a system’s
delay τD [12]. As we move into higher layers, from (a)
to (c) in Fig. 2, dynamics do highlight different spatio-
temporal scales. Our deep TDR therefore hosts features
much like those taken into consideration in the design of
CNNs.
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FIG. 3. Coupling strongly enhances the network’s performance for predicting the chaotic Mackey-Glass timeseries by ∆n = 34
steps into the future. (a) The uncoupled system (both systems receive the input sequence u(t)) (w1,2 = w2,1 = 0) achieves
NMSE=8.3 · 10−6. (b) Bidirectional coupling (w1,2 = 0.7, w2,2 = 0.6) results in no improvement (NMSE=8.8 · 10−6). (c) The
decisively best performing architecture is the unidirectional coupling between the recurrent layers, i.e. feed-forward connections
(w1,2 = 1.4, w2,1 = 0): NMSE=1.3 · 10−6.

Creating a computational result requires to connect
the deep TDR to an output via weights adjusted during
learning. Our readout layer has access to all virtual nodes
of all network layers, and the system’s output is created
according to

youtj (n) =

I∑
i

Ni∑
σi

W out
i,σi,jx

σi
i (n). (7)

Here, j is the dimension of the system’s output, which
depends on the particular task. Common methods to ob-
tain Wout are based on linear or ridge regression, and
W out is optimized using a representable set of train-
ing data [3, 12]. In experimental systems, these meth-
ods can be implemented in auxiliary hardware like field-
programmable gate arrays [27], or can to a degree be
replaced by Boolean learning algorithms [14]. Recur-
rent neural networks are primarily relevant for process-
ing temporal information. We therefore task the system
to predict chaotic sequences ∆n timesteps into the fu-
ture. Training optimizes W out for yout(n) to approx-
imate target yT (n) = s(n + ∆n), n ∈ {1, nT }, where
nT = 5000 are the number of samples used for train-
ing. We quantify the prediction’s quality for n > nT ,
hence on testing data not used for training the system,
according to the normalized mean square errorNMSE =
1/nT

∑
n=1...nT (yT (n)−yout(n))2/(σT )2, where σT is the

target-signal’s standard deviation.
First, we predict the chaotic Mackey-Glass delay equa-

tion, which features a delay of 17 timesteps. By predict-
ing ahead twice its delay (∆n = 34), the objective is
long-term prediction. We establish a systematic inter-
pretation by cascading only two TDR layers (Ni=600)
and display the performance dependence on the exhaus-
tively scanned system parameters in Fig. 3. We keep
τ1 = 0.6 · 10−3, τ2 = 0.6 · 10−3, τD1,2 = 12, b1,2 = 0.2,
ρ1 = 8 and δ2 = 0.01 constant, with their values mostly
based on empirical observations. In order to provide a
baseline-reference for other topologies, we evaluate un-
coupled layers (w1,2 = w2,1 = 0) and scan the bifurcation
parameter-plane (β1, β2), see Fig. 3(a). Importantly, for

this test we set ρ2 = ρ1 and hence couple the BP-layer
to the same input as the LP layer. We find a clear op-
timum for β1, while performance dependence on β2 is
less pronounced. The lowest error (NMSE=8.3 · 10−6) is
obtained at β1 = 1.4 and β2 = 1.2.

We now turn to different coupling topologies and dis-
connect the second layer from the system’s input infor-
mation (ρ2 = 0, w1,2 = 0.7, w2,1 = 0.6). Figure 3(b)
shows that bidirectional coupling significantly alters the
optimal bifurcation parameters and results in a equally
pronounced β2 dependency. We obtain NMSE=8.8 ·10−6

at β1 = 1.4 and β2 = 1.2, and the performance ben-
efit of bidirectional coupling is negligible. Continuing
with the optimized value of βi, we focus on the cou-
pling topology by exhaustively scanning w1,2 and w2,1,
see Fig. 3(c). The NMSE reveals some performance sen-
sitivity upon the coupling-strength from the first to the
second layer. The most important finding is, however,
that there is a systematic dependency upon w2,1: the
clear global performance optimum is found for unidirec-
tional coupling with w2,1 = 0. The achieved prediction
error (NMSE=1.3 · 10−6) is ∼ 3 times smaller than for
the bidirectional and the uncoupled systems, confirming
the benefit of the hierarchical arrangement between con-
secutive network layers also for TDRs.

To further generalize our finding, we turn to predicting
the chaotic Lorenz system. The Lorenz system is a three-
dimensional set of ordinary differential equations. Each
sample corresponds to δt =0.02 time-steps, and we used
the same parameters as in [28]. The input information
was the Lorenz system’s first dimension x(n), and the
prediction target was yT (n) = x(n + 1), hence ∆n = 1.
Results are listed in Tab. I. Prediction performance is
again enhanced by the addition of two layers in a uni-
directional configuration. However, on a first glance the
positive benefit appears to be smaller.

Until now prediction only evaluated the system via pre-
dicting ahead by distance ∆n. A more suited approach
to determine the capacity of approximating a chaotic sys-
tem’s behavior is based on the so called teacher forcing
[3]. After training using ∆n = 1, the system’s input be-
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Nodes per layer Coupling strength LZ NMSE

1200 lp – 7.6 · 10−7

600 lp, 600 bp w1,2 = 1.1 5.7 · 10−7

400 lp, 400 bp, 400 bp w1,2 = w2,3 = 1.1 2.5 · 10−7

TABLE I. Comparison for different architectures with iden-
tical total number of neurons N = 1200. Layers are lp=low-
pass, bp=band-pass. LZ: Lorenz chaotic time series one
step prediction parameters: τ1 = 0.006, τ2 = τ3 = 0.007,
δ2 = δ3 = 0.01, β1 = 1.5, β2 = β3 = 1.2.

comes its own output, s(ñ) = yout(ñ−1), ñ = n−nT , n >
nT . The TDR becomes an autonomous predictor of the
learned system [3], and the autonomous evolution en-
ables comparison to the original chaotic sequence over
long intervals. Crucially, this corresponds to predicting
until ñ only relying information of the original signal at
nT ; the prediction autonomously advanced from there.
This reveals how well the chaotic system as a whole is
approximated by the neural network.

Figure 4 (a) and (c) show autonomous evolution for
Lorenz and Mackey-Glass prediction using three cas-
caded TDR-layers with unidirectional coupling. The pre-
diction targets are the black solid data. The positive im-
pact of deep (red dashed data) over the single-layer (blue
dotted data) TDRs is apparent, and particularly strik-
ing when predicting the Lorenz system, see Fig. 4(a).
Rather than chaotic excursions along an attractor, the
autonomous single layer TDR quickly converges to a dy-
namical state resembling a limit-cycle and therefore fails
to reproduce its target system. Only with the three lay-
ers coupled in a deep, uni-directional topology the net-
work is capable of an excellent approximate of Lorenz
chaos. This is also visible from the temporal divergence
measured as the Euclidean distances between the Taken’s
reconstructed attractors of yout(ñ) and yT (ñ), see Fig.
4(b) and (d). The solid black lines indicate the divergence
according to the maximum Lyapunov exponent (Mackey-
Glass: λmax = 5.8 · 10−3, Lorentz: λmax = 0.91). Cas-
cading layer improves prediction by a factor of 20 and
10.5 for Lorenz and Mackey-Glass prediction, respec-
tively. The substantial improvement and fundamental
importance of the cascaded, 3-layer deep TDR architec-
ture can be further appreciated by inspection of the re-
sulting return maps, see [25].

We shall finish our investigation by also discussing lim-
itations of our approach. The range of possible kernel
shapes is limited by physical constraints and have not
been optimized during training, through this is possible
in principle. Also, deep TDRs do no yet reach the accu-
racy of the original spatio-temporal reservoir [3]. Predict-
ing the Mackey-Glass timeseries 84 steps into the future
results in NMSE=10−4.4 with our deep TDR, while the
original reservoir achieves NMSE=10−8.4 [3]. However,
multiple simple additions to the current concept could
still significantly improve performance [29, 30]. Using
current high-performance hardware [31], CNN still run
five times slower than TDRs [11]. However CNNs are
optimized via back-propagation, which will certainly re-
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FIG. 4. (Colour online) When connecting the system to its
own predicted output at ñ = 1, its dynamical evolution be-
comes autonomous from the original chaotic timeseries. The
top x-axis is in units of the inverse Lyapunov exponent. The
long-term prediction performance for predicting the Lorenz
(a) and Mackey-Glass system (c) via the connected (not con-
nected) system as red dashed (blue dotted) data. Divergence
between the predicted and the original attractors are shown
in (b) and (d) for Lorenz and Mackey-Glass, respectively. The
solid line indicates divergence according to the largest Lya-
punov exponent.

sult in lower errors than deep TDRs. If error back prop-
agation can be realized in deep hardware networks re-
mains questionable, while training of our system retains
the simplicity and elegance of reservoir computing.

To conclude, we have introduced an elegant scheme
for deep convolutional networks in a simple architecture
of coupled nonlinear oscillators with delay. Information
processing conditions conceptually comparable to deep
convolutional neural networks with widening convolution
kernels are achieved by cascading TDRs with increasingly
longer internal timescales. Intra- and inter-layer connec-
tivity can be adjusted via the oscillators’ time scales, pro-
viding a practical control mechanism for hardware real-
izations.

Applied to both, Mackey-Glass and Lorenz chaos pre-
diction, our concept significantly improves the quality
of long-term predictions and proofs essential in the case
of Lorenz forecasting. Recently, reservoirs have been
demonstrated to infer a chaotic oscillator’s hidden de-
grees of freedom [28] and to predict the evolution of
chaotic spatio-temporal systems far into the future [32].
Temporal structure found in the divergence between pre-
diction and target, such as in Fig. 4(d), could be ad-
dressed via further optimizing timescales τi and δi.

Finally, we would like to point out the large variety
of possible hierarchical TDR networks. Hybrid systems,
where for some or all layers self-feedback is removed,
would incorporate feed-forward architectures [33]. Lay-
ers featuring excitable solitons can potentially create long
term memory [34] and, when combined with the reported
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LP and BP-layers, physically implement long-short term
memory networks [35]. This opens possibilities in new
domains like natural language processing and sequence
generation.
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