
Preserving Data Security in Distributed Fog Computing

Hassan Noura1, Ola Salman1, Ali Chehab1, and Raphaël Couturier2

1Electrical and Computer Engineering, American University of Beirut (AUB), Beirut, Lebanon
2Univ. Bourgogne Franche-Comté (UBFC), FEMTO-ST Institute, CNRS, Belfort, France

Abstract—In this paper, a novel cryptographic so-
lution is proposed to secure data in fog computing.
The solution combines the AES-GMAC operation mode
with information dispersal over GF(2w) to provide data
confidentiality, integrity, and availability along with
source authentication. The value of w is flexible (8, 16,
32 or 64) and it could be configured according to the fog
device features. Moreover, the proposed cryptographic
solution is based on the dynamic key-dependent ap-
proach, which allows for a good compromise between
the security level and computational complexity. In the
proposed solution, the collected data at one fog node
is encrypted, authenticated and dispersed in a pseudo-
random manner to its n neighbor fog nodes. For data
recovery, any k of the n fragments along with the
corresponding dynamic key are required to retrieve the
original data. This complicates the attacker’s task who
needs to compromise at least k fog nodes to disclose
the encrypted data. Additionally, attackers should seek
the dynamic key, which is different for each input data.
On the other hand, redundant fragments protect the
stored data against up to (n− k) fog nodes’ failure or
unavailability. The security and performance analysis
tests show that the proposed security scheme exhibits a
high level of efficiency and robustness.

I. INTRODUCTION

With the emergence of the Internet of Things (IoT),
billions of devices will be connected to the Internet,
ranging from low power devices (e.g. sensors) to
more capable ones (e.g. cars), and the heterogeneous
set of connected devices exhibits different capabil-
ities in terms of power, processing, storage, and
utilizes different communication protocols. Addition-
ally, different applications will run on top of these
devices consuming and generating various kinds of
data with different sizes, semantic, frequency, and
privacy levels. According to the International Data
Corporation (IDC), 40 trillion GB of data will be
generated by 2020. In this era of big data, novel IT
and data technologies have emerged to manage this

enormous amount of data. Pushing all the data to the
cloud presents limitations in terms of the required
bandwidth and latency. Fog computing has been
introduced to overcome these limitations, bringing the
data to the network edge. It consists of deploying
data processing, management, and storage ”close” to
the users’ devices to enable time-critical applications.
Note that fog computing is not an alternative to cloud
computing, but rather a complementary one. Thus,
the connection between fog nodes and the cloud is
mandatory. The collected data is analyzed and pushed
to the cloud for backup and the short-term data is tem-
porarily stored at fog nodes. This sort-term data can
be of critical type such as user credentials. The fog
node can be a network device (e.g. gateway, router,
etc.), a user device (e.g. laptop, mobile phone, etc.),
or a small data center. Thus, given the constrained
capabilities of fog nodes in terms of power, storage,
and processing, data security faces a major challenge.
Since traditional cryptographic operations are energy
or memory consuming, these security solutions are
not appropriate for fog computing, and on the other
hand, a poorly designed lightweight solution would
lead to compromising the constrained fog nodes.
Accordingly, it is essential to have an efficient scheme
for secure data storage to ensure data confidentiality,
availability, and integrity with source authentication,
while having low latency, energy and/or memory
consumption to meet the fog node constraints.

A. Contributions

This paper introduces a novel scheme for data
protection within fog computing. It combines secret
sharing over GF(2w) with the use of a dynamic key-
dependent approach to achieve data protection and
availability, where w is flexible and it can be set
to 8, 16, 32 or 64. The proposed method consists

of dispersing the collected data into n encrypted
fragments using a dynamic key that changes at a
periodic interval. For data recovery, any k of the
n fragments, along with the corresponding dynamic
key are required. The encrypted fragments are then
distributed over the fog node’s neighboring nodes.
As such, an attacker has to compromise at least k
fog nodes to obtain the useful analyzed information.
On the other hand, redundant fragments protect the
stored data against the failure or unavailability up to
(n− k) fog nodes.

B. Organization

This paper is organized as follows. Section II
describes briefly relevant related works. In Section
II, a review of the different secret sharing schemes
is included. Section IV presents the network and
threat models, summarizes the notations used in this
paper, and defines the design goals and the evaluation
metrics. In Section V, the proposed key derivation
function and cipher primitives construction methods
are presented. Then, Section VI describes in details
the proposed cryptographic solution. Section VIII
presents the experimental security analysis. More-
over, a cryptanalysis discussion is introduced in Sec-
tion VIII. Section IX evaluates the performance of
the scheme. Finally, an insight into possible future
work concludes the paper.

II. RELATED WORK

Securing IoT networks is key to enable their wide
adoption. While previous works consider the protec-
tion of IoT devices [1], the focus of our proposed
solution is about data protection. Data security is one
of the key challenges in the big data era [2]. In this
context, securing the data in cloud computing invoked
the efforts of crypt-analysts, network security experts,
software security engineers, and many others, and
data breaches are still occurring within cloud comput-
ing [3]. In fact, the data security issue is aggravated
in the case of fog computing [4]. Delivering Security
as-a-Service (SECaaS) was proposed to ensure end-
to-end system security including fog nodes, network,
and data security [5]. In this paper, we focus on
cryptographic solutions for data security. Such solu-
tions have been widely used in cloud computing to

ensure data confidentiality, privacy, and integrity [6],
[7]. However, the application of these solutions in the
fog domain is not a straightforward task. To preserve
the confidentiality of data, lightweight symmetric and
asymmetric encryption algorithms were proposed in
the literature to cope with energy-constrained devices
[8], [9]. Within this context, we aim at guaranteeing
data integrity, availability, source authentication in
addition to data confidentiality of fog devices by
proposing a symmetric cryptographic solution that re-
quires fewer computations and resources when com-
pared to the asymmetric solutions [8]. The proposed
solution targets fog devices that are computationally
constrained and thus, not capable of preforming in-
tense computations; they are capable of performing
very basic operations and lightweight encryption. In
this respect, few recent works proposed data security
solutions for the fog computing domain, including
the data privacy issue. In [10]–[12], the vehicular
network case was considered, where one of the most
private information, the users’ location, is exposed
to malicious threats. In [10], the authors present a
solution based on Ciphertext-Policy Attribute Encryp-
tion (CP-ABE) to preserve data privacy and confiden-
tiality. The solution minimizes the access latency by
predicting user’s mobility and pushing useful data to
the nearest fog node. In [11], a reliable and privacy-
preserving task re-composition (REPTAR) for vehic-
ular crowd-sensing data is presented. The solution is
based on a modified homomorphic Paillier encryption
and super-increasing sequence to preserve crowd-
sensed data privacy, confidentiality, and integrity.
In [12], the authors proposed a solution based on
certificate-less aggregate signcryption (CLASC) for
securing road surface condition crowd-sensing. The
solution preserves data confidentiality, integrity, mu-
tual authentication, privacy, and anonymity. Differ-
ential privacy preserving query model is proposed
in [13], and Laplacian noise is added to ensure the
robustness of the proposed solution. In [14], a secure
fog orchestrator is presented based on secure-by-
design protocols. The solution is meant to deliver IoT
services while preserving privacy in a compromised
network. In [15], data de-duplication with dynamic
ownership management is proposed for privacy pre-
serving of multi-party owned data. A proof of own-

ership process with an asymmetrical key system is
employed to manage the data access control. Securing
aggregated data at the fog level is considered in [16],
[17]. In [16], homomorphic Paillier encryption, Chi-
nese Remainder Theorem, and one-way hash chain
techniques are combined to ensure the privacy of the
aggregated data communicated from the fog nodes
to the cloud. In [17], Domingo-Ferrer additive pri-
vacy scheme is applied to preserve privacy of the
aggregated data at the fog level while minimizing
storage and communication overhead. Being a dis-
tributed security solution, the blockchain technology
has enabled peer-to-peer authentication without the
need of a centralized authority. Thus, applying the
blockchain concept in the fog computing domain
has been proposed to provide data integrity and user
authentication [18]. However, this is associated with a
high cost in terms of power consumption and storage
resources, which requires powerful fog nodes. The
main limitation of the reviewed cryptographic solu-
tions is that they try to enhance the performance by
reducing the computational overhead, but this comes
at the expense of a reduced security level, which is
not to be compromised. For example, the majority of
recent solutions uses systematic IDA, which includes
an identity matrix that reduces the mixing level.

In order to address the limitations of the previous
works, some modifications are to be introduced to
maintain the highest possible security level. For ex-
ample, in this paper, we modified IDA by applying
it at the sub-matrix level to enhance performance
by enabling parallel computation. Moreover, look up
tables are used instead of performing multiplication
operations. On the other hand, to maintain the high-
est possible level of security, we use dynamic IDA
matrices for each input data.

Moreover, as indicated in Table 1, existing so-
lutions use a keyed hash function such as HMAC
to ensure data integrity and source authentication.
To reduce the message authentication overhead, we
proposed to use AES for message authentication
(GMAC) in addition to message confidentiality. The
justification of this choice is that AES is well op-
timized for performance when compared to HMAC.
We have selected GMAC for message authentication
and integrity since it requires fewer computations

compared to the CMAC operation mode (Galois
multiplication instead of AES). Our proposed solu-
tion can be considered as a GCM operation mode,
but it is adapted with the IDA concept (message
authentication should be realized after the IDA step
and for each fragment independently). We compared
AES-128 to HMAC with SHA-512, and we found
out that AES-128 is faster 7 times at least compared
to HMAC with SHA-512. This allows us to reduce
the message authentication overhead in the proposed
solution when compared to the previous one. This
solution is proposed towards preserving fog data with
at a high level of security and the minimum possi-
ble overhead. Thus, to the best of our knowledge,
there is no existing work that employs the dispersal
information concept to ensure data confidentiality,
integrity, availability, with source authentication in
the fog computing domain.

III. BACKGROUND

Secret Sharing is a distributed secret protection
scheme. It consists of distributing a secret over
several entities to overcome the centralized scheme
disadvantages such as single point of failure, secret
key disclosure, etc.

Secret sharing consists of fragmenting the secret
into several fragments called shares. The secret can
be recovered by the inverse process applied to a set of
the distributed shares. As such, the secret can be re-
covered even if some of the shares are lost. However,
a minimum number of shares needs to be collected
in order to recover the secret, which is referred to
as the threshold. In the literature, two well-known
schemes are proposed in the secret sharing domain,
the Shamir Secret Sharing Scheme (SSSS), and the
Rabin Information Dispersal Algorithm (IDA).

A. Shamir Secret Sharing Scheme, SSSS

In 1979, Shamir proposed a polynomial-based se-
cret sharing scheme [19]. The proposed solution con-
sists of hiding a secret inside a polynomial whereby,
given partial information of the polynomial, one can
recover the secret.

SSSS stems from the fact that a polynomial of a
fixed degree can be determined if we know the values
that this polynomial takes at (n+1) points, where n

is equal to the polynomial degree. The process of
calculating a polynomial from its (n+1) points is
known as the Lagrange interpolation method.

The fragments in SSSS have the same size as the
secret, which makes it ideal from an information
security perspective. However, from a memory space
consumption perspective, SSSS is not that efficient.

The cost for space consumption is the factor n for
a (m,n) scheme, where n stands for the number of
fragments and m stands for the number of fragments
needed for recovering the secret. As such, for a
secret of length |S|, the total space needed after
fragmentation is n× |S|.

B. Rabin Information Dispersal Algorithm, IDA [20]

The objective of the Rabin Information Dispersal
Algorithm is to overcome the SSSS storage over-
head. IDA presents an efficient memory consumption
scheme where a file F of size L is divided into
n pieces, each with a size of L

m , where m is the
number of shares needed to recover the original
file F . IDA is space efficient because n

m can be
chosen to be close to 1. In fact, IDA is a diffusion
transformation scheme that uses an invertible matrix
for encoding/decoding data. Practically, linear algebra
modulus p is employed, where p is a prime. This is
due to the convenience of dealing with data encoded
in the finite field Zp in the computer security domain.

The dispersal algorithm uses an n by m matrix,
A, where n and m are two integers. An important
condition is that any m rows of the matrix are linearly
independent. For an input denoted by in, the output,
denoted by out, is a sequence of integers of size n. In
fact, F is stored as a sequence of f bytes, then each
byte can be represented by an integer between 0 and
255. Thus, the input of size f is fragmented into a
sequence of row vectors: in = (c0, c1, c2, ..., c f

m−1
),

where each ci has a length m. In case f is not a
multiple of m, F is padded with (f mod m) zeros.
As a result, each ci is considered as a sequence of m
integers, such that ci = (ci,0, ci,1, ..., ci,m−1). Having
f
mci, with ci a vector of length m, these vectors result
in a matrix C of m× f

m . Finally, the IDA fragments
are obtained by applying the following equation: F =
A × C; where F is the fragments matrix and fi =
(fi,0, fi,1, ..., fi, f

m−1
).

From a mathematical perspective, based on the
information ratio, a perfect secrecy is achieved when
the size of the shares is equal to the size of the secret
at least [21]. Thus, Shamir’s scheme presents better
security level than the IDA one. In fact, even though
the IDA’s scheme shares the disclosure risk over n
fragments, but it does not restrict unauthorized access
to any of them. Consequently, if one fragment of
information was leaked, the opponent can guess the
number of participants, the threshold, the length of
the data, and many other patterns. This makes IDA
a non-perfect scheme from a security perspective. In
this context, we return to the fact that there is always
a compromise between performance and security
level. In the following, we present the proposed IDA
variants to enhance security level of the IDA scheme.

C. IDA Variants

1) Krawczyk (1998): Krawczyk’s scheme [22] is
a combination of Shamir SSSS, IDA, and symmetric
encryption. First, a random key is chosen and used
to encrypt the secret. Then, the encrypted secret is
partitioned by applying IDA. Additionally, the key is
partitioned with SSSS and sent along with the secret
partitions.

2) AONT-IDA (2008) [23]: AONT-IDA consists of
applying first AONT (All or Nothing Transform) [24],
followed by IDA. In AONT-IDA, the message se-
quences are encrypted first and then, the pseudo
sequences are fed into the IDA diffusion matrix.

AONT, proposed by Rivest [24], is a block cipher
scheme that serves initially as a solution for small
key spaces. All the blocks need to be decrypted first
to recover the original message, which explains the
designation of ”ALL or NOTHING”.

As per the simulations performed in [23], the
AONT-IDA, IDA, and Krawczyk schemes have their
execution time increasing linearly with the secret size.
IDA is the fastest, Krawczyk is the second fastest,
and AONT-IDA is the slowest. From a theoretical
perspective, AONT-IDA adds the AONT execution
time compared to the IDA time, which explains the
simulations results.

3) AONT-RS 2011 [25]: AONT-RS adds integrity
check to the encoded data. Additionally, it employs
a systematic IDA scheme such as Reed Salomon

(RS). AONT-RS differs from AONT-IDA by adding
the hash of the encoded sequences to the fragments
distributed over the n participants. Thus, IDA can
be seen as a special case of the Reed-Solomon
error correcting codes when using the Galois Field
arithmetic [26], [27].

4) CAONT-RS 2014 [28]: CAONT-RS modifies
the existing AONT-RS scheme by replacing the ran-
dom information employed in AONT with crypto-
graphic hashes from the secret. Thus, data encryp-
tion is performed by using a cryptographic hash
key derived from the data itself. Consequently, the
dispersed information preserves the content similarity
by including a data-dependent random sequence.

5) Salted IDA (2011) [29]: The Salted IDA
scheme consists of two stages: salting the data fol-
lowed by IDA. Salting data consists of adding pseudo
randomness using a secret seed and a deterministic
function fs to produce a random sequence. Then,
the data is encrypted and dispersed. The deterministic
function can be a hash function applied to the secret
seed.

6) IDA-Over Encryption 2016 [30]: This variant
uses multi-layer encryption with IDA. The scheme
aims at reducing the re-encryption overhead when
authority revocations occur such as the case with key
leakage. Thus, in case of authority revocation, 1

4 of
the data needs to be re-encrypted, which reduces the
computation overhead.

7) IDA-XOR 2016 [31]: This variant is based
on ”error code correction”. It is a lightweight IDA,
without using general RS codes, combining the gen-
eration of random bits with the systematic IDA. It
presents better performance than SSSS and an ideal
information ratio, but it is not space efficient.

To compare the different schemes, several metrics
have to be considered, according to [32], and these in-
clude the storage factor, the key management scheme,
the data de-duplication option, the revoking authority,
the provided security options, the computational over-
head, and performance optimization. In table I, we
present the comparison of the different secret sharing
schemes. The storage factor represents the number
that multiplies the secret size K. It is expressed in
terms of the number of shares n, the threshold m,
the secret size K, the size of data cipher hash H(C),

and ε. We can see that IDA and IDA with encryption
exhibit the lowest storage overhead.

IV. PROBLEM FORMULATION

This section presents assumptions about the con-
sidered IoT network and the anticipated adversaries,
as well as a definition of the problem scope. The
notations used are listed in Table II.

A. Network Model

Our system model consists of a network of IoT
networks. Each IoT network consists of M devices,
where each device is denoted by Devi, such that
i ∈ [1,M]. These M devices are connected to a
fog node. Therefore, each fog node, denoted as Fol
such as l ∈ [1,m], is responsible for gathering
data from a set of devices Sj , where j ∈ [1,m].
Generally, for each application session s, an IoT
device Devi generates data denoted by dsi . Apart
from collecting and processing data, a fog node is
able to communicate with at least (m − 1) other
fog nodes that are in its neighborhood. Each fog
node possesses a secret key SK and obtains a new
nonce after each new session, s. Several fog key
management schemes were presented recently in the
literature such as the trusted certification solution or
the symmetric Key Distribution Center (KDC). For
our proposed solution, KDC is more suitable since
it involves low overhead in terms of communication
and computations. Moreover, readers can refer to [33]
for more details about the possible key manage-
ment solutions within fog-IoT systems. Even though
a blockchain-based key management scheme could
be applied to a fog-IoT system [34]; However, the
scalability of such a scheme would be limited to the
storage capacity of the fog nodes. After each s, a
fog node produces a new dynamic key DKi from its
static key SK and the obtained nonce (i.e. Nonce is
generated based on a Secure Pseudo Random Number
Generation function (SPRNG)). Each fog node has
the ability to perform a stream cipher and a one-
way hash function. After each session s, a fog node
Fol transforms collected data dsi into q fragments
fs1i , ..., fsqi . The fog distributes the (q−1) fragments
over (q − 1) of its neighbors, relying on a selected
replication policy, keeping one of the fragments for

TABLE I: Variants comparison

Fragment Size Key
Management

Operation
Base

Revoking
Authority
Optimized

Data
Dedu-
plica-
tion

Security
Services

Computational Over-
head

Additional
Performance
Optimization

Secret
Sharing
Shamir

|D| Keyless Polynomial No No Data Avail-
ability

None

IDA (|D|
k

) Keyless Polynomial No Yes Data Avail-
ability+
Weak DC

- -

Krawczyk n
m

+Kn SSSS Polynomial No No Availability Matrix Diffusion + En-
cryption + PRNG(1)
+ Polynomial Diffusion

None

AONT+IDA(n
m

+ H(C)+K
m

) (⊕)with data Polynomial No No Data Avail-
ability

Matrix Diffusion + En-
cryption + PRNG(1) +
Hash

None

AONT-
RS

(n
m

+ H(C)+K
m

+
H(c)
m

)

(⊕)with data Polynomial No No Availability Matrix Diffusion + En-
cryption + PRNG(1) +
Hash

Systematic
IDA

CAONT-
RS

(n
m−1

) Keyless Polynomial No Yes Data Avail-
ability

Matrix Diffusion +
Hash + Hash

Systematic
IDA

IDA +
Over En-
cryption

(n
m

) NA Polynomial Yes No Availability Matrix Diffusion + En-
cryption + Encryption

Partial
Encryption

Salted
IDA

(n
m

+ S
m

) NA Polynomial No No Availability Matrix Diffusion + En-
cryption + PRNG(i)

None

IDA-
XOR

n Keyless Boolean No No Availability Matrix Diffusion +
PRNG(t-1) + XOR

None

itself. Note that each fog node Fol can be associated
to one or more clouds Ck, where k ∈ [1, z], such that
Fol assigns collected and processed data to related
authorized clouds.

B. Threat Model

For designing suitable security mechanisms for
fog networks, we consider two kinds of adversaries,
namely honest-but-curious, and malicious fog nodes,
defined as follows:
• Honest-but-curious adversary: it provides proper

inputs or outputs at each step of the security
scheme, and properly performs any expected
calculations, but it may attempt to gain extra
information about the system. As such, we con-
sider the honest-but-curious threat model against
the privacy and confidentiality requirements.

• Malicious adversary: malicious users may at-
tempt to deviate from the security scheme, to
provide invalid data or to delete valid data. In
addition, a malicious party can also influence
other parties to act maliciously by substituting
their local inputs. Moreover, a malicious user
can impersonate other legitimate users to get
access to the system as a legal entity. Note that a
malicious insider has the ability to read, modify
or destroy the data by employing compromised
fog nodes. However, during an application ses-
sion s, it cannot destroy or get access to more
than (n−k) fog nodes and cannot intercept more
than (k − 1) communications between the fog
nodes. As such, we consider the malicious user
threat model mainly against the confidentiality,
availability, integrity and message authentication

TABLE II: Summary of notations

Notation Definition

Devi ith IoT device
Foj jth Fog node
s an application session during which an IoT device generates data
dsi data to be fragmented, collected by Devi in session s
SK static key stored inside an IoT device
DK dynamic key derived from the static key and Nonce in a nonlinear manner
DKC dynamic key used inside the fragmentation procedure
DKA dynamic key used for authentication
frji jth fragment of data collected by Devi during session s
n total number of fragments
k Threshold (number of fragments required for recovery)
SK Secret Key
No Nonce
DK Dynamic Key
KGM sub-key used for the generation of matrices
KSRM Selection matrices sub-key used to construct the selection matrix table πSRM .
πSRM selection table with nr elements length. It is used to select which IDA matrix will be used during each input

sub-matrix.
KUSRM sub-key used to construct the update (permute) the selection permutation table uπSRM .
uπSRM Update selection table and it has nr elements length. It is used to update the selection table πSRM for each new

input data
IVS Initial Vector sub-key
IVIA Initial Vector for Integrity-Authentication
IVE Initial Vector sub-key for encryption
KSRF Selection sub-key used to construct the update selection table πSRF .
πSRF Controls the distribution of the encrypted sub-fragments over the n fog nodes.
KUSRF Update selection sub-key used to construct the update selection table πUSRF .
πUSRF Update selection table and it has n elements length. It is used to update the selection table πSRF for each new

input data.
KIA Sub-key used for the message Integrity-Authentication
KS Sub-key used for generation of the selection tables
KE Sub-key used for the encryption of the original data
X the produced filtered keystream
xi the ith block of X and it is used to construct the Gi IDA vandermode matrix
G A set of m dynamic IDA matrices
G(i) The ith dynamic IDA matrix
Gk(i) and
G−1

k (i)
a k × k of the ith dynamic IDA matrix (G(i)) and its corresponding inverse matrix.

D Original application data
|D| size of the original data I
data chunk k consecutive bytes of permuted data
data share an encoded data chunk with length n bytes
fragment a final data fragment, which represents the same column of all the data shares and is stored in one location storage

entity
k number of fragments required for data recovery
nr number of data chunks (original blocks) inside initial data
n, n ≥ k total number of fragments
DCi ith data chunk set (original block), a set of k bytes of data chunks
DSi ith data share set (encoded block), a set of n bytes of data shares

Fig. 1: Network Model

properties.

C. Design Goals and Evaluation Metrics

Our aim is to provide a fog architecture that is able
to secure the received data from IoT devices. The
fog layer introduces major enhancement in terms of
performance, but suffers from security and privacy
issues. The process of securing data should minimize
the data processing cost, storage and transmission
overheads, as well as maximize data survival. Several
metrics are taken into consideration while evaluating
the scheme characteristics such as storage overhead
(ST), transmission cost (TC), and data resilience
(DR); these help to compare the proposed scheme
against the existing ones. The storage overhead de-
scribes the data overhead stored in addition to the
collected data. The transmission cost measures the
amount of data that has to be transmitted among fog
nodes. Data resilience measures the ability to recover
the initial data after destroying/altering parts of the
processed data.

V. PROPOSED KEY DERIVATION SCHEME

In this section, we describe the derivation scheme
of the dynamic key and the sub-keys. The generation
process is illustrated in Fig. 2, and the function inputs
are described as follows:

• Secret key SK: the secret key is shared among
the fog nodes. This secret is changed for each
application session. The renewal of this key can
be performed in different ways, one of which
is the Binary Elliptic Curve Diffie Hellman
protocol (ECDH) [35]. The length of SK can be
equal to 128, 256 or 512 bits. In fact, different
possible solutions can be used to distribute secret
keys among the nodes such as through a Key
Distribution Center (KDC), which requires that
each fog has a shared master secret key with
the KDC. However, the proposed solution is
based on the concept that each fog has its own
secret key that it is not shared with any other
fog node. The data about the secret key is
protected and stored at each fog node, and it
cannot be recovered from the node. As such,

Fig. 2: Proposed key derivation function and generation process of the cipher primitives and their updates

any attack on a fog node will not lead to any
security issue since data is protected and well
distributed. Moreover, and to further enhance the
security, a dynamic key-dependent cryptographic
solution is used and it employs the fog’s secret
key and another variable unique meta-data to
produce different dynamic keys in a lightweight
manner. We might need to introduce one of the
existing key recovery mechanisms to avoid any
key management issue.

• Nonce No: the nonce is generated using a
pseudo-random number generator. For each ap-
plication session, a new No is generated, and it
is associated with the application data at the fog
node and thus, for the reverse process, the fog
node can retrieve it.

To generate the dynamic key, the secret key SK
and nonce No are XOR-ed and the output is hashed.
This results in the dynamic key, DK = h(SK ⊕
No), which has a size of 64 bytes, and h represents
a cryptographic hash function such as SHA-512.

Next, the dynamic key is divided into four sub-
keys to be used in the different cipher primitives.

This enhances the security of the cipher scheme
since different keys are used at different stages. In
our proposed solution, we choose to apply SHA-
512 since it is resistant against collision attacks.
The dynamic key and its corresponding sub-keys are
randomly generated at every application session; a
change of one bit in the Nonce would result in a
key that is completely different from the previous key.
This dynamic scheme enhances the key security and
makes the cipher immune against attacks.

A. Dynamic Key & Sub-keys Derivation

In this sub-section, we describe the generation
of the dynamic key and its corresponding sub-keys
(see Fig. 2). The meta-data represents certain pa-
rameters that describe the message such as length
and its corresponding source. This factor is intro-
duced to increase the security level of the proposed
dynamic key derivation. The frequency of the key
generation is determined by the application’s session
time. We employed SHA-512 for generating the dy-
namic key, which is then divided into four sub-keys.
DK is of size 512 bits and each of the sub-keys

{KGM , KIA, KS , KE} is of size 128 bits, and
these are constructed as follows:

• Generation of Matrices Sub-key KGM : this
sub-key is used to generate the fragmentation
matrices; it consists of the most significant 16
bytes of DK.

• Integrity and Authentication Sub-key KIA:
this sub-key is used for integrity and authen-
tication checking; it consists of the next most
significant 16 bytes of DK.

• Selection of Matrices Sub-key KS : this sub-
key is used for generating the selection/update
matrices for fragments distribution over the fog
nodes; it consists of the third most significant 16
bytes.

• Encryption Sub-key KE : this sub-key is used
for data encryption; it consists of the least sig-
nificant 16 bytes of DK.

Similarly, the selection key KS is divided into four
sub-keys, as shown below:

• Selection Matrices Sub-key KSRM : this sub-
key is used for generating the IDA matrices
selection table; it consists of the most significant
32 bits of KS .

• Update Selection Matrices Sub-key KUSRM :
this sub-key is used for updating the IDA matri-
ces table; it consists of the second most signifi-
cant 32 bits of KS .

• Selection Fog Nodes Sub-key KSRF : this sub-
key is used for generating the fog nodes selec-
tion table; it consists of the third most significant
32 bits of SK

• Update Selection Fog Nodes Sub-key KUSRF :
this sub-key is used for updating the fog nodes
selection table; it consists of the least significant
32 bits of KS

Table II shows all the notations used in this paper.
Next, we describe the construction of the proposed
cipher primitives that are based on these four sub-
keys.

B. Construction of Cipher Primitives

In this part, we detail the proposed techniques to
generate the required selection permutation tables and
the invertible IDA matrices.

1) Dynamic Permutation Primitives: KSA-RC4
represents the key setup algorithm of RC4. It is used
to produce a substitution table S with 256 elements in
RC4. It has been modified in [8] to produce dynamic
flexible permutation tables in addition to substitution
ones. In this paper, it is used to construct selection
tables based on the produced permutation tables.. AS
illustrated in Algorithm 1, for an input of L bytes,
this algorithm outputs a dynamic permutation table,
P , of len elements.

According to [8], for L ≥ 4, the obtained per-
mutation table P exhibits robust security properties.
Moreover, as P is bijective, the inverse P−1 can be
computed by the equation P−1[P(i)]=i; where P (i) is
the ith element of P .

2) Dynamic Selection Sub-matrices: As shown in
Fig. 2, the KS sub-key is used to generate the selec-
tion/update tables, which is based on the proposed
MKSA − RC4 algorithm. Specifically, πSRM is
generated using the KSRM sub-key. In this case,
πSRM (i)th serves in selecting the ith IDA matrix
for the ith encrypted data block. πSRM consists of
nr elements, with 1 ≤ πSRM (i) ≤ m, where m
represents the produced IDA matrices and m ≤ nr.
At the decryption phase, πSRM serves in selecting the
inverse IDA matrix G−1k (πSRM (i)). In fact, πSRM

controls both the modified and the inverse IDA pro-
cesses. Moreover, another permutation table πUSRM

is generated using kUSRM sub-key to update the
permutation table at each application session.

3) Dynamic Fragments Distribution : On the other
hand, another permutation table is needed for the
data fragments distribution over the corresponding
fog nodes. πSRF is generated using the kSRF sub-
key. This table consists of n elements and controls
the distribution of the encrypted sub-fragments over
the n fog nodes. Similarly to πUSRM , an updated
table for the fragments distribution table πUSRF is
generated using kUSRM . Consequently, the order in
which the fragments are distributed over the neighbor
nodes is changed at every application session.

4) Dynamic Key-Dependent Pseudo Random IDA
Matrices: As mentioned before, to generate the IDA
matrices, the kGM sub-key is used. The proposed
IDA-based scheme requires m matrices, where each
matrix consists of a row with n distinctive and

Algorithm 1 Proposed modified KSA for RC4
1: procedure MKSA(K = {k1, k2, . . . , kL}, L, len)
2: for i← 0 to 255 do
3: P [i]← i

4: j ← 0
5: for i← 0 to len do
6: j ← (j + S[i] + k[j mod L]) mod len
7: swap(S[i], S[j])

8: return P

non-zero bytes. To generate these matrices, AES in
counter mode (AES-CTR) is applied to kGM and the
initial vector IV , where IV is obtained by hashing
KGM . The produced key-stream is used to build m
invertible matrices. Thus, the n bytes of each row
are checked; if redundant or zero values are encoun-
tered, the cipher process is repeated until having n
distinctive non-zero bytes. Then, the obtained row
is used to construct an n × k IDA Vandermonde
matrix (using Vandermonde matrix form), which is
used during the fragmentation process. Based on the
Vandermode matrix properties, any k rows of any
IDA Vandermonde matrix form an invertible k × k
matrix. In fact, avoiding repeated and zero values in
the n-element rows is a key requirement to construct
the IDA invertible matrices.

VI. PROPOSED CRYPTOGRAPHIC SOLUTION

In this section, we present our proposed crypto-
graphic solution consisting of encrypting the data,
fragmenting it, and distributing it over n fog
nodes. Figure 3 illustrates an outline of the pro-
posed data confidentiality-Availability-Integrity solu-
tion. Furthermore, the inverse process is not detailed
since it consists of the same operations with minor
changes (e.g. the use of the inverse matrices in the
multiplication operations). For consistency, the used
notations are included in Table II.
Essentially, the encryption is based on the symmetric
scheme employing a secret key SK. This key is the
base for generating the dynamic key with all the cor-
responding sub-keys. The values of n and k depend
on the required availability level, topology of the
fog system, and application requirements. Therefore,
(n−k) can be adjusted according to these parameters.

In general, a higher availability level requires the
increase of (n − k), but at the expense of increased
storage and communication overhead. The values of
n and k should be selected to achieve the required
balance between availability and performance.

A. Encryption Process

The encryption process is based on AES with
Galois/Counter Mode (GCM), which is an authen-
ticated encryption operation mode. GCM uses the
counter (CTR) operation mode for encryption/decryp-
tion, which can be considered as a stream cipher.
In addition, GCM uses the GMAC algorithm for
the message authentication process. GCM is selected
since it exhibits higher performance and efficiency
compared to the CCM mode. Moreover, the advan-
tage of using GCM in the context of fog is that it can
ensure a high throughput with reasonable hardware
resources.

B. Proposed Data Availability Process

The proposed IDA-based algorithm (see Algo-
rithm 2) takes as input an encrypted vector of data
D. This vector is fragmented into a set of nr (d |D|k e)
blocks C = C1 , C2, . . . , Cnr, where each block has
a length equals to k elements. A padding operation
is introduced if necessary to complete the last block.

Then, the encoding process consists of a multi-
plication operation of a k block and a chosen IDA
matrix (a set of key-dependent dynamic IDA matrices
were generated).

As per its definition, the permutation table
πSRM = [πSRM (i)]1≤i≤nr, which has nr elements
is used to select the dynamic encoding IDA matrix.

Fig. 3: Proposed cryptographic solution

Note that πSRM (i) is an integer value between 1
and m, having only m IDA matrices. Additionally,
m ≤ nr, so an IDA matrix can be used to encode
more than one sub-matrix.

In the presented algorithm, G = GS(πSRM (i)
means that the πSRM (i) IDA matrix is used. In fact,
G consists of m invertible matrices. The obtained
result for each encoded process is an encoding block
that has a size of n elements. Then, all these encoded
blocks are concatenated to form a matrix with a
dimension equals to n × (nr). Each row of this
matrix represents a fragment fi, with 1 ≤ i ≤ n.
This means that n fragments are the output of the
encoding process. Furthermore, each fragment should
be authenticated and its corresponding message au-

thentication code should be concatenated to it before
forwarding it to the corresponding fog.

Note that the value k is related to the security
level of the proposed IDA-based algorithm. When
k increases, the security level increases but at the
cost of increased complexity. Note that k and n
can be changed according to the possible number of
neighboring fog nodes.

C. Data Authentication and Integrity Scheme

In the proposed scheme, the data authentication
and data integrity are ensured by means of the
hashing process. After fragmenting and encoding
the initial data, AES GMAC is applied to each
fragment using the KIA sub-key. The initial vector

Fig. 4: Example for k: Encoding of the data chunks DCi (left) is transformed into n data shares DSi (right)
and i = 1, 2, . . . , nr.

Algorithm 2 Proposed fragmentation algorithm out-
line.

1: Input: encrypted sub matrices(C =
{C1 , C2, . . . , Cnr}), G, πSRM

2: Output: EC = {EC1, EC2, . . . , ECnr}
3: for i = 1→ nr do
4: Gi = G(πSRM [i])
5: ECi = Gi � Ci

6: EC = EC1||EC2|| . . . ||ECn

7: for i = 1→ n do
8: for j = 1→ nr do
9: fij = ECi,j

required by AES GMAC is also derived from KIA

by hashing. Consequently, for each fragment fi, a
signature MACi is generated, which is concatenated
with the corresponding fragment fi, before dispersing
the fragments over the n fog nodes.

In the proposed scheme, the authentication process
is not applied directly after encryption, instead after
the IDA encoding step. In fact, the proposed scheme
uses the CTR mode to ensure data confidentiality and

the Galois Message Authentication Code (GMAC,
which is GCM authentication-only variant) to ensure
data integrity and source authentication, in addition
to IDA that ensures data availability.

Let us indicate that GCM, and consequently
GMAC, accept arbitrary lengths for the initialization
vectors. In addition, GCM can be implemented in
parallel and it can be more efficient by using pipeline
instructions or hardware pipeline.

D. Inverse Cryptographic Solution

At the stage where a fog node needs to recover the
stored data, upon a request from a connected user, the
inverse cryptographic process is performed. We do
not detail the operations as we did for the encryption
and information dispersal processes, given that only
a few changes are introduced. In the following, we
summarize the main points in the decryption process.
Note that all the cryptographic and permutation prim-
itives with their corresponding inverses can be re-
generated at the fog node by using the dynamic key
associated with the stored data fragment.

1) First, k fragments are collected from k different
fog nodes based on the inverse of the πSRF

permutation table.
2) Then, data integrity and source authentication

are verified for each fragment. The verification
consists of generating the MAC of each fragment
and comparing it to the one associated with the
fragment. The fragment hash is computed by
applying AES GCMA with the KIA sub-key.

3) Next, the verified fragments are concatenated
in a matrix, where each row of the obtained
matrix represents k bytes of the data share.
Then, the data share is multiplied by the inverse
IDA matrix, which is selected based on the
inverse of the πSRM permutation table. After
de-fragmenting all the encoded blocks, a matrix
of nr × k is obtained. The rows of this matrix
are concatenated to form a vector representing
the initial data.

VII. SECURITY ANALYSIS

In this section, we describe the security evaluation
of the proposed scheme. To this end, we apply it
with a set of 10, 000 data instances of size 15, 000
bytes each. The security tests include the randomness
evaluation of the obtained data fragments, and the
generated dynamic keys. We consider different sta-
tistical properties including randomness, correlation,
independence, and uniformity.

A. Randomness of Dynamic Keys

A randomness test is performed on the generated
dynamic keys. The purpose of using dynamic keys is
to avoid key disclosure, given that the time needed
to perform a brute force attack would be greater
than the session time. Thus, at the next session, the
key is changed, and knowing the previous key, the
attacker can disclose only the previous session’s data.
Note that in this case, the attacker needs to know all
the fragmentation scheme primitives with the nodes
locations to have access to all the nodes and to know
the fragments order.

B. Randomness of Fragments

The chosen plain-text attack considers the outputs
of different inputs, and thus the similarity test enables

the disclosure of the encryption key. A key require-
ment for a secure encryption scheme is the random-
ness of the output. Also, given that the fragmentation
scheme adds redundancy to ensure data availability,
the redundant data should be distributed randomly
among the different fragments. In this context, differ-
ent statistical tests have been applied to the obtained
fragments including recurrence, independence and
uniformity tests. These tests with the obtained results
are detailed next.

1) Recurrence: This test consists of measuring
the variation among the values of a sequence. After
fragmentation, a session input data can be written
as a sequence: xi = xi,1, xi,2, . . . , xi,m. In Fig. 5,
the variation between the original and encrypted
fragments (first fragment) is shown. The results prove
that the proposed scheme hides any clear pattern and
hence, it is very difficult to get useful information
regarding the original message.

2) Independence: The correlation analysis aims
at measuring the dependence between two variables.
In our case, the attacker tries to infer any relation
between the encrypted and original data [8]. Thus, the
independence of the fragments and the original data
is a key requirement for a secure encryption scheme.
To this end, the correlation coefficients between the
original fragments and their corresponding encrypted
ones are measured, and the correlation coefficient be-
tween the different encrypted fragments is presented.
Fig. 6-a) shows the results of the Empirical Cumula-
tive Distribution Function (ECDF) of the correlation
test between the obtained fragments and the original
ones, considering the fragmentation of 10, 000 data
instances with n = 8 and k = 4. The obtained
correlation results are very close to the average value,
which is close to 0. This means that the fragments
are independent of the original data. In parallel, we
measure the percentage of the difference between the
original message and a set of k encoded fragments
(encrypted) at the bit level. The results, presented
in Fig. 6-b), show that the ECDF of the difference
percentage is very close to the ideal value (50%) with
a mean value equals to 49.99% and a low standard
deviation of 0.144. These results confirm that the
proposed scheme ensures the independence between
the original and the encoded fragments at the bit

(a) (b)

Fig. 5: Plots of original data and one of its corresponding encrypted fragmented ones, (k=4 and n=8).

level. In addition, a numerical example of the inter-
correlation and bit difference percentage in a matrix
form between the original and obtained fragments is
presented in TABLE IV and TABLE III for a random
dynamic key, respectively. The results show that the
inter-correlation is always close to 0 for the different
original and obtained fragments, which means that the
encrypted fragments are independent of the original
ones.

3) Uniformity: Another statistical property, which
ensures the security of the proposed scheme, is the
uniformity of the obtained fragments. In other terms,
statistical attacks try to extract any pattern based
on the distribution/frequency of the fragments. Thus,
having a uniform distribution of the produced frag-
ments prevents the attacker from acquiring any partial
information about the proposed scheme. In Fig. 7,
the distributions of the original data and its corre-
sponding fragments are presented. This distribution
validates visually that the produced fragments satisfy
the uniformity property.

C. Sensitivity to Dynamic Key

In a keyed cryptographic scheme, the key security
is vital to avoid key-related attacks. In this context,
the scheme sensitivity to the dynamic secret key,
DK, is required. In other terms, a small change

in the key should result in two completely different
encrypted messages. In our case, the dynamic keys
used for two different sessions should give different
fragments. Accordingly, we consider two dynamic
secret keys: DKw and DK ′w that differ in only one
random bit to be applied to the same message, where
w = 1, . . . , 1, 000. The sensitivity test for the wth

dynamic key (DK ‘
w) is calculated as follows:

KSw =

∑T
it=1 FEDKw

⊕ FEDK′
w

l
× 100% (1)

Where FE represents the proposed cryptographic
scheme (encryption+modified IDA), T is the length
of the input data in bits.

We run the sensitivity test for 1,000 iterations. At
each iteration, different messages and different keys
are used, with the condition to have one bit changed
between the two considered keys. As shown in Fig. 8,
the PDF of the obtained key sensitivity percentages
indicates that the obtained values are very close to
the mean value, which is 50.58%, and the standard
deviation is very low and equals to 0.141. The results
show that the proposed scheme exhibits a high dy-
namic key sensitivity. In addition, for a random key,
the internal percentage difference among encoded
fragments is shown in TABLE V, which shows that

(a) (b)

Fig. 6: Correlation coefficients between original and fragmented data(a). In addition, the difference between
original and encrypted fragmented data (% of changed bits) (b) for k=4 and n=8.

TABLE III: Correlation coefficient between the original and the encoded/encrypted segments for a random
dynamic key with k =4 and n =8

ED1 ED2 ED3 ED4 ED5 ED6 ED7 ED8

O1 0.0185 -0.0139 -0.0398 0.0047 -0.0034 0.0129 0.0067 0.0006
O2 0.0226 -0.0167 0.0207 -0.0177 -0.0084 -0.0209 0.0017 -0.0229
O3 -0.0169 0.0248 -0.0404 -0.0024 0.0094 0.0276 -0.0302 0.0210
O4 -0.0133 -0.0090 0.0322 0.0026 -0.0136 -0.0059 -0.0101 -0.0075

TABLE IV: The percentage difference between the original and the encoded/encrypted fragments for a random
dynamic key with k =4 and n =8

ED1 ED2 ED3 ED4 ED5 ED6 ED7 ED8

O1 0.4995 0.4953 0.5003 0.5037 0.4997 0.5031 0.4922 0.5052
O2 0.4992 0.4964 0.4977 0.4985 0.5053 0.5042 0.4938 0.5017
O3 0.4959 0.5042 0.4962 0.4982 0.4963 0.5013 0.5035 0.5013
O4 0.5027 0.4994 0.4970 0.5014 0.4999 0.4978 0.5031 0.5016

TABLE V: Key sensitivity test between two fragmentation results obtained for the same data but with two
slightly different keys (Dk and DK ′) with k =4 and n =8

ED1 ED2 ED3 ED4 ED5 ED6 ED7 ED8

ED′1 50,17 49,83 49,82 50 49,41 50,23 49,77 49,69
ED′2 50.05 49,90 50,19 50 50,04 49,91 49,84 50,07
ED′3 50,12 49,83 50,09 50,08 49,75 50,30 49,67 50,02
ED′4 50.02 50,22 50,05 50,50 50,09 50,64 49,61 49,64
ED′5 50,11 50,57 49,93 50,19 49,65 49,58 50,44 49,91
ED′6 50,41 49,70 49,76 49,69 49,96 49,8 49,54 50,54
ED′7 50,34 49,90 50,08 49,64 50,25 50,64 50,23 49,88
ED′8 50,15 49,55 49,72 49,80 49,78 49,58 50,31 49,92

(a) (b)

Fig. 7: The distribution of an original message (a) and its correspondent encrypting encoded ones (k=4 and
n = 8)

Fig. 8: Key sensitivity test measuring the bit differ-
ence between two fragmentation results obtained for
the same data but with two slightly different keys for
1000 iterations

a high difference is always reached between any
pair of encoded fragments. Also, the correlation test
is applied on each pair of encoded fragments and
the obtained results confirm the independence among
encoded fragments as shown in TABLE VI.

VIII. CRYPTANALYSIS DISCUSSION

The main components that ensure the robustness
of the proposed scheme are 1) the use of the dynamic
key approach, 2) the use of the (AES) block cipher
with (GCM) mode, and 3) the use of dynamic
key-dependent secret invertible coding matrices. In
fact, the use of the dynamic key approach ensures
the backward and forward secrecy. In other terms,
if the attacker discloses the data of one session
by compromising the used key, he cannot disclose
neither the previous nor the next data. Moreover,
the dynamic key approach is used to generate all
the cipher and fragmentation primitives, in addition
to the hashing process. In summary, the proposed
scheme presents a complete data security framework
for fog systems.

In fact, the proposed scheme ensures data security
via the dispersal of data over n different fogs (or
clouds). The difficulty of collecting t fragments from
the n dispersed ones is a challenging task that the
security of the proposed scheme relies on. Moreover,
the attacker should know the right order of the
fragments, the secret de-fragmentation matrices and
the used dynamic key.

TABLE VI: Correlation coefficient among encoded/encrypted fragments for a random message dynamic key
with k =4 and n =8

ED1 ED2 ED3 ED4 ED5 ED6 ED7 ED8

ED1 -
ED2 0.0093 -
ED3 -0.0037 -0.0074 -
ED4 0.0249 0.0270 0.0018 -
ED5 0.0208 -0.0393 0.0048 -0.0262 -
ED6 -0.0099 -0.0118 -0.0062 0.0070 -0.0074 -
ED7 0.0097 -0.0278 0.0092 0.0086 -0.0267 0.0330 -
ED8 -0.0075 0.0037 0.0086 -0.0244 0.0015 0.0088 0.0018 -

Next, we describe the possible attacks that can
be performed when the attacker gets access to k
fragments with n ≤ t.
A. Frequency Analysis Attacks

Frequency analysis or ciphertext-only attacks con-
sist of analyzing the ciphertext to find the recurrence
of certain patterns. This type of attacks relies on
the fact that each type of data (text, image, video)
might present some statistical properties that might
be conserved by the cipher scheme. Thus, knowing
this pattern, the attacker can reveal partial information
about the cipher scheme. However, the performed
uniformity test shows that the output of the proposed
scheme is uniform and thus, the frequency analysis
cannot reveal any information. Consequently, the
proposed scheme is robust against frequency analysis
attacks.

B. Brute-force Attacks
Brute-force attacks are mainly performed in order

to disclose the secret key. This can be done by
trying all the key possibilities to get the correct result
based on known/chosen plain/cipher texts pairs. In
this context, the length of the key plays an essen-
tial role in hardening the attacker task. In fact, the
time needed to crack a key increases exponentially
with the key length. However, in our case, using a
dynamic key makes the attacker task much harder.
The attacker has to know the key during a session to
be able to disclose the original data, in addition to
compromising t channels and having the knowledge
of all the scheme primitives. However, knowing the
key for one session, will not give the attacker the
privilege to disclose neither the previous processed
data nor the future ones.

C. Linear and Differential Attacks

Linear cryptanalysis aims to find a relation between
the input and the output of a cipher scheme. The
differential cryptanalysis aims at revealing a pattern
between the difference of two plaintexts and the
difference between their corresponding ciphertexts.
However, the security tests have shown that the input
and output of the proposed scheme are independent
and that the output is random with uniform distribu-
tion. In addition, AES is immune to statistical attacks,
which makes the proposed scheme robust against
linear and differential attacks. On the other hand, the
use of dynamic keys in each session makes the linear
and differential attacks much harder. At each session,
a new key is used, and as shown in the key sensitivity
test, a change of one bit in the key results in very
different cryptographic primitives and consequently,
different encoded fragments for the same plaintext.

D. Sybil Attacks

A Sybil attack is basically an authentication attack,
and it can be prevented by using a strong authenti-
cation scheme. In the proposed solution, we assume
that a strong authentication scheme should be adopted
among fog nodes in a periodic manner and before
exchanging data fragments. The scheme can be based
on multi-factor authentication and recently, several
solutions were presented such as the one in [33]. In
this paper, the main focus is about the preservation
of fog data and not the authentication of entities.

In fact, different cryptographic protocols that can
validate that entities have shared knowledge (key).
Such protocols can be based on trusted certification
solution (asymmetric) or key distribution center
(symmetric) to ensure that each fog entity is

assigned exactly one identity. As such, a Sybil
attacker will not be able to use multiple identities for
authentication using the same shared key. Moreover,
other authentication factors such as device fingerprint
would make Sybil attacks even more complex to be
conducted.

In summary, the cryptanalytic analysis confirms
the robustness of the proposed scheme towards well-
known cryptanalytic attacks.

IX. PERFORMANCE ANALYSIS

The security tests show that the proposed
scheme that ensures the integrity, authentication,
and confidentiality security services is robust
against several security attacks. However, providing
high level of security often comes at the cost of
computational complexity, execution time overhead,
and resource requirements. Achieving the appropriate
trade-off between the security level and complexity
is a main challenge in a fog system, which presents
constraints in terms of storage and computational
resources. In fact, the proposed solution is designed
to reach a good balance between system performance
and security level.

About the implementation, the proposed modified
IDA solution (IDA) was realized in C, compiled
with -O3 optimization option, while the optimized
AES OpenSSL implementation is used with the
GCM operation mode for message authentication
and confidentiality. This operation mode exhibits
relatively low computational complexity with respect
to the provided security level (see Fig. 10).

In the following, we include the discussion and
results of several performance elements including the
cost of the proposed key derivation function and
cryptographic primitives generation, execution time,
storage/communication overhead, efficiency, and er-
ror propagation.

A. Computational Overhead

The proposed solution is based on the dynamic
key-dependent approach, which is the main
distinction when compared to the previous variants.

Table 1 illustrates the required cost overhead of the
previous information dispersal variants. Next, we
describe the cost overhead of the proposed solution
in terms of the required computations. To achieve
a high security level with the minimum possible
computational complexity, we are relying on the
dynamic key approach.

The required key derivation function requires
only one iteration, for one input block, of a secure
hash function in addition to an xor operation to
produce the dynamic key for each new session.
Then, the obtained dynamic key is divided into a set
of dynamic sub-keys that are used to generate the
different sets of cipher primitives. The techniques
used to produce the primary and update cipher
primitives are lightweight and satisfy the required
cryptographic properties. Moreover, for each new
input message, the selection cipher primitives are
updated in a lightweight manner by using update
cipher permutation tables (USRM and USRF).
Accordingly, for each input message, the SRM and
SRF tables are permuted (updated) based on the
update permutation tables (USRM and USRF)
and consequently, different fragments are produced
for the same message. Therefore, the proposed
solution reduces the cost overhead of the proposed
KDF and cipher primitives construction techniques.
On the other hand, towards reducing the IDA
multiplication overhead, we use a look-up table for
the multiplication operation.

Moreover, in this paper, AES with GCM (authenti-
cation and confidentiality) operation mode is iterated
with dynamic keys. In fact, AES is optimized at the
majority of hosted devices [36]. Also, AES-GCM
can be performed in parallel at the fragment level
(t fragments for confidentiality and n fragments for
message authentication). Moreover, the data availabil-
ity is ensured by using the proposed modified AONT-
RS fragmentation process. In general, the information
dispersal algorithm produces n fragments, but in
the proposed approach, it can also be performed
in parallel at the sub-matrix level. This leads to a
high security level with the minimum possible delay
overhead. Indeed, these multiplication operations can

be done in parallel and thus, the computational com-
plexity, execution time and associated delays of the
fragmentation process can be minimized. On the other
hand, This leads also to a high security level with the
minimum possible overhead since a set of m variable
IDA matrices are used, for each input message, and
they are unknown to attackers .

Therefore, all operations of the proposed crypto-
graphic solution have been selected for low power
consumption and delay. It can be considered as a
lightweight solution and it can be adapted according
to the fog limitations in terms of power, storage, and
computations. The performance of the proposed so-
lution may be optimized using parallel computations
and optimized AES and IDA operations. While the
high security levelis achieved using dynamic selection
IDA primitives (SRM and SRF) for each new
input message. Consequently, different cryptographic
primitives are selected for each new input message.

As indicated previously, the proposed dynamic
key derivation function, cipher primitives, and up-
date cipher primitives construction techniques were
designed to achieve a good balance between the
security level and performance. In fact, the proposed
solution is flexible; for the first variant, we can update
the dynamic key for each input message, while the
second variant uses update cipher primitives to renew
cipher primitives for each new input message (during
one session). Therefore, the second variant of the
key generation technique does not require dynamic
key and cipher primitives re-initialization. This means
that the second variant requires low overhead com-
pared to the first one.

B. Execution Time

This section is introduced to evaluate the execu-
tion time of 1) the proposed cryptographic scheme,
2) the dynamic key generation scheme and 3) the
data confidentiality and message integrity procedure,
where ”OpenSSL” is used. The Computational delays
of both, the key derivation function and the cipher
primitives construction are described below. In addi-
tion, they are also quantified in order to assess the
total associated delay as follows:

1) TH denotes the required hash time for a block
of h bytes.

2) TMKSA(x) denotes the required execution time
of the modified KSA of RC4 for a table with h
elements. It exhibits a low computational delay
and it is used to construct the permutation tables.

3) TCIDA denotes the required time to construct m
IDA matrices, each with a size of n× k.

CDKDF = Txor+TH+4×TMKSA+TCIDA (2)

The Computational delays of the proposed crypto-
graphic solution are described as follows:

CDproposed = k×TEncr+n×TAuth+TIDA(k, n)

(3)

where:
1) TEncr denotes the required encryption time

(AES-CTR) for a fragment of |D|k bytes length.
2) TAuth denotes the required execution time of the

message authentication algorithm (AES-GMAC)
for a fragment of |D|k bytes length.

3) TIDA denotes the required IDA diffusion time
for a set of k input fragments that produce n
output fragments.

In fact, the encryption and message authentication
processes are applied in parallel at the fragment level.
The length of each fragment is |D|k bytes.

Accordingly, the proposed solution is an efficient
one based on the overall reduced overhead. Exper-
iments have been performed on different Raspberry
Pi devices that might play the role of a fog node.
In the following, three different devices have been
used, Raspberry Pi 0, 2 and 3, respectively called
RPI0, RPI2 and RPI3. RPI0 has a 1GHz mono-
core micro-controller with ARMv6 instructions and
512MB RAM. RPI2 has a 900MHz quad-core micro-
controller with ARMv7 instructions and 1GB RAM.
RPI3 has a 1.2GHz quad-core micro-processor with
ARMv7 instructions and 1GB RAM. OpenSSL is
a very popular tool and is widely used since it is
considered as one of the most efficient cryptographic
libraries that provide robust, commercial-grade, and
full-featured toolkit for Transport Layer Security
(TLS) and Secure Sockets Layer (SSL) protocols.
Finally, AES OpenSSL is used to compare two
authentication-encryption operation modes, CCM and
GCM, which ensure data confidentiality and mes-
sage integrity in addition to source authentication. In

general, CCM (Counter with CBC-MAC) and GCM
(Galois/Counter Mode) modes are preferred. Fig. 9
illustrates the numerical values of the data rate of
CCM and GCM cryptographic operation modes using
AES OpenSSL implementation with RPI0, RPI2 and
RPI3.

The obtained results in Fig. 10 prove that the GCM
mode is always more efficient than the CCM mode
since it requires low execution time for the different
AES (Advanced Encryption Standard) symmetric key
sizes and RPI devices. As such, it is more suitable
for fogs applications. It should be noted that as the
message size increases, the time required to perform
encryption and message authentication also increases.

The obtained data rate results clearly show that
GCM can achieve a high throughput compared to
CCM. Therefore, the GCM operation mode is used in
the proposed solution instead of CCM. Consequently,
the proposed solution will not degrade the main
functionality of fog devices.

On the other hand, the efficiency of the proposed
modified IDA scheme is also analyzed. The proposed
IDA solution relies on an optimized Galois Field
Arithmetic library scheme. TABLES VII, VIII, IX
and Fig. 11 show the required average execution time
for the proposed modified IDA in function of n and
k, in addition to the input data size. According to the
obtained results, increasing the file size leads to an
increase of the required execution time. In addition,
increasing n will also increase the required execution
time for a fixed file size. Similarly, for fixed file size
and n, increasing k also increases the required com-
putation complexity and consequently the execution
time. Fig. 11 indicates clearly that the variation of
the execution time is linear (O(filesize)), which is
desirable for constrained fog devices.

C. Storage/Communication Overhead

The storage and communication overhead are re-
lated to size of the redundant data and the number of
fragments that need to be sent over the network. In
other terms, this overhead is related to the values of n
and k, where n is the number of fragments that should
be sent to the neighboring nodes, and k the minimal
number of fragmented needed to recover the original
data. Having in total n× |M |k fragments, where —M—

is the original data size, the storage overhead is
((n−k)×|M |k). Moreover, the communication overhead
is proportional to n. In case where n is close to
k, the communication overhead decreases, however
the data availability also decreases. In contrast, when
k is less than n, the provided data availability is
high at the cost of a higher communication overhead.
Consequently, n should be chosen in a way to meet
the compromise between data availability and com-
munication overhead.

D. Efficiency and Error Propagation

Another important requirement is to ensure low
error propagation. If an error occurs at one fragment,
the error should not result in the deterioration of
the session data. Thus, in our proposed scheme,
given that the decryption consists of multiplying each
fragment by a decryption sub-matrix, the results of
the correct fragments will not be affected and the
error will be limited to the erroneous row/segment.
In addition, requiring any t fragments to recover the
original data, the erroneous can be replaced by an-
other fragment and thus, the probability of recovering
the original data correctly increases when n > k.

X. CONCLUSION

In this paper, a cryptographic scheme that jointly
encrypts, authenticate and fragment input data is
proposed for fog systems. To the best of our knowl-
edge, this is the first work in this direction. The
novelty of the proposed scheme is that it benefits from
the dynamic key-dependent cryptographic scheme
to enhance the security of fog systems, where a
random nonce is produced and combined with a pe-
shared secret key to generate a dynamic key. The
produced dynamic key is used to derive the needed
cryptographic primitives, which include encoding ma-
trices and selection/update tables. Consequently, the
encoding matrices become dynamic and secure and
can lead to different fragments for the same input
message during the same session. In addition, source
authentication and message integrity and confidential-
ity are ensured by using AES with the GCM operation
mode. Finally, security tests and performance analysis
were presented to validate the safe and efficient
deployment of the proposed scheme for fog systems.

(a) RPI-0 (b) RPI-2 (c) RPI-3

Fig. 9: Variation of data rate versus message length for the CCM and GCM operation modes with RPI-0 (a),
RPI-2 (b) and RPI-3 (c)

(a) RPI-0 (b) RPI-2 (c) RPI-3

Fig. 10: The corresponding data rate ratio between GCM and CCM operation modes versus message length
with RPI-0 (a), RPI-2 (b) and RPI-3(c)

ACKNOWLEDGEMENT

This paper is partially supported with funds from
the Maroun Semaan Faculty of Engineering and
Architecture at the American University of Beirut

and also from the EIPHI Graduate School (contract
”ANR-17-EURE-0002”). We also thank the super-
computer facilities of the Mésocentre de calcul de
Franche-Comté.

TABLE VII: Execution times of optimized IDA approach with different sizes of messages and different values
of fragments for recovery and fragments on RPI0.

Size k n Exec. time (s) k n Exec. time (s)
16KB 4 16 0.066 3 8 0.037
64KB 4 16 0.27 3 8 0.15

256KB 4 16 1.06 3 8 0.59
1MB 4 16 4.28 3 8 2.34
4MB 4 16 17.13 3 8 9.87

16MB 4 16 68.68 3 8 37.57
16KB 8 16 0.08 5 16 0.071
64KB 8 16 0.32 5 16 0.28

256KB 8 16 1.3 5 16 1.11
1MB 8 16 5.43 5 16 4.44
4MB 8 16 22.04 5 16 17.78

16MB 8 16 87.78 5 16 71.12
16KB 12 16 0.091 7 24 0.10
64KB 12 16 0.37 7 24 0.41

256KB 12 16 1.5 7 24 1.65
1MB 12 16 6.37 7 24 6.63
4MB 12 16 25.36 7 24 26.47

16MB 12 16 101.6 7 24 105.89

TABLE VIII: Execution times of our approach with different sizes of messages and different values of
fragments for recovery and fragments on RPI2.

Size k n Exec. time (s) k n Exec. time (s)
16KB 4 16 0.058 3 8 0.032
64KB 4 16 0.26 3 8 0.13

256KB 4 16 0.94 3 8 0.51
1MB 4 16 3.76 3 8 2.03
4MB 4 16 14.78 3 8 8.15

16MB 4 16 59.66 3 8 32.6
16KB 8 16 0.073 5 16 0.06
64KB 8 16 0.28 5 16 0.28

256KB 8 16 1.11 5 16 0.96
1MB 8 16 4.51 5 16 3.93
4MB 8 16 18.17 5 16 15.49

16MB 8 16 72.98 5 16 61.98
16KB 12 16 0.08 7 24 0.09
64KB 12 16 0.33 7 24 0.36

256KB 12 16 1.31 7 24 1.43
1MB 12 16 5.24 7 24 5.76
4MB 12 16 20.82 7 24 22.93

16MB 12 16 83.32 7 24 91.71

REFERENCES

[1] S. Tu, M. Waqas, S. U. Rehman, M. Aamir, O. U. Rehman,
Z. Jianbiao, and C. Chang, “Security in fog computing: A
novel technique to tackle an impersonation attack,” IEEE
Access, vol. 6, pp. 74 993–75 001, 2018.

[2] O. Salman, I. Elhajj, A. Chehab, and A. Kayssi,
“Iot survey: An sdn and fog computing perspective,”
Computer Networks, vol. 143, pp. 221 – 246, 2018.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1389128618305395

[3] C. B. Tan, M. H. A. Hijazi, Y. Lim, and A. Gani,
“A survey on proof of retrievability for cloud data

integrity and availability: Cloud storage state-of-the-art,
issues, solutions and future trends,” Journal of Network
and Computer Applications, vol. 110, pp. 75 – 86, 2018.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1084804518301048

[4] Y. Guan, J. Shao, G. Wei, and M. Xie, “Data security and
privacy in fog computing,” IEEE Network, vol. 32, no. 5, pp.
106–111, September 2018.

[5] B. A. Martin, F. Michaud, D. Banks, A. Mosenia, R. Zol-
fonoon, S. Irwan, S. Schrecker, and J. K. Zao, “Openfog
security requirements and approaches,” in 2017 IEEE Fog
World Congress (FWC), Oct 2017, pp. 1–6.

[6] N. Kaaniche and M. Laurent, “Data security and privacy

http://www.sciencedirect.com/science/article/pii/S1389128618305395
http://www.sciencedirect.com/science/article/pii/S1389128618305395
http://www.sciencedirect.com/science/article/pii/S1084804518301048
http://www.sciencedirect.com/science/article/pii/S1084804518301048

TABLE IX: Execution times of our approach with different sizes of messages and different values of fragments
for recovery and fragments on RPI3.

Size k n Exec. time (s) t n Exec. time (s)
16KB 4 16 0.034 3 8 0.019
64KB 4 16 0.14 3 8 0.075

256KB 4 16 0.55 3 8 0.30
1MB 4 16 2.19 3 8 1.21
4MB 4 16 8.83 3 8 4.86

16MB 4 16 37.37 3 8 21.12
16KB 8 16 0.041 5 16 0.036
64KB 8 16 0.16 5 16 0.14

256KB 8 16 0.66 5 16 0.58
1MB 8 16 2.66 5 16 2.3
4MB 8 16 10.7 5 16 9.2

16MB 8 16 44.97 5 16 37.01
16KB 12 16 0.048 7 24 0.053
64KB 12 16 0.23 7 24 0.26

256KB 12 16 0.77 7 24 0.85
1MB 12 16 3.09 7 24 3.44
4MB 12 16 12.36 7 24 13.8

16MB 12 16 49.86 7 24 55.18

16Kb 64Kb 256Kb 1Mb 4Mb 16Mb
File size

10−1

100

101

102

Ex
ec
uti

on
 tim

e (
s)

t=3 n=8
t=5 n=16
t=7 n=24

Fig. 11: Mean average of the required execution
time (10000 times) of the proposed modified IDA
algorithm with variable length message in addition
to n and k = t.

preservation in cloud storage environments based on
cryptographic mechanisms,” Computer Communications, vol.
111, pp. 120 – 141, 2017. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S014036641730796X

[7] M. Ali, R. Dhamotharan, E. Khan, S. U. Khan, A. V.
Vasilakos, K. Li, and A. Y. Zomaya, “Sedasc: Secure data
sharing in clouds,” IEEE Systems Journal, vol. 11, no. 2, pp.
395–404, June 2017.

[8] H. Noura, A. Chehab, L. Sleem, M. Noura, R. Couturier, and
M. M. Mansour, “One round cipher algorithm for multimedia
iot devices,” Multimedia tools and applications, vol. 77,
no. 14, pp. 18 383–18 413, 2018.

[9] H. Marzouqi, M. Al-Qutayri, K. Salah, D. Schinianakis, and
T. Stouraitis, “A high-speed fpga implementation of an rsd-
based ecc processor,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 24, no. 1, pp. 151–164, Jan
2016.

[10] K. Xue, J. Hong, Y. Ma, D. S. L. Wei, P. Hong, and N. Yu,
“Fog-aided verifiable privacy preserving access control for
latency-sensitive data sharing in vehicular cloud computing,”
IEEE Network, vol. 32, no. 3, pp. 7–13, May 2018.

[11] S. Basudan, X. Lin, and K. Sankaranarayanan, “A privacy-
preserving vehicular crowdsensing-based road surface condi-
tion monitoring system using fog computing,” IEEE Internet
of Things Journal, vol. 4, no. 3, pp. 772–782, June 2017.

[12] B. Wang, Z. Chang, Z. Zhou, and T. Ristaniemi, “Reliable
and privacy-preserving task recomposition for crowdsensing
in vehicular fog computing,” in 2018 IEEE 87th Vehicular
Technology Conference (VTC Spring), June 2018, pp. 1–6.

[13] M. Du, K. Wang, X. Liu, S. Guo, and Y. Zhang, “A
differential privacy-based query model for sustainable fog
data centers,” IEEE Transactions on Sustainable Computing,
pp. 1–1, 2018.

[14] A. Viejo and D. Sánchez, “Secure and privacy-preserving
orchestration and delivery of fog-enabled iot services,”
Ad Hoc Networks, vol. 82, pp. 113 – 125, 2019.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1570870518305493

[15] D. Koo and J. Hur, “Privacy-preserving deduplication of
encrypted data with dynamic ownership management in fog
computing,” Future Generation Computer Systems, vol. 78,
pp. 739 – 752, 2018. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0167739X17301309

[16] R. Lu, K. Heung, A. H. Lashkari, and A. A. Ghorbani, “A
lightweight privacy-preserving data aggregation scheme for
fog computing-enhanced iot,” IEEE Access, vol. 5, pp. 3302–
3312, 2017.

[17] F. Y. Okay and S. Ozdemir, “A secure data aggregation

http://www.sciencedirect.com/science/article/pii/S014036641730796X
http://www.sciencedirect.com/science/article/pii/S014036641730796X
http://www.sciencedirect.com/science/article/pii/S1570870518305493
http://www.sciencedirect.com/science/article/pii/S1570870518305493
http://www.sciencedirect.com/science/article/pii/S0167739X17301309
http://www.sciencedirect.com/science/article/pii/S0167739X17301309

protocol for fog computing based smart grids,” in 2018 IEEE
12th International Conference on Compatibility, Power Elec-
tronics and Power Engineering (CPE-POWERENG 2018),
April 2018, pp. 1–6.

[18] R. Almadhoun, M. Kadadha, M. Alhemeiri, M. Alshehhi,
and K. Salah, “A user authentication scheme of iot devices
using blockchain-enabled fog nodes,” in 2018 IEEE/ACS
15th International Conference on Computer Systems and
Applications (AICCSA). IEEE, 2018, pp. 1–8.

[19] A. Shamir, “How to share a secret,” Communications of the
ACM, vol. 22, no. 11, pp. 612–613, 1979.

[20] M. O. Rabin, “Efficient dispersal of information for security,
load balancing, and fault tolerance,” Journal of the ACM
(JACM), vol. 36, no. 2, pp. 335–348, 1989.

[21] R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro,
“On the size of shares for secret sharing schemes,” in Annual
International Cryptology Conference. Springer, 1991, pp.
101–113.

[22] H. Krawczyk, “Secret sharing made short.” in Crypto, vol. 93.
Springer, 1993, pp. 136–146.

[23] I.-P. Katrinebjerg and R. W. Lauritsen, “Backups with com-
putational secret sharing.”

[24] R. L. Rivest, “All-or-nothing encryption and the package
transform,” in International Workshop on Fast Software En-
cryption. Springer, 1997, pp. 210–218.

[25] J. K. Resch, “Development cleversafe, inc. 222 s. riverside
plaza, suite 1700 chicago, il 60606,” 2011.

[26] I. S. Reed and G. Solomon, “Polynomial codes over certain
finite fields,” Journal of the society for industrial and applied
mathematics, vol. 8, no. 2, pp. 300–304, 1960.

[27] F. J. MacWilliams and N. J. A. Sloane, The theory of error-
correcting codes. Elsevier, 1977.

[28] M. Li, C. Qin, P. P. Lee, and J. Li, “Convergent dispersal:
Toward storage-efficient security in a cloud-of-clouds.” in
HotCloud, 2014.

[29] S. Wang, D. Agrawal, and A. El Abbadi, “A comprehensive
framework for secure query processing on relational data in
the cloud,” Secure Data Management, pp. 52–69, 2011.

[30] Z.-t. Yu, Q. Qian, R. Zhang, and C.-L. Hung, “Sida: An in-
formation dispersal based encryption algorithm,” in Frontier
Computing. Springer, 2016, pp. 239–249.

[31] L. Chen, T. M. Laing, and K. M. Martin, “Efficient, xor-
based, ideal (t, n)-threshold schemes,” in International Con-
ference on Cryptology and Network Security. Springer,
2016, pp. 467–483.

[32] W. J. Buchanan, D. Lanc, E. Ukwandu, L. Fan, G. Russell,
and O. Lo, “The future internet: A world of secret shares,”
Future Internet, vol. 7, no. 4, pp. 445–464, 2015.

[33] M. Wazid, A. K. Das, N. Kumar, and A. V. Vasilakos,
“Design of secure key management and user authentication
scheme for fog computing services,” Future Generation
Computer Systems, vol. 91, pp. 475 – 492, 2019.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0167739X18303959

[34] M. A. Khan and K. Salah, “Iot security: Review, blockchain
solutions, and open challenges,” Future Generation Com-
puter Systems, vol. 82, pp. 395–411, 2018.

[35] W. Stallings, Cryptography and network security: principles
and practice. Pearson Upper Saddle River, 2017.

[36] K. Chida, K. Hamada, D. Ikarashi, R. Kikuchi, and B. Pinkas,
“High-throughput secure aes computation,” in Proceedings

of the 6th Workshop on Encrypted Computing & Applied
Homomorphic Cryptography. ACM, 2018, pp. 13–24.

http://www.sciencedirect.com/science/article/pii/S0167739X18303959
http://www.sciencedirect.com/science/article/pii/S0167739X18303959

	Introduction
	Contributions
	Organization

	Related Work
	Background
	Shamir Secret Sharing Scheme, SSSS
	Rabin Information Dispersal Algorithm, IDA rabin1989efficient
	IDA Variants
	Krawczyk (1998)
	AONT-IDA (2008) katrinebjergbackups
	AONT-RS 2011 resch2011development
	CAONT-RS 2014 li2014convergent
	Salted IDA (2011) wang2011comprehensive
	IDA-Over Encryption 2016 yu2016sida
	IDA-XOR 2016 chen2016efficient

	Problem formulation
	Network Model
	Threat Model
	Design Goals and Evaluation Metrics

	Proposed Key Derivation Scheme
	Dynamic Key & Sub-keys Derivation
	Construction of Cipher Primitives
	Dynamic Permutation Primitives
	Dynamic Selection Sub-matrices
	Dynamic Fragments Distribution
	Dynamic Key-Dependent Pseudo Random IDA Matrices

	Proposed Cryptographic Solution
	Encryption Process
	Proposed Data Availability Process
	Data Authentication and Integrity Scheme
	Inverse Cryptographic Solution

	Security Analysis
	Randomness of Dynamic Keys
	Randomness of Fragments
	Recurrence
	Independence
	Uniformity

	Sensitivity to Dynamic Key

	Cryptanalysis Discussion
	Frequency Analysis Attacks
	Brute-force Attacks
	Linear and Differential Attacks
	Sybil Attacks

	Performance Analysis
	Computational Overhead
	 Execution Time
	Storage/Communication Overhead
	Efficiency and Error Propagation

	Conclusion
	References

