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ABSTRACT
This paper proposes a way to verify temporal properties of a
Java class in an extension of JML (Java Modeling Language)
called JTPL (Java Temporal Pattern Language). We par-
ticularly address the verification of liveness properties by
automatically translating the temporal properties into JML
annotations for this class. This automatic translation is im-
plemented in a tool called JAG (JML Annotation Genera-
tor). Correctness of the generated annotations ensures that
the temporal property is established for the executions of
the class in isolation.

1. INTRODUCTION
Recently, significant progresses have been made in the

field of smart card application verifications. The develop-
ment of the Java Modeling Language project1 (JML) is a
part in these results [6]. The JML project defines a specifi-
cation language which is syntactically and semantically close
to Java, thus making specifications more accessible to Java
programmers. JML allows adding to the Java class tradi-
tional formal annotations like method pre- and postcondi-
tions and class invariants. However, it is difficult to directly
specify complex dynamic properties in JML, like temporal
properties [15] that are often needed to express the security
policies that the Java implementation has to ensure. For
example, no JML clause permits easy expression of the fol-
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lowings properties

“After the invocation of the method m

the property P must be satisfied in all the states”. (S)

“After the non-exceptional termination of the method m

a state where P holds must inevitably

be reached in the future”. (L)

Following [15], Property S is a safety property, expressing
that something bad – a state where ¬P holds after the in-
vocation of m – must never happen whereas L is a liveness
property, expressing that, under certain conditions – an in-
vocation of m –, something good – a state where P holds –
must inevitably happen in the future.

A key concept for reasoning modularly about safety prop-
erties is the notion of class invariant, i.e., a predicate over
the variables of the class that must hold along all the history
of all the instances of the class. Reasoning in a modular way
about invariant consists in: (a) considering only the class in
isolation [1], i.e., without regarding the program using the
class, we show that the constructor of the class establishes
the invariant and that each method of the class preserves it.
(b) showing that under certain conditions on the program,
the invariant is still satisfied.

We propose to address the expression and the verification
of liveness properties following the same approach. There-
fore, this paper particularly focuses on the first task, i.e.,
the verification of liveness properties in isolation.

For that, we provide in the paper (1) an execution path
semantics of a Java Class in isolation and a semantics of
the main JML annotations; (2) a primitive liveness opera-
tor Loop, inspired from [9], for expressing liveness properties;
(3) a way to verify on a class in isolation liveness proper-
ties expressed with the Loop primitive, by generating JML
annotations ensuring their satisfaction; (4) a tool, called
JAG [10] (for JML Annotation Generator) implementing an
automatic translation of liveness properties into standard
JML annotations that ensure the satisfaction of these prop-
erties. Translation of liveness properties is done through the
primitive Loop operator.

We particularly focus on Java card applet. So, this paper
focus on single Java Class in isolation and the problem of
inheritance and sub-typing is not addressed.

The paper is outlined as follows. Section 2 quickly presents
JML on an example. Section 3 presents the semantics frame-



work of the paper. In particular, Section 3.1 defines a se-
mantics for the class C in isolation whereas Section 3.2 gives
the semantics of JML main annotations. Section 4 presents
the verification of liveness properties on a class in isola-
tion, through appropriate annotation generation. Section 5
presents the JAG tool, implementing this automatic gener-
ation of annotations. Section 6 concludes and presents the
perspectives of future work.

Nota Bene: The proofs of propositions and theorems are
not included in this paper, but can be found in [14].

2. OVERVIEW OF JML AND EXAMPLE
JML (Java Modeling Language) [16] is a specification lan-

guage especially tailored for Java applications. Originally,
JML was proposed by G.T. Leavens and his team; the de-
velopment of JML is now a community effort. JML has been
successfully used in several case studies to specify Java ap-
plications, and notably to specify smart card applications,
written in Java Card [6, 13]. JML is developed following
the Design by Contract approach [21], where classes are an-
notated with class invariants and method pre- and post-
conditions. The predicates are written as (side-effect-free)
boolean Java expressions, extended with specific constructs.
Specifications are written as Java comments marked with a
@, i.e., annotations follow //@ or are enclosed between /*@

and @*/. Below, we give a brief introduction to the main
specification constructs of JML, by means of the example in
Fig.1.

The class Buffer works as follows. A method storeData()

personalizes the application by setting the length of the
transaction. One can initialize a new transaction with the
method begin(), creating a new temporary buffer. Then,
a write() method fills the modifications in the temporary
buffer, that is validated, i.e., assigned to the attribute
status, by an invocation of commit. It is also possible to
abort the transaction (abort()).

Figure 1 presents the main JML annotations on the sim-
ple example of a buffer. It shows a declaration of a class
invariant, denoting a predicate that has to hold before and
after every method call, i.e., in so-called JML visible states.
History constraints allow expressing a relation between the
pre- and post-state of all methods. Pre-state values of ex-
pressions are denoted by the JML keyword \old. Using the
clause for, one may specify the list of the methods for which
the history constraint must be satisfied. When this clause
is omitted, the constraint must hold for all the methods of
the class. The clause requires denotes the precondition
of the method, i.e., a predicate that must be true when
the method is called. A postcondition is expressed with an
ensures clause. A method may terminate exceptionally by
throwing an exception and satisfying the exceptional post-
condition (signals clause). The assignable clause gives
the list of variables that can be potentially modified by the
method. A method without side-effect is denoted by the
keyword pure. The specification of a method can also con-
tain a diverges clause (not displayed in this example). If
the predicate of a diverges clause of a method m is satisfied
by the pre-state of m, then the execution of m may not ter-
minate. Otherwise the method must terminate. By default,
the JML diverges clause is set to false. A method with a
helper modifier may not preserve the invariant. JML also
introduces its own variables – declared with the keyword

ghost. A special set annotation exists to assign their value.
In the rest of the paper, given a method m, we denote

by requires(m) (resp. diverges(m)), the predicate of the
requires clause of m (resp. the diverges clause). The
correctness of a Java class C w.r.t. a JML annotation A,
denoted C : A in the rest of the paper, can be established
by model-checking [24] or by a prover (B or Coq) via a proof
obligation generator (Jack[8] or Krakatoa [20]).

3. A JAVA EXECUTION SEMANTICS
Linear temporal properties [23] have a semantics over infi-

nite executions of a program. So, to express such properties
in terms of equivalent JML annotations, we need a path
semantics of the JML. This semantics is presented in this
section.

3.1 Class in Isolation Semantics
In this section, we define, in term of execution paths the

semantics of a class C in isolation. A class C is the descrip-
tion of a set of objects IC , called the instances of C.

Definition 1 (Java Class) A class C is a tuple (VC , MC)
where VC is the set of attributes of the class, MC is the set
of methods of the class. Within the set MC of methods, we
consider the following particular subsets:

• ConsC ⊆ MC the set of constructors of the class.

• HelperC ⊆ MC the set of helper methods of the class.

• PMC the set of progress (side-effect) methods. The set
of non-progress (pure) methods is denoted by PMC.
Notice that MC = PMC ∪ PMC.

Notice that, as said before, we do not consider in this paper
the problem of inheritance. Intuitively, an execution path of
a Java statement is the sequence of memory states reached
during the execution of the statement. The structure of the
memory model is not in the scope of the paper, but has
been formally specified in [26] or [20]. Intuitively, it is com-
posed of a heap, mapping variables to memory addresses
and a store, mapping addresses to their values. JML pred-
icates are pre/post predicates, therefore they are evaluated
on two memory states. Let P ∈ Pred be a JML predi-
cate and let spre and scur be two memory states, we denote
by (spre, scur) |= P the satisfaction of P at these memory
states. The values of the variables with an \old are in spre

and the others are in scur. If P does not contain variables
relating to a preceding state, i.e., no \old, then we simply
denote scur |= P . Given a state s and a variable a, s(a)
returns the value of a in the state s. The Java memory con-
tains also an execution stack [18]. As in Logozzo [19], we do
not explicitly use the execution stack, heap and store but we
assume to have special variables to observe it.

Definition 2 (Special Variables)
Let s be a memory state, assume to have the following special
variables:

• s(excp), a flag denoting that an exception has been
thrown.

• s(stackHeight), the height of the execution stack.



public class Buffer {

int len;
byte [] status;

byte [] buffer;
int position = 0;
boolean perso = false;

//@ ghost boolean trDepth = false;

//@ invariant position >= 0;

/*@ constraint position > \old(position)
@ for write;
@*/

/*@ normal_behavior

@ requires perso == false;
@ requires l > 0;
@ assignable len,perso;

@*/
void storeData(int l){

len = l;
perso = true;

}

/*@pure@*/ byte [] getStatus(){

return status;
}

/*@pure@*/ int getBufferLess(){

return len - buffer.length;

}

/*@ normal_behavior
@ requires trDepth == false;
@ requires perso == true;

@ assignable buffer;
@ also

@ exceptional_behavior
@ requires perso == false;

@ assignable \nothing;
@ signals (Exception e) true;
@*/

void begin() throws Exception{
if (perso == false) {

throw new Exception();
}
buffer = new byte[len];

//@ set trDepth = true;
}

/*@ normal_behavior

@ requires trDepth == true;
@ requires perso == true;
@ assignable status,position;

@*/
void commit(){

status = buffer;
position = 0;

//@ set trDepth = false;

}

/*@ normal_behavior
@ requires trDepth == true;
@ requires perso == true;

@ assignable position;
@*/

void abort(){
position = 0;

//@ set trDepth = false;
}

/*@ normal_behavior
@ requires trDepth == true;

@ requires perso == true;
@ requires position < len;
@ assignable position;

@ assignable buffer[position-1];
@ ensures position <= len;

@ ensures position == \old(position)+1;
@*/

void write(byte b){
buffer[position] = b;
position++;

}

}

Figure 1: Class Buffer

• s(curMethod), the current method (the method on the
top of the stack).

• s(curInstance), the pointer on the current object.

Intuitively, we define a path of a Java statement T as a
sequence of states that are reached during the execution of
T . For that, we assume a transition relation → associated
to each Java statement T . Readers can find an example of
such a relation in [12] for a sequential Java core.

Definition 3 (Java Statement Path) Let s0 be a Java
state and let T be a Java statement, the path of T , denoted
s0[T ] is either:

• if T terminates, the finite sequence σ of states
s0, s1, s2, . . . , sn such that ∀i.(0 ≤ i < n ⇒ (si →
si+1)); or

• if T diverges, the infinite sequence σ of states
s0, s1, s2, ... such that ∀i ≥ 0.(si → si+1).

In the rest of the paper, we denote by si the ith state of the
execution path σ. We denote by ε the empty path and given
an execution path σ the path suffix σi denotes the infinite
path si, si+1, si+2 . . . and the path segment σ

j
i denotes the

finite path si, si+1, si+2 . . . sj . A predicate P without \old
holds on σi and σ

j
i if si |= P as in LTL logic [23]. Given a

finite path σ = s0, . . . , sn and another path σ′ = sa, sb, . . . ,
the sequential composition of σ and σ′, denoted σ, σ′ is equal
to the path s0, . . . , sn, sa, sb, . . . .

As explained in Section 1, we aim at verifying that a prop-
erty of a class C is satisfied by any instances of C and by
any programs using the class C.

Therefore, we introduce a class in isolation semantics,
handling all potential executions of all instances of a class
C.

As explained in Sect. 2, JML considers only visible states,
i.e., states before the invocation of a non-helper method or

after the termination of a non-helper method. Therefore,
we define the notions of pre- and post-states for a method
m as follows.

Definition 4 (Pre-, Post-, Matching Post- and Inner-
state of a Method) Let σ be a path, let si be its ith state
(with i > 0) and let m be a method. We say that si is a
pre-state of m, denoted si |= pre(m) if:

si(curMethod) = m and
si(stackHeight) = si−1(stackHeight) + 1

si is a post-state of m, denoted si |= post(m) if:

si(curMethod) = m and
si(stackHeight) − 1 = si+1(stackHeight)

Given a pre-state si of m, a state sj, where j > i is its
matching post-state sj, denoted sj |= postsi

(m), if:

sj |= post(m) ∧ sj(stackHeight) = si(stackHeight)
∧∀k.(i < k < j ⇒ (sk(stackHeight) ≥ si(stackHeight))).

Let i be the index of the pre-state of m, let j be the index of
its matching post-state, a state sk is an visible inner-state
of m, denoted sk |= innersi

(m) if i ≥ k ≥ j. If m does not
terminate, sk is an inner-state if i ≥ k.

Then, we define the notion of visible states following [16].

Definition 5 (Visible States)
Given a Java execution path σ, the state si is a visible state
for an instance iC of the class C, denoted si |= visible(iC)
either if

• si is the post-state of a constructor of iC ,

si |= post(m) ∧ m ∈ ConsC ∧
si(curInstance) = iC , or



• si is the pre-state of a non-helper method invoked on
iC ,

si |= pre(m) ∧ m ∈ MC ∧ m 6∈ ConsC ∧
m 6∈ HelperC ∧ si(curInstance) = iC , or

• si is the post-state of a non-helper method invoked on
iC .

si |= post(m) ∧ m ∈ MC ∧ m 6∈ ConsC ∧
m 6∈ HelperC ∧ si(curInstance) = iC .

Therefore, for easily reasoning about JML, we define the
notion of visible state execution path as follows:

Definition 6 (Visible State Abstraction and Visible
State Execution Path) Let σ be an execution, we de-
fine the visible state abstraction for an instance iC , denoted
vsaiC (σ), by:

• vsaiC (ε) = ε

• if s0 |= visible(iC) then vsaiC (σ) = s0, vsaiC (σ1) else
vsaiC (σ) = vsaiC (σ1).

Given a Java statement S, we define the visible state execu-
tion path of S on a state s0, denoted s0[S]iC , as follows:

s0[S]iC =def vsaiC (s0[S])

Notice that the visible state abstraction hides:

• The details of the C method’s body execution.

• The invocations of helper methods.

• The invocations of methods of other classes (both meth-
ods of other classes invoked by C and by the environ-
ment of C).

Let Σ be a set of paths, the visible state abstraction of Σ
w.r.t. an instance iC , denoted vsaiC (Σ) is defined as the set
of all the abstractions of the paths of Σ, i.e.,

vsaiC (Σ) = {vsaiC (σ)|σ ∈ Σ}.

Then, we define the semantics of an instance iC in iso-
lation, denoted ΣiC . The semantics of iC captures all the
potential executions of iC . So, it is intuitively the set of all
paths ΣiC starting at invocation of a constructor creating
iC , followed by an arbitrary number of invocations on iC of
the methods of C within their preconditions.

Definition 7 (Instance Semantics) Let iC be an instance
of C = (VC , MC), we denote ΣiC the set of executions iter-
atively defined as follows:

• ε ∈ ΣiC .

• Let s0 be a state, let m ∈ ConsC . If s0 |= requires(m)
then

s0[(m, iC)]iC ∈ ΣiC .

• Let σ ∈ ΣiC be a finite execution and sn be its last
state. Let sn+1 be a state such that ∀v ∈ VC .(sn(v) =
sn+1(v)). Let m such that m ∈ MC∧m 6∈ ConsC∧m 6∈
HelperC. If sn+1 |= requires(m) then:

(σ, (sn+1[(m, iC)]iC )) ∈ ΣiC .

The class semantics of a class C is defined as the set of all
executions of its instances.

Definition 8 (Class semantics) Given a class C, let IC

be the set of instances of C. We define ΣC , the semantics
of the class C, by:

ΣC =def

⋃

iC∈IC

ΣiC

3.2 JML Semantics
To express temporal properties by JML annotations, we

need an execution semantics of JML annotations. To our
knowledge, JML semantics has been given in terms of wp-
calculus (see for example [20]), but never in terms of prop-
erties of the execution paths. We propose in this section
a semantics for the invariant clauses, constraint clauses
and a behavior specification.

Definition 9 (Path Execution Semantics of JML an-
notations) Given a set of executions ΣC of a class in iso-
lation, the path execution semantics of JML annotations is
displayed in Fig. 2.

The semantics is given w.r.t. the definition in [16]. It
must be understood as follows2 .

• Invariant: The invariant must be satisfied by each
visible state.

• Constraint: For the body of each method included
in the for clause, the constraint must hold between
the pre-state and the post-state, but also between all
visible states that arise during the execution of the
method, i.e., all inner states of the method.

• Behavior method specification: each specification of
a method can be desugared as a behavior specifica-
tion [16]. This JML specification is interpreted on a
path as follows. i If the predicate P of the requires

clause is satisfied by the pre-state of the method m,
that implies:

– If the predicate D of the diverges is satisfied
on the pre-state, then if the method terminates,
i.e., the method has a post-state, the predicate Q

of the ensures clause must be satisfied between
the pre-state and the post-state if it is a normal
termination (sj(excp) = false). Otherwise, i.e.,
if it is an exceptional termination, the predicate
R must be satisfied.

– If the predicate D of the diverges is not satis-
fied on the pre-state, then the method must ter-
minate, i.e., the method must have a post-state.
Moreover, if it is a normal termination the pred-
icate Q must be satisfied, and the predicate R

must be satisfied otherwise.

Notice that in each case, only attributes within the list
A of the assignable clause can be modified (∀a.(a ∈
VS ∧ a 6∈ A ⇒ (si(a) = sj(a)))).

2The definitions of constraint and assignable are pro-
posed accordingly to the semi-formal description in [16]. No-
tice that, for technical reasons, an alternative semantics of
these clauses has been implemented in some tools



//@ invariant I; ≡def ∀σ ∈ ΣC . ∀i ≥ 0 . σi |= I

//@ constraint H for M; ≡def ∀σ ∈ ΣC . ∀i ≥ 0 . ∀m ∈ M.
(si |= pre(m) ⇒

(∀k1, k2.(i ≤ k1 < k2

∧sk1
|= innersi

(m) ∧ sk2
|= innersi

(m)− ⇒
(sk1

, sk2
) |= H)))

/*@ behavior;
@ requires P;
@ diverges D;
@ assignable A;
@ ensures Q;
@ signals
@ (Exception e) R;
@*/

m()

≡def

∀σ ∈ ΣC . ∀i ≥ 0 .(
((σi |= (P ∧ ¬D) ∧ σi |= pre(m)) ⇒

∃j > i.(
(sj |= postsi

(m) ∧ sj(excp) = false
∧(si, sj) |= Q
∧∀a.(a ∈ VS ∧ a 6∈ A ⇒ (si(a) = sj(a))))

∨
(sj |= postsi

(m) ∧ sj(excp) = true
∧(si, sj) |= R
∧∀a.(a ∈ VS ∧ a 6∈ A ⇒ (si(a) = sj(a)))))

∧
((σi |= (P ∧ D) ∧ σi |= pre(m)) ⇒

∀j > i.(
(sj |= postsi

(m) ∧ sj(excp) = false ⇒
(si, sj) |= Q
∧∀a.(a ∈ VS ∧ a 6∈ A ⇒ (si(a) = sj(a))))

∧
(sj |= postsi

(m) ∧ sj(excp) = true ⇒
(si, sj) |= R.
∧∀a.(a ∈ VS ∧ a 6∈ A ⇒ (si(a) = sj(a))))))))

Figure 2: Path execution semantics of JML annotations

4. LIVENESS PROPERTIES VERIFICATION
This section deals with the verification of liveness proper-

ties on the execution semantics ΣC of a class C. For that, we
presents in Section 4.1 a liveness primitive operator Loop.
Under a progress hypothesis on the environment presented
in Section 4.2, the satisfaction of the Loop operator can be
ensured by appropriates JML annotations. This result is
established in a theorem given in Section 4.3.

4.1 The Loop Primitive
In this section, Q denotes a JML predicate, M denotes a

subset of PMC , and V denotes a JML expression returning
an integer. The Loop(Q, V, M) primitive is satisfied by an
execution if, after any states of the execution satisfying Q, a
state where ¬Q holds must eventually be reached. Besides
the predicate Q marking the loop entry condition we also
require, to prove the termination of the loop, a variant V

and a set of methods M ⊆ PMC .

Definition 10 (Loop Primitive) Loop(Q, V, M)3 holds on
an execution σ, written σ |= Loop(Q,V, M), if

∀i.((i ≥ 0 ∧ σi |= Q) ⇒ (∃j.j > i ∧ σj |= ¬Q)).

If σ is a finite execution of length n, σ |= Loop(Q, V, M) if

∀i.((0 ≤ i ≤ n ∧ σi |= Q) ⇒ (∃j.i < j ≤ n ∧ σj |= ¬Q)).

Notice that the variant V and the set M of methods do not
appear in the above expression since they are only used to
generate the appropriate proof obligations for the termina-
tion of the loop. For the verification of the Loop operator, fi-
nite executions are viewed as infinite executions by infinitely

3Notice that Loop(Q,V,M) semantics corresponds to LTL
property GF¬Q.

repeating the last state of the execution. The infinite exten-
sion of a finite execution is the following.

Definition 11 (Infinite Extension of Finite Execution)
Let σ be a finite execution s0, s1, s2 . . . , sn. We extend it to
the infinite sequence σ′ such that σ′ is s0, s1, s2 . . . , sn, sn, . . . .

The infinite extensions of finite executions are suitable for
verifying the Loop primitive.

Lemma 1 Let σ be a finite execution, σ′ be the infinite ex-
tension of σ. We have

σ
′ |= Loop(Q,V, M) ⇔ σ |= Loop(Q,V, M)

Notice that ΣC contains all potential executions of in-
stances of C. We address the verification of a particular
subset of ΣC that satisfies a progress hypothesis.

4.2 Progress Hypothesis PH
Using the semantics of LTL [23], Hypothesis PH(Q,M) is

expressed by the LTL operators G∞ (“almost everywhere”)
and F∞ (“infinitely often”).

Intuitively, G∞P means that after a finite number of states,
the property P holds forever. The semantics of G∞ is the
following

σi |= G
∞

P ≡def ∃j ≥ i.(∀k.(k ≥ j ⇒ σk |= P )).

Given a predicate P , the formula F∞P means that at any
state of the execution, there always exists a future state
verifying P . Formally,

σi |= F
∞

P ≡def ∀j ≥ i.(∃k.(k ≥ j ∧ σk |= P )).

In order to verify ΣC |= Loop(Q, V, M), we need to assume
progress of the environment, i.e., the environment invokes



the methods of the subset M of the progress methods. Two
behaviors of the environment are allowed:

• The environment calls methods in M infinitely often.

• The environment performs a finite number of invoca-
tions of methods in M until a state i such that any
state of σi satisfies ¬Q.

Therefore, we define the progress hypothesis PH(Q,M) as
follows.

Definition 12 (Progress Hypothesis PH(Q,M))

(G∞¬Q) ∨ (F∞
pre(M)) (PH(Q,M))

where pre(M) denotes the predicate
∨

m∈M pre(m).

We denote ΣC/PH(Q,M) the subset of executions of ΣC

satisfying PH(Q,M).

Definition 13 (Class under PH(Q,M)) ΣC/PH(Q,M) is
the set of execution defined as follows.

ΣC/PH(Q,M) = {σ|σ ∈ ΣC ∧ σ |= PH(Q,M)}.

In the next section we show how to use appropriate JML an-
notations for establishing that ΣC/PH(Q,M) |= Loop(Q,V, M).

4.3 Annotations for the Loop operator
Verification of the Loop primitive is quite similar to a ter-

mination proof, since we have to show that as long as Q it
must always be possible to invoke a method of M and meth-
ods in M must decrease a well founded variant V . Here we
propose proof obligations – inspired from [9] – expressed as
JML annotations. These proof obligations guarantee the
satisfaction of the Loop primitive by an execution satisfying
the hypothesis PH(Q,M).

Let Loop(Q,V, M) be the Loop primitive. Let A1−5 be
the following set of JML annotations.

//@ invariant V >= 0; (A1)

//@ constraint Q ==> V < \old(V ) for M ; (A2)

//@ constraint Q ==> V <= \old(V ) ; (A3)

//@ invariant Q ==>
∨

m∈M

requires(m) (A4)

//@ invariant Q ==>
∧

m∈MC

(requires(m) ==> !diverges(m));

(A5)

Intuitively, A1−5 could be understood as follows.

A1 The variant V actually is greater than zero, i.e., it is
an expression over a well-founded set.

A2 As long as Q holds, when a method in M is executed,
the variant V must decrease. It ensures the progress
when the environment satisfies PH(Q,M) (livelock-
freeness).

A3 As long as Q holds, when a method of C is executed,
the variant V must not increase.

A4 As long as Q holds there always should be a method
in M that might be called, i.e., its precondition holds.
This ensures the deadlock-freeness of the system.

A5 As long as Q holds, all callable methods must not di-
verge. This ensures the non-divergence of the system.

Hypothesis PH(Q,M) is the disjunction of (F∞pre(M)
and G∞(¬Q), therefore, for each of these hypothesis, we
show respectively in Lemma 2 and Lemma 3 that, assuming
that the code of the class is correct w.r.t. the annotations
A1−5 (C : A1−5), the satisfaction of Loop (Q,V, M) is es-
tablished on ΣC .

Lemma 2 If C : A1−5 and σ ∈ ΣC and σ |= (F∞pre(M))
then σ |= Loop(Q,V, M).

Lemma 3 If C : A1−5 and σ ∈ ΣC and σ |= G∞(¬Q)
then σ |= Loop(Q,V, M).

A consequence of Lemma 2 and Lemma 3 is the following
theorem.

Theorem 1

If C : A1−5 then ΣC/PH(Q,M) |= Loop(Q,V, M).

An interesting property is obtained when M = PMC .
In this particular case, Hypothesis PH(Q,M) is not only
sufficient, but also necessary.

Proposition 1 When M = PMC, given σ ∈ ΣC , σ |=
Loop(Q,V, M) and C : A1−5 imply that σ |= PH(Q,M).

We now show how liveness properties (expressed here in
JTPL) can be embedded into a Loop primitive.

5. JML ANNOTATION GENERATOR TOOL
The generation of annotations for safety properties in [25]

and of liveness properties presented in Sect. 4 is implemented
in a tool, called JAG (for JML Annotation Generator) [10].

The JAG tool takes as an input a formula expressed in
JML Temporal Pattern Logic (JTPL), first introduced in [25].
A JTPL formula is a combination of JML predicates, events
and temporal operators. Using JTPL formulae, one can ex-
press, on the example of the Buffer (see Fig. 1 Sect. 2), the
following properties:

1. After the invocation of storeData (after storeData

called), the variable perso is always true, expressed
in JTPL as follows.

after storeData called always perso; (S)

2. After starting a transaction, i.e., the normal termi-
nation of the method begin (after begin normal),
a state where trDepth is false must eventually be
reached.

after begin normal eventually !trDepth

under variant getBufferLess()

for begin, commit, abort, write . (L)

Notice that in Property L, the event is begin normal and
not begin called since a buffer transaction starts only when
the method begin terminates normally. Notice also that
since Property L is a liveness property, the user gives a vari-
ant and a set of progress methods with the JTPL clause
under variant ... for.

The result of the translation of Properties S and L is
displayed in Fig. 3.



public class Buffer {

//@ ghost boolean witness S = false; (Sa)

//@ ghost boolean witness L = false; (La)

/*@ invariant witness S
@ ==> perso;
@*/

(Sc)

//@ invariant getBufferLess() > 0;
/*@ constraint witness L ==>

@ getBufferLess() < \old(getBufferLess())
@ for begin,comit, abort, write;

@*/

/*@ constraint witness L ==>
@ getBufferLess() <= \old(getBufferLess())
@*/

/*@ invariant witness L ==> (

@ (trDepth == false && perso == true) ‖
@ (trDepth == true && perso == true) ‖
@ (trDepth == true && perso == true

@ && position < len))
@*/

(Lloop)

void storeData(int l){
...
//@ set witness S = true; (Sb)

//@ set witness L = !trDepth; (Lc) }

void begin(){
try { (Lb)

...
//@ set witness L = !trDepth; (Lc)

}
catch (Exception e) {
throw e;
}
finally {
//@ set witness L = true;
}

(Lb)

}
void commit(){
...
//@ set witness L = !trDepth; (Lc) }

void write(byte b){
...
//@ set witness L = !trDepth; (Lc) }

void byte[] /*@ pure @*/ getStatus(){
... }
}

Figure 3: Buffer with generated annotations

1. First, JAG generates a ghost boolean variable for ob-
serving the occurrences of the events of the temporal
properties. These ghost variables are assigned w.r.t.
the events occurring in the formula.

Example 1 (Ghost Variables Generation for S)
The ghost variable witness S, corresponds to the event
storeData called of S. It is initially declared with
the value false (see Annotation Sa in Fig. 3) and it
is set to true when the method storeData is called
(see annotation Sb). So, in each state after the event
storeData called, the value of the ghost variable wit-

ness S is true, i.e., witness S is true exactly with the
scope of the property.

Example 2 (Ghost Variables Generation for L)
The ghost variable witness L, corresponding to the
event begin normal of the temporal property L is
also declared with the value false (Annotation La in
Fig. 3). The ghost variable witness L is assigned us-
ing a try...catch...finally statement (see annota-
tion Lb). Notice that, in case of exception, the caught
exception is re-thrown, the execution does not go into
the finally block, the reader can see that witness L is
set to true only when begin normal occurs. The
ghost variable witness L is set to false again by
adding to each method a set statement (annotation
Lc).

2. Second, it generates an invariant to ensure the satis-
factions of a safety property.

Example 3 (Invariant Generation for S) The in-
variant for S is displayed in Fig. 3 (annotation Sc). It
means that when the variable witness S is true, i.e.,
after the first occurrence of storeData called, the
predicate (perso == true) must be true - the defini-
tion of Property S.

3. Finally JAG translates each liveness property into a
Loop primitive and generates the corresponding JML
annotations.

Example 4 (Generation of annotations for L)

The JML primitive corresponding to L is

Loop(witness L, getBufferLess(),

{begin, commit, abort, write})

The corresponding annotations are displayed in Fig. 3
(see Annotations Lloop).

Notice that, since no method of Buffer diverges, An-
notation A5 does not appear.

The tool is able to keep the trace of the generated annota-
tions, i.e., it is possible, given a generated annotation, to find
the original intermediate primitive and the original temporal
property. Since the generated output file contains standard
JML annotations, it can be used with other JML tools [7]
to validate or prove the temporal formulae. In particular,
we have successfully used it for the following purposes.

• Verification of the correctness of the Java code
w.r.t. the JML annotations with the proof obliga-
tion generators Jack [8] and Krakatoa [20].

• Validation of a JML model with JML-TT [5];

• Formal verification of a JML model with the
JML2B method [2];

• Test generation and Runtime Assertion Check-
ing with the test generators Tobias [17], Jartege [22]
and JML-TT [4].

Test generation and Runtime Assertion Checking using JAG
has been studied on a industrial Javacard application [3].



6. CONCLUSION AND FUTURE WORKS
This paper presents a way to verify liveness properties on

Java classes in isolation by generating appropriate JML an-
notations. This requires that the user specifies a variant for
the verification of a Loop primitive to which liveness prop-
erties are reduced. The generated JML annotations are ver-
ified (or validated) with any tools handling JML. The JAG

tool implements this translation. It has been used for several
toy examples and a Java Card Electronic Purse Specification
(over 500 lines of JML).

To the best of our knowledge, this is the first attempt to
verify liveness properties for potentially infinite-state sys-
tems using a translation into JML. For finite state systems,
liveness properties expressed in LTL are usually verified au-
tomatically by model checkers such as SPIN [11]. For infinite
state systems, model checking is used on liveness preserving
abstractions.

Currently we are working on extensions of JAG to other
temporal properties. In particular, we currently address
the verification of properties expressed by Büchi automata.
Then, the Büchi acceptance condition is checked using Loop

primitives introduced in this paper. The second challenge is,
assuming that a liveness is established on the class in isola-
tion, to provide techniques for verifying that the (single- or
multi-threaded) environment effectively satisfies PH(Q,M).
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