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Abstract. The discovery of topological phases of matter, initially driven by

theoretical advances in quantum condensed matter physics, has been recently extended

to classical wave systems, reaching out to a wealth of novel potential applications

in signal manipulation and energy concentration. Despite the fact that wave

propagation in many realistic media (metals at optical frequencies, polymers at

ultrasonic frequencies) is inherently dispersive, topological wave transport in photonic

and phononic crystals has so far been limited to ideal situations and proof-of-

concept experiments involving dispersionless media. Here, we report the �rst

experimental demonstration of topological edge states in a classical water wave system

supporting highly dispersive wave propagation, in the intermediate regime of gravity-

capillary waves. We use a stochastic method to rigorously take into account the

inherent dispersion and devise a water wave crystal insulator supporting valley-

selective transport at topological domain walls. Our measurements, performed with

a high-speed camera under stroboscopic illumination, unambiguously demonstrate the

possibility of valley-locked transport of water waves.
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1. Introduction

Topological insulators are bulk insulators whose bands are characterized by a quantized

number known as a topological invariant [1, 2], which cannot change upon continuous

transformations of the band structure. This topological property of the bands implies

the presence of edge states at topological interfaces, which is protected by the topology of

the surrounding bulk insulators [3, 4, 5, 6, 7, 8, 9, 10]. Originally discovered in condensed

matter systems, including Quantum-Hall [11, 12, 13, 14, 15, 16, 17, 18, 19] and Quantum

Spin-Hall insulators [20, 21, 22, 23], the concept of topological transport has recently

been transposed to various �elds of classical wave physics, including optics [24, 25, 26],

acoustics [8, 27, 28, 29], microwaves [12, 30], and mechanics [31, 32, 33, 34, 9], where

it represents a promising way to transport signals and concentrate energy in a robust,

symmetry-protected way. While classical analogs of Chern insulators [35, 28], quantum

spin-Hall systems [36], and valley-Hall insulators [37, 8, 38, 39, 40] have been previously

studied and demonstrated, prior arts have focused mainly on idealistic situations in

which the dispersion of the host materials have been neglected or avoided. This drastic

assumption, however, holds only for a small subset of the available physical platforms in

which exploiting topological physics could have large practical implications. It does not

hold, for instance, for water wave systems, which generally support highly dispersive

surface waves [41]. Yet, controlling the energy carried by ocean waves, and forcing it to

concentrate at a location where it can be harvested, would be a fascinating application

of topological physics, providing topological edge modes are compatible with the highly

dispersive character of these systems.

In this article, we demonstrate experimentally the relevance of topological physics

in a classical wave system with strong dispersion, namely gravity-capillary waves at a

water-air interface interacting with a water wave crystal. We use a stochastic method

to obtain the dispersion relation in the crystal, using Bloch's theorem, and we design

topological edge states based on valley conservation. Our measurements, based on

direct imaging using a high-speed camera under stroboscopic illumination (see Fig. 1),

demonstrate unambiguously the possibility of topological transport in systems with very

strong dispersion, extending the reach of topological physics to a wealth of new physical

platforms.

2. Theoretical and Experimental description

Gravity-capillary water waves are surface waves resulting from the balance of the

potential energy of gravity forces and surface tension with the kinetic energy of a water

column. As a result of body (volume) and interface (surface) contributions, their velocity

is isotropic but inherently strongly dispersive and dependent on the water depth. In

order to describe the propagation of gravity-capillary waves in the regime of small water

elevation (as compared to the water depth), we consider the linear velocity potential

theory for water waves [42, 43, 44]. In the absence of external forces, the vertical
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Figure 1. Experimental setup for observation of topological gravity-capillary waves

in a water wave crystal. (a) The crystal sample (green color) is placed in a water tank.

A mechanical straight paddle is exciting vertical motion of the water surface at the

same frequency as the stroboscopic illumination. A mirror is placed at 45◦ below and

re�ects the image on a di�usive screen placed in front. (b) The hexagonal crystal is

made of triangular pillars with a = 8 mm, b = 6.4 mm, and a variable orientation angle

α (here α = 30◦). (c) A typical 3D-printed crystal sample made of PLA (polylactic

acid) is shown.

displacement (elevation) of the liquid-air interface η(x, y) satis�es the two-dimensional

partial di�erential equation

∇ · (cpcg∇η) + κ2cpcgη = 0, (1)

where cp is the phase velocity, cg is the group velocity, and κ is the wavenumber. A

similar equation is satis�ed by the horizontal part of the velocity potential [42]. We

further recall that the dispersion relation between wavenumber and angular frequency

ω for a horizontal liquid-air interface is given by

ω2 = gκ(1 + d2
cκ

2) tanh(κh), (2)

where g is the gravitational acceleration, h is the water depth, and dc is the capillary

length. The phase velocity is then

cp =
ω

κ
=

√
g

κ
(1 + d2

cκ
2) tanh(κh) (3)
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and the group velocity is

cg =
dω

dκ
=

(
1

2
+

d2
cκ

2

1 + d2
cκ

2
+

κh

sinh(2κh)

)
cp, (4)

where the capillary length is given by dc =
√

γ
gρ
, with γ the surface tension and ρ the

mass density of the liquid.

Inside the arti�cial crystal sample, Eq. (1) can be used to obtain Bloch waves and

therefore band structures. Indeed, Eq. (1) can be recast as a Helmholtz equation for

scalar waves in a dispersive medium

∇ · (A(ω)∇η) + ω2B(ω)η = 0, (5)

with coe�cients A(ω) = cpcg and B(ω) = cg/cp depending explicitly on frequency. A

Neumann boundary condition is considered at the interfaces between pillars and water,

i.e. ∂η/∂n = 0, where n is the normal to the interface [42, 43, 44]. Bloch waves have

the form η(x, y) = ηk(x, y) exp(ık · r), with k the Bloch wavevector and ηk the periodic

part of the Bloch wave. Computing eigenvalues and eigenfunctions to obtain the Bloch

waves of the crystal is not straightforward since the coe�cients of the equation depend

on frequency. We use instead the stochastic excitation method proposed by Laude

and Korotyaeva [45]. The method considers all possible values of frequency ω and

Bloch wavevector k and observes the response of the system to a spatially random force

distributed inside the unit-cell. The �nite element implementation for Eq. (5) follows the

prescriptions in Ref. [45]. A further di�culty is that the model does not take into account

certain interface e�ects between water and the solid pillars, including the formation of a

meniscus as a result of capillary forces. As the distance between pillars is smaller than

the wavelength [46], such e�ects can be approximated by using an e�ective dispersion

relation (see Appendix). In practice, the e�ective value of the surface tension is adjusted

according to experimental observations. The derived value, γeff = 0.17 N·m−1, is

larger than the usual value for the unperturbed water-air interface, corresponding to an

e�ective increase of the phase velocity inside the arti�cial crystal. The phenomenological

model for the arti�cial crystal is thus composed of Eq. (5) together with the e�ective

dispersion relation in Eq. (2) and Neumann boundary conditions at the pillars.

We compute phononic band structures ω(k) along the boundary of the irreducible

Brillouin zone (BZ) (namely the path Γ − K −M − Γ) as depicted in Fig. 2(a) for the

geometry of Fig. 1(b). Phononic band structures are shown for an hexagonal crystal of

triangular pillars with lattice constant a = 8 mm and b/a = 0.8. The phononic band

gap extends from 18 to 23 Hz for α = 30◦, whereas the band gap closes for α = 0◦. The

transmission through a �nite crystal sample composed of 5 periods (α = 30◦) is shown

as a function of frequency in Fig. 2(b) for direction ΓK. A good agreement between

theory and experiment is observed. At a frequency of 22 Hz, inside the phononic band

gap, incident waves are indeed re�ected by the crystalline insulator and form a standing

wave pattern on the incident side, as illustrated in Fig. 2(c). Full wave numerics are

obtained by solving Eq. (5) using the �nite element method in Comsol Multiphysics at
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Figure 2. Phononic properties of the water wave crystal of Fig. 1. (a) The dispersion

relation is obtained as the response to a stochastic excitation [45] for a water level

h = 7.3 mm and α = 30o (the dispersion relation for α = 0o is the red line). The

inset represents the �rst Brillouin zone (BZ). (b) The measured transmission of a

plane wave through a 5 unit cell thick crystal slab (dotted line) is compared with

the numerically computed transmission (solid line). (c) Numerical simulation of the

re�ection of a plane wave at 22 Hz (inside the phononic band gap) on the crystal. (d)

Experimentally recorded surface elevation at the same frequency. The boundaries of

the crystal are indicated with dashed lines.

a �xed frequency. Fig 2(c) shows an example of the water wave �eld obtained using this

method. PMLs (perfectly matched layers) are used to absorb the outgoing waves.

The experimental setup shown in Fig. 1 is composed of a 24 × 30 cm2 water

wave ripple tank illuminated by stroboscopic light synchronized with a straight paddle,

operating at a frequency tunable between 10 and 75 Hz. Shadows caused by light

refraction at the sinusoidally modulated water surface are formed onto a screen after

re�ection o� a mirror and are recorded with a camera. A typical experimental wave

pattern is shown in Fig. 1(a), without any post-processing. The observed patterns are

related to the local surface curvature (a bright fringe indicating a positive curvature

and a local elevation of the water level). Hence, after image processing, we obtain a

quantity proportional to the vertical elevation of the water surface. Crystal samples are

fabricated with 3D additive printing in PLA and a typical sample is shown in Fig. 1(b).
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Samples are composed of pillars that are higher than the water level (15 mm, whereas

the water level without the crystal equals 7 mm). The experimental transmission for

α = 30◦ is shown as a function of frequency in Fig. 2(b) and is in fair agreement with

theory. The experimental image in Fig. 2(d) con�rms the strong phononic band gap

re�ection near 22 Hz.

The 2D hexagonal crystal of rotated opaque triangles supports valley vortex Bloch

waves carrying a quantized topological phase [37]. Actually, when α = 0◦, the plane

crystallographic group � or wallpaper group � of the crystal is p31m, meaning that

there are three 3-fold axes of rotation and three re�ection planes, two of which are

images in a re�ection. When α 6= 0◦, the symmetry is reduced to that of wallpaper

group p3, with only three 3-fold axes of rotation remaining ‡. The Bloch waves de�ning

the phononic band gap follow the same p3 symmetry and show three vortices placed

either in between the vertices of the triangles (Bloch waves K1, with valley topological

phase +sgn(α)) or in between the sides of the triangles (Bloch waves K2, with valley

topological phase −sgn(α)) [37]; see Fig. 6 of the Appendix for a representation of the

K1 and K2 Bloch waves. Note that the vortex centers actually coincide with rotation

centers of the crystal.

The crystal B of triangles rotated by −|α| is the image in a glide re�ection of axis

Ox and translation a/2 of the crystal A of triangles rotated by +|α|. This property

can be exploited to construct a domain wall (DW) separating the two non equivalent

chiral crystals A and B. As depicted in Fig. 3(a), the DW A-B with A placed above B

is di�erent from the DW B-A with B placed above A. Both DWs have the symmetry

of the frieze group p11g. It was shown for classical non dispersive waves that the DWs

support unidirectional edge waves [8]; here we show that the property remains true for

dispersive water waves. Both the numerical result in Fig. 3(a) and the corresponding

experiment in Fig. 3(b) show that a plane surface wave incident normally from the left is

funneled to the right side for the A-B DW, but not for the B-A DW. The reason for this

asymmetry is discussed below. The transmission through the topological waveguides

was estimated and is presented in Fig. 3(c); again experiment and numerics agree fairly

well. Videos of experimental and numerical water wave propagation along the DW are

provided in the Supplemental Material.

The edge modes are obtained numerically using the stochastic excitation method,

considering a super-cell encompassing 5 rows of each crystals A and B. The phononic

band structures for DWs A-B and B-A are shown in Fig. 3(d-e). In each case a edge

mode appears inside the phononic band gap, traversing it to connect the systems of

bulk bands extending below and above. The A-B edge wave has a negative dispersion

� its group velocity is negative for positive wavenumbers, � whereas the B-A edge wave

has a positive dispersion. The insets in the �gures show the modal distribution of both

edge waves. It can actually be veri�ed that the A-B edge wave is composed of K1 valley

vortex waves that are evanescent in the transverse direction. Conversely, the B-A edge

‡ For α = 30◦, the wallpaper group is p3m1, and there are three 3-fold axes of rotation and three

re�ection planes intersecting at the rotation centers.



Observation of topological gravity-capillary waves in a water wave crystal 7

Figure 3. Valley-selective excitation of water wave edge modes for two interfaces at

β = 0◦. (a) Numerical simulation and (b) experimental measure of transmission at 22

Hz. (c) Quantitative comparison of the transmission for A-B and B-A interfaces in the

experimental and numerical cases (over the full frequency range on the left and zoom

on the bandgap region on the right), as well as the case of the domain B. Dots are

used for experimentally measured points. Dispersion relations obtained for supercells

for the interface B-A in (d) and A-B in (e).

wave is composed of K2 evanescent valley vortex waves. As further discussed in the

Appendix, the sign of the topological charge is in direct connection with the sign of the

group velocity of the edge waves.

The possibility of coupling an externally incident plane wave with an edge wave

of the domain wall can be evaluated by comparing their modal �elds. We evaluate the



Observation of topological gravity-capillary waves in a water wave crystal 8

Figure 4. Water wave �elds obtained for di�erent geometries of interfaces at 22 Hz.

(a) Numerical simulation and (b) experimental transmission of a 30◦ interface. (c)

Numerical simulation of a 60◦ interface and (d) Numerical simulation of a zigzag shaped

interface.

following overlap integral

Ψ =
|
∫
∂Ω η0 · η(x, y) dy|∫
∂Ω |η(x, y)| dy

. (6)

computed on the interface ∂Ω between the crystal and the incidence region. The

resulting number, which varies between 0 and 1, measures the matching of the edge

mode with a plane wave with amplitude η0 = 1 along the interface ∂Ω. We found

numerically that ΨA−B ≈ 1 for the A-B DW, and that ΨB−A ≈ 0.03 for the B-A DW.

These numbers con�rm the asymmetry of coupling of the normally incident plane wave

to both edge modes. Furthermore, the overlap integral computed for all Bloch modes

(see Appendix) con�rms that transmission occurs only along DW A-B for all frequencies.

A DWwaveguide making an angle of 30◦ with respect to the direction of propagation

was also fabricated and tested (see Fig. 4(a-b)). Again, theory and experiment agree

and show that at the output interface a point-like source emission is obtained. Note

that the 30◦-rotated DW is not purely of the A-B or B-A type and actually combines K1

and K2 vortex states to funnel surface waves. The 60◦-rotated DW shown in Fig. 4(c) is

of the B-A type. Due to non normal incidence the K2 vortex edge wave can be excited

in this case. Finally, the Z shape DW of Fig. 4(d) combines a series of 120◦ turns and is
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of the A-B type. However, the latter crystal has a very low con�nement and was thus

only tested numerically.

3. Conclusion

To conclude, we performed an experimental demonstration of the existence of topological

edge states guided a domain wall of a water wave crystal, in the intermediate regime of

gravity-capillary waves. The edge states are a superposition of vortex waves carrying a

quantized topological phase [37] and can be described by a classical analogy to the valley

Hall e�ect [8, 47, 7]. A good qualitative agreement between theory and experiments

was obtained, with the capillary e�ects at the interface between water and the crystal

modeled via the use of an e�ective parameter. Our observations extend the reach

of topological wave physics to a wide range of physical platforms containing highly

dispersive media, not only water wave systems, but also elastic waves and plasmonics.
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Appendix

We describe in more detail experimental methods, the e�ective dispersion relation, the

phononic band structures, the overlap integral, and the vortex Bloch waves of the water

wave crystals considered in this work.

Experimental methods

The experimental apparatus we use to observe and image water waves is shown in Figure

1. Light impinging from a frequency modulated source is steered at the interface between

water and air, travels through the thin water tank and reaches the observation screen

after re�ection o� a mirror. A common phenomenological interpretation of the bright

lines observed on the screen is to link them to the wave crests that act as cylindrical

collecting lenses, while shades are linked with wave troughs that behave as diverging

lenses. However, the situation is in general far more complex and the relationship

between the pattern of light and shade on the screen and the ripple elevation above the

average water surface level is not straightforward [48]. In fact, it should be described

as the intersection of a three-dimensional caustics with the projection plane, taking

into account blurring due to source extension and chromatic dispersion [49]. Still, this

statement is mostly true for waves with strongly curved interfaces, that is for short

wavelength and large amplitude [50], and for cases where we observe interaction of

multiple waves [49]. In our case, with mostly very low wave amplitude in the crystal and

beyond, the light and shade patterns are not signi�cantly a�ected by these limitations

and bear direct link with the surface curvature, allowing to easily extract the signi�cant

quantities of the ripples using image processing.

E�ective dispersion relation

We consider waves propagating in linear, irrotational, and inviscid water. The velocity

vector derives from a velocity potential as v = ∇Φ. For the geometry depicted in

Figure 1 we can apply the method of separation of variables to write [42]

Φ(x, y, z, t) = Re[φ(x, y) cosh(κ(z + h))e−ıωt], (7)

with the water-air interface at z = 0. With this device, the original three-dimensional

problem is cast into a two-dimensional partial di�erential equation (1) with Neumann

boundary condition at the pillar-water interface.

Without the pillar in the hexagonal unit cell, periodicity is arti�cial and plane

wave propagation is governed by the dispersion relation (2) with surface tension

γ = 0.073 N·m−1 accounting for the water-air interface. The dispersion relation is

plotted in Fig. 5(b) and can be rewritten

1

2
ρω2 =

1

2
(ρgκ+ γκ3) tanh(κh), (8)
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Figure 5. Dispersion relation for water waves for a water level h = 7.3 mm.

with ρ = 1000 kg·m−3 and g = 9.81 m·s−1. Under that form, the left-hand side

accounting for the kinetic energy density density is balanced by the right-hand side

accounting for the potential energy density. The potential energy has two contributions,

from gravity and from surface tension.

With the pillar in place, there is an additional surface contribution to the potential

energy at the pillar-water interface. We do not attempt to model that contribution

precisely, but assume that it has a form similar to the term for the water-air interface,

and we remark that a positive surface tension must lead to an increase in the total

potential energy for one unit cell of the crystal. Since the kinetic energy must match

that increase for any solution of the Helmholtz equation, the phase velocity ω/κ must

increase accordingly. The increase in phase velocity is determined experimentally by

comparing the change in wavelength when the crystal is not in place and when it is.

Considering the crystal without a band gap (α = 0◦) and measuring the wavelength

at a frequency of 20 Hz, we monitor the change in wavenumber in Fig. 5. We infer

the e�ective value γeff = 0.17 N·m−1 for our samples. Of course, that particular value

depends on the crystal details, especially on the �lling fraction, and should not be given

a microscopic meaning. It is an e�ective parameter in the metamaterial sense, inferred

for the unit cell of the crystal considered as a whole. As a result, Eqs. (2) and (5) of the

main manuscript form a phenomenological model of the water wave crystal, su�cient

for qualitative comparison with experiment. It remains that obtaining a more precise

three-dimensional model would be necessary for a quantitative analysis.

Phononic crystal for water waves

The stochastic excitation method [45] is used to obtain the phononic band structure via

�nite element implementation of equation (5) in the main manuscript. This equation

is for a scalar unknown �eld, the elevation η(x, y), and has the form of a dispersive

Helmholtz equation. The main di�culty is that the coe�cients of the equation depend

on frequency. The stochastic excitation method circumvents the di�culty by �xing
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Figure 6. Computed dispersion relations obtained as the response to a stochastic

excitation [45] for a water level h = 7.3 mm for α = 30o in (a), α = 0o in (b). In the

lower row of panels, 5 di�erent angles are used and only the Brillouin zone direction

of interest, i.e. ΓK is depicted.

both frequency ω and wavenumber k and by observing the response of the system to a

spatially random force distributed inside the unit-cell. The unit-cell is the elementary

hexagon depicted in Fig. 1(b) of the main manuscript; dimensions are given in the

caption of the latter �gure.

The phononic band structures plotted in Fig. 6 show that the phononic band gap is

initially closed when the angle of rotation of the triangular pillars is zero, α = 0◦. When

α is increased or decreased, the phononic band appears symmetrically and gradually

opens until its maximum value obtained for |α| = 30◦ (see the lower row of the �gure).

Vortex Bloch waves

Decisive information is obtained regarding the topological properties of the crystal by

observing the Bloch waves belonging to the two bands de�ning the phononic band gap.

The space group symmetry of the crystal is illustrated in Fig. 7 for di�erent values of

the angle of rotation α. The wallpaper group changes from p31m for α = 0◦ to p3 for

0◦ < |α| < 30◦, and to p3m1 for |α| = 30◦. Following Ref. [37], we display in Fig. 8

the Bloch waves K1 and K2 lying on the �rst and the second band at the K point of the

�rst Brillouin zone for α = 30◦.

Bloch wave K1 follows the p3 symmetry. It mainly features three vortices centered

in the region where vertices of the triangles are closest. Note that the direction of

rotation of the vortices is opposite when the sign of α is reversed. They turn toward
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Figure 7. Wallpaper groups for crystals with di�erent values of rotation angle α.

3-fold rotation centers are indicated with red triangles; re�ection axes are indicated

with dotted lines.

the left for positive α and toward the right for negative α. Bloch waves K1 for ±α are

images in a glide re�ection of axis Ox and translation by half the lattice constant (they

are also images in glide re�ections rotated by 2π/3 and 4π/3).

Bloch wave K2 also follows the p3 symmetry and features three vortices centered

in the region where sides of the triangles are farther away. The direction of rotation

of the vortices is opposite when the sign of angle α is reversed, and is the opposite of

the direction of rotation of K1 vortices. As in the case of K1 Bloch waves, Bloch waves

K2 for ±α are images in a glide re�ection of axis Ox and translation by half the lattice

constant (they are also images in glide re�ections rotated by 2π/3 and 4π/3).

Vortex edge waves propagating along a domain wall

Bloch edge waves are obtained by considering a supercell of type A-B (A above B) or

B-A (B above A), as explained in the main text. The interest is mainly for their �eld

distribution for frequencies belonging to the phononic band gap. In this case, since the

band gap is complete, they must be evanescent in the transverse direction, i.e. their

amplitude decays exponentially away from the domain wall (DW). This is con�rmed by

the modal shapes shown in Fig. 9.
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Figure 8. Vortex Bloch waves at the K point of the �rst Brillouin zone. The color scale

is for the modulus of water elevation (normalized). The distribution of the Poynting

vector is shown with arrows. Vortex Bloch waves K1 and K2 are shown for pillars

rotated by either α = 30◦ or α = −30◦.

Figure 9. Domain wall vortex edge waves. The color scale is for the modulus of

water elevation (normalized). The distribution of the Poynting vector is shown with

arrows. The A-B domain wall is shown on the left and the B-A domain wall is shown

on the right. Close-up views are provided in order to illustrate the distribution of the

Poynting vector.
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Figure 10. Overlap integral for the B-A domain wall (left) and the A-B domain wall

(right) versus wavenumber (horizontal axis) and frequency (vertical axis).

The vortex Bloch waves K1 and K2 of Fig. 8 sit at the edges of the phononic band

gap and are thus not evanescent. Because the eigenvalue problem is analytic in the

complex plane as a function of the wavenumber k, we infer that the evanescent Bloch

waves inside the band gap can be continuously deformed from the K1 and K2 Bloch

waves. Since the edge waves are necessarily composed of such evanescent Bloch waves

of the crystal, matched at the DW, the formation of the edge waves can be understood

as a superposition of vortex Bloch waves. From the �eld distributions in Fig. 9, we

infer that the edge mode of the A-B DW is composed of K1 evanescent Bloch waves

and that the edge mode of the B-A DW is composed of K2 evanescent Bloch waves.

The Poynting vector arrows further con�rm that the A-B DW mode propagates with

opposite phase and group velocities, while the B-A DW mode propagates with phase

and group velocities of the same sign.

Overlap integral

The overlap integral measuring the coupling with a normally incident plane wave can

be computed for all Bloch waves of the DW supercells, similarly to the phononic band

structures shown in Fig. 3(d-e). The result is shown in Fig. 10 for domain walls A-B

and B-A. It can be clearly observed that the B-A DW mode cannot be exited by a plane

wave. This can be intuitively understood from the odd and even nature of the A-B and

B-A edge modes, shown in Fig. 9.


