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Three-Cornered Hat and Groslambert Covariance:
A first attempt to assess the uncertainty domains

François Vernotte and Éric Lantz

Abstract—The three-cornered hat method and the Groslambert
Covariance are very often used to estimate the frequency stability
of each individual oscillator in a set of three oscillators by
comparing them in pairs. However, no rigorous method to assess
the uncertainties over their estimates has yet been formulated.
In order to overcome this lack, this paper will first study the
direct problem, i.e. the calculation of the statistics of the clock
stability estimates by assuming known values of the true clock
stabilities and then will propose a first attempt to solve the inverse
problem, i.e. the assessment of a confidence interval over the true
clock stabilities by assuming known values of the clock stability
estimates. We show that this method is reliable from 5 Equivalent
Degrees of Freedom (EDF) and beyond.

I. INTRODUCTION

The “Three-Cornered Hat method” was introduced by Gray
and Allan in 1974 [1] to estimate the frequency stability
of each individual oscillator in a set of three oscillators by
comparing them in pairs. This method has been proved to be
very efficient if the underlying assumption of the oscillator
independence is fulfilled. Another approach, based on covari-
ances, was proposed by Fest, Groslambert and Gagnepain
in 1983 [2]. This method gives very similar results to such
an extent that both methods were considered to be perfectly
equivalent until very recently. However, we showed in 2016
that the latter, renamed the Groslambert Covariance (GCov),
has the advantage to reject the noise measurement, i.e. the
counter noise [3]. The use of GCov is becoming widespread
and dedicated measuring instruments are beginning to appear
[4], [5].

However, except approximated error bars valid only for
small integration times [6] or limited guidelines [3], no
rigorous method to assess confidence intervals over the three-
cornered hat or GCov estimates has yet been formulated.
Nevertheless, it is an important issue, especially since negative
variance estimates may be obtained by these methods, because
these estimates are computed by calculating differences. More-
over, the uncertainty over each clock stability estimate strongly
depends on the stabilities of all the clocks.

The aim of this paper is to study the statistics of the three-
cornered hat/GCov method in order to find a way for comput-
ing confidence intervals over the true clock stabilities. After a
quick reminder of both three-cornered hat and GCov methods,
we will first address the so-called “direct problem”, i.e. the
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calculation of the probability distribution of the clock stability
estimates by knowing the true clock stabilities. Then, we will
propose a first attempt of solving the “inverse problem”, i.e.
assessing a confidence interval over the true clock stabilities
by knowing the clock stability estimates obtained by the three-
cornered hat/GCov method.

II. STATEMENT OF THE PROBLEM

A. Clock comparison

Three-cornered hat as well as Groslambert Covariance rely
both on simultaneous comparisons of 3 clocks A, B and C in
pairs [3]. The clocks are assumed to be uncorrelated.

1) Time and frequency quantities: In this paper we refer to
time and frequency quantities such as phase time x, fractional
frequency y, z (see below). . . of oscillators. We indicate the
signals from oscillators with capital letters (A, B, C. . . ) that
are used as subscripts of the related quantities, i.e. yA is the
fractional frequency of the oscillator A. The measurement
number k can also be used as subscript.

2) Variances and covariances: AVAR is generally defined
as

σ2
y =

1

2
E
[
(ȳk+1 − ȳk)

2
]

where E[·] is the mathematical expectation, and ȳk =
1
τ

∫ tk+1

tk
y(t) dt with tk+1 = tk + τ .

In order to simplify the notations, let us define the quantity
zk = (ȳk+1− ȳk)/

√
2. AVAR may then be written as σ2

y(τ) =
E
[
z2k
]
. The associated estimator is then1

σ̂2
y(τ) =

1

M

M∑
k=1

z2k

where M is the number of different zk in a data run of length
T , whether AVAR is calculated with or without overlapping.

3) GCov vs 3-cornered hat: The classical 3-cornered hat
relies on the assumption of independence of the channel
noises and of the oscillators A, B, C. The intercomparison
of A and B is measured by zAB = zB − zA and its
variance is σ2

AB = σ2
A + σ2

B where all dependences on τ
are omitted. Similarly, σ2

BC = σ2
B +σ2

C and σ2
CA = σ2

C +σ2
A.

The three-cornered hat method uses the following property:
σ2
A = 1

2

(
σ2
AB − σ2

BC + σ2
CA

)
.

On the other hand, the variance of oscillator A may be
estimated by using the covariance of the inter-comparison
of A and B as well as of the inter-comparison of A and

1In this paper, the symbol ·̂ stands for the estimate of the quantity which
is below.
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C. This leads to the Groslambert covariance GCovA =
E [(zA − zB)(zA − zC)].

As mentioned above, these two approaches are almost
equivalent, but GCov is not polluted by the measurement
noises since all cross-covariances are zero-mean [3]. However,
in this paper we will not distinguish these two approaches and
will use one or the other method for mathematical derivations.

B. Definition of the problem

1) Measurements, model parameters and estimates: In the
following, in order to simplify the notation, we will refer
to zPQ and σ̂2

PQ with P,Q ∈ {A,B,C} to ensure the
consistency of the notation regardless of the clock pair. The
“elementary estimates” of the variance resulting from the
comparison of the clocks P and Q is then

σ̂2
PQ =

1

M

M∑
k=1

z2PQ,k. (1)

Similarly, the Groslambert covariance estimates will be de-
noted by

ĜCovPO,PQ =
1

M

M∑
k=1

zPO,k · zPQ,k (2)

where O,P,Q ∈ {A,B,C} and M is the number of different
zPO,k (or zPQ,k) in a data run of length T .

Finally, from these covariances or from the three-cornered
hat, we can compute the “final estimates” σ̂2

P with P ∈
{A,B,C}.

2) Direct problem and inverse problem: In order to assess
the uncertainties over the estimation of the individual clock
stabilities, we will have to distinguish two main issues:
• The direct problem consists in calculating the statistics

of the elementary estimates σ̂2
PQ, or final estimates σ̂2

P ,
knowing the model parameters σ2

A, σ2
B and σ2

C .
• The inverse problem, conversely, consists in calculating

a confidence interval over each model parameter σ2
P , from

the final estimates σ̂2
A, σ̂2

B and σ̂2
C . Obviously, this last

step is the true purpose of this paper.
This distinction corresponds to the main sections of this paper.

III. DIRECT PROBLEM

A. Calculation of two independent χ2 distributions

1) Statistics of the σ̂2
PQ estimates: The two approaches

described above are strictly equivalent when the counter noises
are negligible. This condition occurs for large integration time
τ . We will then alternatively use the 3-cornered hat or the
GCov formalism for our demonstrations. Here we begin with
the 3-cornered hat but the mathematical derivations below
remain valid for the GCov method regardless of τ .

In the definition of the elementary estimates given by (1),
the number M is a key element since it determines the number
of Equivalent Degrees of Freedom (EDF) of these random
variables (r.v.). If we use AVAR “without overlapping” on a
White FM noise, the EDF is simply ν = T/τ − 1 where
T is the total duration of the data-run. The use of Allan

Variance with overlapping or its application to other noises
than White FM will describe an identical statistics but with
a different number of EDF. Since the number of EDFs is an
independent parameter in this study, it will suffice to enter
the number of EDF corresponding to the case treated in the
obtained relationships, regardless of the choice of the variance
or the type of noise.

The zPQ,k measurements are Gaussian centered r.v. and
Equation (1) shows that σ̂2

PQ is a r.v. that follows a χ2

distribution with ν degrees of freedom, which we will write
χ2
ν . The number of EDFs is here such that 1 ≤ ν ≤ M

according to the correlation between the zPQ,k measurements.
The precise determination of the number of EDFs does not fit
into this study and is described in other publications (see for
example [7]).

Therefore, the 3 estimates σ̂2
AB , σ̂2

BC and σ̂2
CA follow

different χ2 distributions: σ̂2
AB = kABχ̇

2
ν , σ̂2

BC = kBC χ̈
2
ν and

σ̂2
CA = kCA

...
χ2
ν where the coefficients kAB , kBC , kCA ∈ R+.

Since an oscillator is involved in two distributions, these
distributions are correlated.

2) Vector formalization of the problem: To determine the
statistics followed by the final estimates, we must write them in
the form of linear combinations of independent r.v.. Therefore,
we have to determine an orthonormal basis of N linearly
independent vectors from N ′ linearly dependent vectors, with
N < N ′. In our case, N ′ = 3 (3 correlated χ2 r.v.) and we
will show in the following that N = 2 (2 independent χ2 r.v.).

To simplify the problem, let us express (1) in the case M =
1 and thus ν = 1 EDF: σ̂2

PQ = z2PQ. We can also consider that
zP = (ȳP,2 − ȳP,1)/

√
2 and therefore zPQ = zQ − zP . Each

zP follows a centered normal (Gaussian or Laplace-Gauss)
law LG(0,ZP ). Hence zPQ = zQ − zP follows a centered
normal law of variance σ2

PQ = Z2
P + Z2

Q.
Since the 3 clocks are independent, the quantities ZP can be

considered as the 3 coordinates of a vector in a 3-dimensional
space of basis (~eA, ~eB , ~eC). It is a vector space of normal
laws since each of these normed basis vectors is characterized
by a centered and reduced normal LG(0, 1) independent in
such a way that E[~eP · ~eQ] = δP,Q, where δP,Q represents the
Kronecker symbol.

This vector space is thus endowed with a scalar product,
denoted ‘·’, and a norm denoted ‘|| · ||2’, defined by{

~eP · ~eQ = ˙LG(0, 1) · L̈G(0, 1) if P 6= Q
~eP · ~eP = ||~eP ||2 = χ2

1

where χ2
1 is a r.v. following a χ2 law with 1 degree of freedom

and ˙LG(0, 1) and L̈G(0, 1) represent 2 independent normal
r.v. Their product therefore follows a Bessel distribution of
mathematical expectation 0 and variance 1 [8], which is a
special case of the variance-gamma distribution that we will
note VΓ and which is defined in Appendix A-1, with A = B
and ν = 1, and then θ = 0, η = λ = κ = 1/2 in (17).

Thus, the quantities zA, zB and zC become vectors that
we will write ~A, ~B and ~C and which are defined by: ~A =
ZA~eA = (ZA, 0, 0)

T, ~B = ZB~eB = (0,ZB , 0)
T, and ~C =

ZC~eC = (0, 0,ZC)
T.

We can now express the variances and covariances of the
primary oscillators through norms and scalar products of
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vectors: || ~B||2 = Z2
B ||~eB ||2 = Z2

Bχ
2
1. We see in particular

that σ2
B = E[|| ~B||2] = Z2

B . As for the scalar product
between two different basis vectors, its expectation is null and
equal to the covariance between two independent oscillators.
However, it is described by a variance-gamma distribution:
~A · ~B = ZAZB~eA · ~eB = ZAZBVΓ .

The clock comparisons zAB , zBC and zCA also become
vectors formed according to the following model: zAB = zB−
zA =

−−→
AB = ~B − ~A = −ZA~eA + ZB~eB .

Similarly, the variances σ̂2
AB , σ̂2

BC and σ̂2
CA can be rewritten

with these notations:

σ̂2
AB = ||

−−→
AB||2 = Z2

A||~eA||2 + Z2
B ||~eB ||2

−2ZAZB~eA · ~eB
= Z2

Aχ̇
2
1 + Z2

Bχ̈
2
1 − 2ZAZBVΓ

It is now easy to see that the 3 vectors
−−→
AB,

−−→
BC and

−→
CA

are linearly dependent since
−−→
AB +

−−→
BC +

−→
CA = ~0.

Therefore, they all belong to a 2-dimensional subspace of
the above defined 3-dimensional space. It is thus necessary
to look for an orthonormal basis (~u1, ~u2) in which we can
rewrite these 3 vectors.

3) Search for an independent basis: The Gram-Schmidt
algorithm can be used to solve this problem. Let us choose
~u2 = γ

−→
CA in such a way that E

[
||~u2||2

]
= 1:

||~u2||2 = γ2Z2
Aχ̇

2
1 + γ2Z2

C

...
χ2
1 − 2γ2ZAZCVΓ

and then E
[
||~u2||2

]
= γ2Z2

A + γ2Z2
C = 1 where

γ =
1√

Z2
A + Z2

C

. (3)

We now need to find a second vector, ~u1, which is a linear
combination of

−−→
AB and

−−→
BC, perpendicular to ~u2, with a norm

of unity mathematical expectation: ~u1 = α
−−→
AB − β

−−→
BC

E [~u1 · ~u2] = −αγZ2
A + βγZ2

C = 0
E
[
||~u1||2

]
= α2Z2

A + (α− β)2Z2
B + β2Z2

C = 1.

The solution is: α =
Z2

C√
Z4

A(Z2
B+Z2

C)+Z4
C(Z2

A+Z2
B)+2Z2

AZ2
BZ2

C

β =
Z2

A√
Z4

A(Z2
B+Z2

C)+Z4
C(Z2

A+Z2
B)+2Z2

AZ2
BZ2

C

(4)

We can now write the three vectors
−−→
AB,

−−→
BC and

−→
CA as

linear combinations of the basis vectors (~u1, ~u2):

−→
CA =

1

γ
~u2. (5)

Using the property
−−→
AB +

−−→
BC +

−→
CA = 0, we obtain:

~u1 = α
−−→
AB − β

−−→
BC = α

−−→
AB − β

(
−
−−→
AB −

−→
CA
)

= (α+ β)
−−→
AB +

β

γ
~u2

leading finally to:

−−→
AB =

1

α+ β
~u1 −

β

γ(α+ β)
~u2. (6)

Similarly, we find:

−−→
BC = − 1

α+ β
~u1 −

α

γ(α+ β)
~u2. (7)

Thanks to the equations (5), (6) and (7), we can estimate
σ2
B , for example by using ĜCovBA,BC :

ĜCovBA,BC =
−−→
BA ·

−−→
BC

=
1

(α+ β)2
χ̇2
1 −

αβ

γ2(α+ β)2
χ̈2
1

+
α− β

γ(α+ β)2
VΓ

where now the 2 χ2 r.v. are totally independent. We note,
however, that there is a third term of null mathematical
expectation, but of which variance is non-zero except in the
particular case where α = β, i.e. ZA = ZC . In this case, we
will have access to the distribution of σ̂2

B since we know that
the difference of two χ2 r.v. corresponds to a r.v. with a
probability density given by the equation (17) of Appendix
A-1.

In the general case α 6= β, a Bessel distribution is added
to the difference between the χ2 r.v., preventing us from
calculating the density of σ̂2

B . This problem can be solved
by rotating the basis (~u1, ~u2) to get a new basis (~V1, ~V2) so
that the multiplicative factor of the scalar product ~V1 · ~V2 is
identically zero.

B. Rotation of the basis vectors

It is thus necessary to find the eigenvector basis (~V1, ~V2)
such that

σ̂2
B =

1

(α+ β)2
||~u1||2 −

αβ

γ2(α+ β)2
||~u2||2

+
α− β

γ(α+ β)2
~u1 · ~u2 (8)

= A||~V1||2 − B||~V2||2 + C~V1 · ~V2

with C = 0. Let us simplify the notation of Equation (8):
σ̂2
B = a||~u1||2 − b||~u2||2 + c~u1 · ~u2 with

a =
1

(α+ β)2

b =
αβ

γ2(α+ β)2

c =
α− β

γ(α+ β)2
.

(9)

It is a quadratic form which associates a scalar w0 to any
vector ~w = w1~u1 + w2~u2 according to

w0 = ~wTQ~w (10)

with
Q =

(
a c/2
c/2 −b

)
.

Diagonalizing the matrix Q gives the eigenvalues: A =
a−b+

√
(a+b)2+c2

2

B =
a−b−

√
(a+b)2+c2

2 .
(11)
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and eigenvectors ~EA = (c/2,A− a)
T and ~EB =

(B + b, c/2)
T. The eigenvector matrix is E =

(
~EA ~EB

)
and the quadratic form of (10) may be rewritten as w0 =
~wTEΛET ~w. Thus, this new formulation can be interpreted
as a basis change in which a vector ~w is transformed into a
vector ~W according to:

~W = ET ~w. (12)

The basis change of relation (12) is a rotation of angle ϕ
since

ET =

(
cosϕ sinϕ
− sinϕ cosϕ

)
with

ϕ = arctan
[(
−a− b+

√
(a+ b)2 + c2

)
/c
]
. (13)

This angle, although not essential for the calculation of basis
vectors, proves to be a very useful indicator to analyze the data
(see Section III-C3).

C. Validation of the theoretical probability laws by Monte
Carlo simulations

1) Validation principle: According to the preceding section,
the probability density of σ̂2

B , equal to the difference of two
independent χ2 r.v., can now be calculated using the function
p(x) of the equation (17) of Appendix A-1 by assigning the
following values to the parameters of this function:

η = A+B
4AB

θ = A−B
4AB

κ =
√
η2 − θ2 = 1

2
√
AB

λ = ν/2
µ = 0

(14)

where A and B are the values given in (11) and ν the number
of EDF of the considered χ2 laws. Indeed, if the above study
was done for ν = 1 for reasons of simplification of the
formalism, it remains perfectly valid regardless of the number
of EDFs.

To verify the results of this model, we compared them
with those given by a simulation that seems realistic: we
chose to return to the frequency deviations of the individual
clocks by simulating the quantities ȳA,k, ȳB,k and ȳC,k (see
§ II-A2). They were simulated by a centered normal r.v.
(randn function of Octave, the Matlab clone). It might be
objected that we were simulating white noise while frequency
deviations are much more likely to be red noise samples.
But what matters in this study is the Gaussian character of
the probability law more than the power law of its spectral
density. The only effect of the latter is reducing the number
of EDFs of the χ2 laws.

– Simulation algorithm
The simulation algorithm follows these 6 steps

S1: Assignment of the 3 noise levels ZP
S2: Drawing of 3× ν samples ȳP,k
S3: Computation of the 3×ν differences ȳPQ,k = ȳQ,k−ȳP,k
S4: Computation of the 3 estimates σ̂2

P = ĜCovPO,PQ

0

0.02

0.04

0.06

0.08

0.1

0.12

-2 -1 0 1 2 3 4 5

PD
F

σ̂B
2

σ̂A
2=1, σ̂B

2=1, σ̂C
2=1 : Simulations

Model
σ̂A

2=0.5, σ̂B
2=1, σ̂C

2=2 : Simulations
Model

Fig. 1. Probability densities of the final estimate σ̂2
B obtained by the model

without rotation (solid lines) and by simulations (boxes) for comparable
stability clocks: σ2

A = σ2
B = σ2

C = 1 (red) ; B. σ2
A = 0, 5, σ2

B = 1,
σ2
C = 2 (green). The chosen number of EDFs was ν = 5.

S5: Repetition N = 107 times of the steps S2 to S4 of this
sequence.

S6: Drawing of the 3 histograms of the σ̂2
P .

In all simulations, we chose a number of EDF ν = 5.

– Modeling algorithm
The modeling algorithm follows these 6 steps for each

estimate σ̂2
P

S1: Assignment of the noise levels of the 3 clocks ZA, ZB
and ZC

S2: Independent basis
• Computation of the coefficients α, β and γ according

to the relationships (3) and (4)
• Computation of the coefficients a, b and c according

to (9)
S3: Vector rotation (option)

• Computation of the rotation angle ϕ with (13)
• Computation of the coefficients A, B and C with (11)

S4: Computation of the coefficients η, θ, κ and λ with (14)
S5: Plotting the probability density with (17).
S6: Repeat the steps S2 to S5 for the other 2 clocks.

2) Modeling without the basis rotation: All the histograms
shown in the following figures have been normalized by the
total number of draws and the width of the bins to get the
average probability density over each bin.

As expected, when the noise levels of the 3 clocks are the
same, the match between the model and the simulations is
excellent (figure 1 in red).

On the other hand, when the differences in noise level are
significant (σ2

C = 2σ2
B = 4σ2

A), the gap becomes obvious,
especially with regard to the measurement σ̂2

B (see Figure 1
in green). It is indeed for this one that the disparity between
the 2 other levels is the most important (σ2

C = 8σ2
A) and the

approximation A − B � A + B, necessary for the model
without rotation to be valid, is no longer verified.

3) Modeling with the rotation: Now, let’s put the model
with the rotation of the basis vectors on the test bench by
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TABLE I
COMPARISON OF 3 CLOCKS OF COMPARABLE STABILITIES USING THE

ROTATION OF THE EIGENVECTORS. THE CHOSEN NUMBER OF EDFS WAS
ν = 5.

σ2
A = 0.1 σ2

B = 1 σ2
C = 10

Angle 27.43◦ −34.93◦ 7.49◦

Fractile Model Simul. Model Simul. Model Simul.
2.5 % -2.894 -2.893 -1.773 -1.775 1.428 1.428

97.5 % 3.190 3.193 4.715 4.715 26.09 26.08
P (σ̂ < 0) 47.5 % 47.4 % 26.6 % 26.6 % 0.06 % 0.06 %

comparing it to the simulations.

– Clocks with comparable stabilities
At first, we took again the levels of stability tested with

the model without rotation (see Section III-C2) and we found
in each case an excellent agreement between model and
simulation.

We can treat with the same success the case where there is
a factor 100 between σ2

A and σ2
C (see Table I and Figure 2).

To be able to compare the results given by the model and the
simulations, we give them with 4 significant digits in Table
I. Whether it be for the fractiles (lines 4 and 5) or for the
probability of getting a negative measurement (line 6), we can
notice that the results agree at least up to the significant 3rd

digit.
We obtain measurements that are almost symmetrically

distributed around 0 for σ̂2
A, meaning that these measurements

are masked by the measurement fluctuations of the other
clocks. Therefore, the stability of this clock is not measurable
using the two clocks B and C which are much less stable.
On the other hand, the stability of the least stable clock, σ2

C ,
is relatively well determined (let us remind that with only 5
EDFs, the confidence intervals remain nevertheless very wide)
since the rate of negative measurements is only 6 out of 10 000.
Finally, the determination of the stability σ2

B is intermediate
between those of σ2

A and of σ2
C .

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-4 -2  0  2  4  6  8

PD
F

σ̂P
2

σ̂A
2 simulations
σ̂A

2 model
σ̂B

2 simulations
σ̂B

2 model
σ̂C

2 simulations
σ̂C

2 model

Fig. 2. Probability densities of the final estimate σ̂2
A (red), σ̂2

B (green),
σ̂2
C (blue), obtained by the model with rotation (solid lines) and by the

simulations (boxes). The stability of the clock ensemble was given by the
following parameters: σ2

A = 0.1, σ2
B = 1, σ2

C = 10. The chosen number of
EDFs was ν = 5.

– One clock is much less stable or much more stable than the
others

We then examined the case where two of the clocks are
of identical stabilities and the other is either 100 times more
stable or 100 times less stable. Here also we found a full
agreement between model and simulation.

To summarize, the model with the rotation of the basis
vectors fits perfectly whatever the noise levels of the clocks
. Therefore, we can consider that we have solved the direct
problem.

IV. INVERSE PROBLEM

A. Principle of the method

1) Inverse problem and parameter uncertainties: The
metrologist has to solve the inverse problem, i.e. the determi-
nation of a confidence interval for the true variances σ2

A, σ2
B

and σ2
C , given a set of measurements and a priori information,

i.e. any information known before the measurements. In this
experimental world, the true variances appear as random
variables, of which the a posteriori probability density , i.e.
probability density that takes into account the measurements,
is determined by using the Bayes theorem:

p
(
σ2
A, σ

2
B , σ

2
C |σ̂2

A, σ̂
2
B , σ̂

2
C

)
∝ π

(
σ2
A, σ

2
B , σ

2
C

)
p
(
σ̂2
A, σ̂

2
B , σ̂

2
C |σ2

A, σ
2
B , σ

2
C

)
∫∫∫ ∞

0

p
(
σ2
A, σ

2
B , σ

2
C |σ̂2

A, σ̂
2
B , σ̂

2
C

)
dσ2

Adσ2
Bdσ2

C = 1

(15)
where π(θ) is the a priori probability density, named prior,
of a value θ [9], here the variances. Even if we have no a
priori information on the variances, π(σ2

A, σ
2
B , σ

2
C) can be

defined: a variance is a positive scale parameter[10], [11]
and a prior reflecting no a priori knowledge (total ignorance)
is proportional to 1

θ , meaning that all orders of magnitudes
have the same a priori probability. Because the oscillators are
assumed to be independent, the prior of a triplet of variances
is simply given by the product of the individual priors:

π(σ2
A, σ

2
B , σ

2
C) ∝ 1

σ2
Aσ

2
Bσ

2
C

To compute the a posteriori probability of a variance triplet
given by Eq. (15), it remains to calculate the probability
p(σ̂2

A, σ̂
2
B , σ̂

2
C |σ2

A, σ
2
B , σ

2
C). This is a direct problem, that has

been solved in the first part of this paper for a single estimate,
for example p(σ̂2

A|σ2
A, σ

2
B , σ

2
C). Unfortunately, the three final

estimates σ̂2
A, σ̂2

B , σ̂2
C are not independent and the probability

of a triplet of estimate is not given by the product of the
probabilities determined in the preceding section. This issue
cannot be solved by using the elementary estimates defined
in section (II-B1): σ̂2

AB , σ̂2
AC , σ̂2

BC , since they are neither
independent (each oscillator participates in two of them).
Before making probability products, we must find linear
combinations of our three estimates that are independent, or,
at least, uncorrelated. It is well known that these combinations
are obtained by applying the Karhunen-Loève (K.L.) transform
to our original estimates, either elementary or final [12]. In the
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following lines, the principle of the K.L transform is recalled
and applied to our specific case. Since we are supposed to
know at this step the true variances, it is possible to calculate
the true covariance matrix of our estimates (either σ̂2

A, σ̂
2
B , σ̂

2
C

or σ̂2
AB , σ̂2

AC , σ̂2
BC), and to find the rotation that renders

diagonal this covariance matrix. The calculation of this true
covariance matrix is detailed in Section A-2.1. The coefficients
of the eigenvectors of this diagonalisation process are used as
weighting numbers to compute a new triplet of uncorrelated
estimates. Actually, these K.L estimates do not obey Gaussian
statistics, since the original estimates follow the not trivial
probability density law exposed in the preceding sections.
However, we will approximate in the following this distribu-
tion by a Gaussian one. If we assume that this approximation is
correct, the three K.L. estimates obey each Gaussian statistics,
with their three variances given by the diagonalized covariance
matrix. Moreover, in the frame of this approximation, the K.L.
estimates are independent and the probability density of a K.L.
triplet is simply given by the product of the three probability
densities. Because of the one to one correspondence between
the K.L. triplet and the original estimates, this probability
density is also proportional to the probability density of the
triplet of original estimates. We expect that this Gaussian
approximation becomes more accurate for a large number
of measurements (more EDF). We will see in the following
that this is correct, but the approximation can be used even
for a small number of measurements, at least 5 (see Section
IV-B3), at the price of a reasonable inaccuracy in the limits
of the confidence intervals. This inaccuracy will be assessed
in Section IV-B.

2) Algorithm: We have to calculate the triple integral of
Eq. (15) on several order of magnitudes. A direct calculation
would lead to prohibitive computation times. We have pre-
ferred to use a Monte-Carlo scheme with random sampling.
This sampling ensures the observance of the total ignorance a
priori law: the samples are chosen at random on a logarithmic
scale in such a way that all orders of magnitude have the same
probability (see the concept of total ignorance in §IV-A1),
independently for each variance. With a computation on 8
decades (between 10−5 and 103) with 104 sampling steps,
107 samples proved to be sufficient to render negligible the
sampling error, in comparison with other inaccuracies. With
the same sampling step, a direct calculation would involve
1012 cells.

We work in the experimenter point of view: we assume
that a triplet of estimates (either final or elementary) has been
calculated from the 3 · m elementary measurements. These
three numbers have three definite values that will be used
in the calculations detailed below. The different steps of the
calculation can be summarized as
S1: Choose at random a triplet of true variances, with a uni-

form probability on a logarithmic scale for each variance
and independence between the three variances.

S2: Calculate for this triplet the covariance matrix of the
estimate triplet, either using the final or the elementary
estimates.

S3: Calculate the eigenvectors and eigenvalues of this covari-
ance matrix

S4: Multiply the vector of the estimates by the matrix of these
eigenvectors (K.L. transform).

S5: Perform the same operation for the vector of true vari-
ances.

S6: Calculate the probability density of each K.L estimate
given the triplet of K.L. true variances: for each of
the three K.L. variables, we assume a Gaussian normal
law of mean the K.L true variance and of variance the
corresponding eigenvalue of the covariance matrix.

S7: Perform the product of these three probability densities.
This only number will be associated in the following to
the triplet of variances chosen at the first step of the
algorithm.

S8: Repeat 107 times the entire process.
S9: For each of the three variables, normalize the probability

densities by dividing by their sum (sum of 107 values).
S10: Also for each of the three variables, sort the true variance

values and calculate the cumulative density function by
a partial sum on the associated normalized probability
densities.

S11: Determinate a confidence interval at 95% on each true
variance from the corresponding cumulative density func-
tions.

S12: Verify that the low limit of the confidence interval is
meaningful. For a Gaussian distribution, 99.7% of data
are included in a confidence interval at ±3σ. If the
low limit of this ±3σ confidence interval (in logarithmic
scale) is smaller than the low limit of the a priori range
(here 10−5 ), we suspect (and have verified) that the low
limit of the smaller confidence interval calculated in the
preceding step will depend on the low limit of the a
priori range. If it occurs, we replace the low limit of
the confidence interval by 0.

We have verified that employing the elementary or the
final estimates gives exactly the same results. Moreover, the
uncertainties due to the random character of the Monte-
Carlo integration are less than 1% in relative value. Hence,
the only non negligible cause of error in the algorithm is
the Gaussian approximation. This error is assessed in the
following paragraph (see Section IV-B). But before, it is useful
to find the expected properties of the final estimates.

3) Properties of the final estimates: – General properties

P1: Only one final estimate may be negative.
Demonstration: All elementary estimates are positive
σ̂2
AB = σ̂2

A + σ̂2
B > 0 and σ̂2

BC = σ̂2
B + σ̂2

C >
0 and σ̂2

CA = σ̂2
C + σ̂2

A > 0. Therefore, if two final esti-
mates would be negative, at least one of the elementary
estimate would be negative and this is impossible.

P2: If a final estimate is negative, its absolute value is smaller
than the absolute values of the other two final estimates
of the triplet.
Demonstration: if σ̂2

A < 0, σ̂2
AB = σ̂2

A + σ̂2
B = −|σ̂2

A|+
|σ̂2
B | > 0 ⇒ |σ̂2

B | > |σ̂2
A|. Similarly, σ̂2

CA = σ̂2
C + σ̂2

A =
|σ̂2
C | − |σ̂2

A| > 0 ⇒ |σ̂2
C | > |σ̂2

A|.

– Case of ν = 1 EDF
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P3: σ̂2
P = −

σ̂2
Oσ̂

2
Q

σ̂2
O + σ̂2

Q

with 1 EDF and {O,P,Q} any

circular permutation of {A,B,C}.
Demonstration: With 1 EDF, Equation (2) becomes: σ̂2

P =
−zOP · zPQ = −(zP − zO)(zQ − zP ). Similarly, with 1
EDF Equation (1) becomes : σ̂2

PQ = z2PQ = (zQ − zP )2

Moreover σ̂2
PQ = σ̂2

P + σ̂2
Q. Therefore

−
σ̂2
Oσ̂

2
Q

σ̂2
O + σ̂2

Q

= −
σ̂2
Oσ̂

2
Q

σ̂2
OQ

= − (zO − zQ)(zO − zP )(zQ − zP )(zQ − zO)

(zQ − zO)2

= −(zP − zO)(zQ − zP ) = σ̂2
P .

This latter property is very important since the case of ν = 1
EDF occurs for the largest integration time, i.e. τ = T/2 for
AVAR and a dataset of duration T . For this largest τ , Property
3 implies two major consequences:
• one of the final estimates of the triplet and only one is

necessarily negative
• the knowledge of two final estimates of the triplet is

enough since the third one can be deduced from them by
using Property 3 (e.g. if σ̂2

B = σ̂2
C = 1 then σ̂2

A = −1/2).

B. Accuracy of the inverse algorithm

1) Principle of the simulations: In order to assess the
accuracy of the method we propose, we compared it to
Monte-Carlo simulations. The principle consists in randomly
drawing parameter triplets (σ2

A, σ
2
B , σ

2
C), computing the corre-

sponding final estimate triplet (σ̂2
A, σ̂

2
B , σ̂

2
C) and keeping only

the parameter triplets which yield a previously given final
estimate triplet (σ̂2

A, σ̂
2
B , σ̂

2
C) = (A0, B0, C0). Obviously, the

random generation is of importance: as previously, we choose
each element of each triplet independently according to an
uniform probability law on a logarithmic scale. The pseudo-
random numbers may vary within a large interval depending
on the (A0, B0, C0) triplet and of the EDF, typically between
Bl = 10−3 and Bh = 10+2 for (1, 1, 1). Each simulation run
stops when 10,000 achievements have been obtained.

2) Preliminary observations on the simulations: – Case of
several EDF

Before using the simulation results to assess the method
accuracy, let us observe them in a few cases: keeping σ̂2

B =
σ̂2
C = 1, we will successively vary σ̂2

A ∈ {0.1, 1, 10}, i.e.
corresponding to one final estimate lower, equal to or higher
than the other two ones. Figure 3 shows the histograms of the
parameter σ2

A in each of these cases with 20 EDF.
σ̂2
A = 0.1: The histogram of the corresponding σ2

A pa-
rameter (see Figure 3 in red) is constant for the lower
values, exhibits a very slight bulge between 0.1 and 1, and
tends to 0 after 1. Obviously, the histogram is limited to
10−4 at its left-hand side because we limited the random
generation to Bl = 10−4 but this trend should continue
down to σ2

A = 0. The lower bound of the confidence
interval should then be 0.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1e-04 1e-03 1e-02 1e-01 1e+00 1e+01 1e+02

Em
pi

ric
al

 P
D

F

σA
2

σ̂A
2=0.1

σ̂A
2=1

σ̂A
2=10

Fig. 3. Normalized histograms of 10 000 σ2
A parameters giving the final

estimate triplets (0.1, 1, 1) in red, (1,1,1) in green, (10,1,1) in blue. The
number of EDF is 20.

σ̂2
A = 1: The histogram plotted in green in Figure 3 shows

an important bump between 0.1 and 1 and tends to 0 after
1. Nevertheless, there is also a constant tail, although
much lower than in the previous case, for the σ2

A values
below 0.1 down to 0. Here also this tail is limited by the
lower bound of the random generation (Bl = 10−3). The
lower bound of the confidence interval is then still 0.

σ̂2
A = 10: In this case (see Figure 3 in blue), σ2

A is well
constrained around 10 and the histogram seems to be
almost Gaussian. No doubt that the 95 % confidence
interval will be defined for the lower and the upper
bound.

Another representation is given in Figure 4. This 3D plot
was built by associating a dimension to each parameter of
the triplets from the dataset obtained with a final estimate
triplet equal to (1, 1, 1) (the same dataset as for Figure 3).
It has the advantage of showing the relationships between
these parameters. This type of plot exhibits a structure with 3
perpendicular branches, more or less dense depending on the
final estimate triplet, converging to (1, 1, 1).

Fig. 4. 3D-plot of 10 000 parameter triplets giving the final estimate
triplets (1,1,1). The number of EDF is 20. The solid red lines represent
respectively the lines

[
σ2
A = σ̂2

A & σ2
B = σ̂2

B

]
,
[
σ2
B = σ̂2

B & σ2
C = σ̂2

C

]
and

[
σ2
C = σ̂2

C & σ2
A = σ̂2

A

]
.



8 IEEE TRANSACTION ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL

3) Influence of the number of EDF: In order to check the
validity of our method to assess the confidence intervals over
the parameters, let us first assign the final estimate triplet to
(1, 1, 1) and vary the number of EDF.

– number of EDF varying from 2 to 1000
Figure 5 shows a pretty good agreement between the 95

% confidence intervals estimated by our method (colored
area) and the one obtained from a set of 10 000 Monte-Carlo
simulations (error bars), except for ν = 2 EDF where our
method seriously underestimates the 97.5 % bound. On the
other hand, the method is fully reliable from ν = 5 EDF and
above.

For ν varying from 2 to 20, there is also a noticeable
discrepancy between the 2.5 % bound obtained by our method
and by simulations. However, the 2.5 % bound of the sim-
ulation error bars is almost exactly the lower bound Bl
which limits the pseudo-random excursion of our simulations.
Therefore, this 2.5 % bound is only due to a computational
artifact and the 0 result of our method is more reliable.

For ν = 50, our method seems to slightly overestimate
the confidence interval, but for higher EDF the Monte-Carlo
simulations give the same confidence intervals as our method.
This result is not surprising since the Gaussian approximation
we adopted in our algorithm is perfectly justified for large
EDFs.

– Case of 1 EDF
Table II shows that the 97.5 % bound obtained by our

method is underestimated by a factor of approximately 100!
It should then not be used for ν ≤ 2.

4) Influence of relative values of the final estimates: – Low
EDF: ν = 5

Figure 6 shows a very good agreement between our method
and the simulations for the parameter σ2

A (in red). There is
only one slight underestimation of the 2.5 % bound for σ̂2

A =
4. Similarly, for the parameter σ2

B or σ2
C (see Figure 6 in

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

 1  10  100  1000

σ
A2

EDF ν

Theoretical 95 % confidence interval
Empirical 95 % confidence interval

Fig. 5. Influence of the number of EDF ν on the 95 % confidence interval over
the σ2

A parameter. The final estimate triplet was set at σ̂2
A = σ̂2

B = σ̂2
C = 1.

The colored area corresponds to the assessment of the confidence interval
by our method whereas the error bars correspond to the empirical estimation
from 10 000 Monte-Carlo simulations.

TABLE II
CASE OF 1 EDF – COMPARISON OF THE 95 % CONFIDENCE INTERVAL

BOUNDS OBTAINED BY OUR METHOD (HEREAFTER LV METHOD STANDING
FOR LANTZ-VERNOTTE METHOD) AND BY 10 000 MONTE-CARLO

SIMULATIONS. THE FINAL ESTIMATE TRIPLET WAS SET AT (−1/2, 1, 1).

Parameter 2.5 % bound 97.5 % bound
LV method Simulation LV method Simulation

σ2
A 0 2.01 · 10−6 1.39 159
σ2
B 0 3.96 · 10−6 5.28 474
σ2
C 0 3.50 · 10−6 5.31 464

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e-02 1e-01 1e+00 1e+01 1e+02

σ
P2

σ̂A
2

σA
2 theoretical 95 % c. i.

σA
2 empirical 95 % c. i.

σB,C
2    theoretical 95 % c. i.

σB,C
2    empirical 95 % c. i.

Fig. 6. Influence of the final estimate σ̂2
A on the 95 % confidence interval

over the σ2
A parameter (red) and over the σ2

B or σ2
C parameters (green). The

σ̂2
B and σ̂2

C final estimates were set at 1 and the number of EDF is 5. The
colored area correspond to the assessment of the confidence interval by our
method whereas the error bars correspond to the empirical estimation from
10 000 Monte-Carlo simulations. The graphs are plotted using a log-log plot.

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

-0.5  0  0.5  1  1.5  2  2.5  3

σ
P2

σ̂A
2

σA
2 theoretical 95 % c. i.

σA
2 empirical 95 % c. i.

σB,C
2    theoretical 95 % c. i.

σB,C
2    empirical 95 % c. i.

Fig. 7. Influence of the final estimate σ̂2
A on the 95 % confidence interval

over the σ2
A parameter (red) and over the σ2

B or σ2
C parameters (green). The

σ̂2
B and σ̂2

C final estimates were set at 1 and the EDF is 5. The colored
area corresponds to the assessment of the confidence interval by our method
whereas the error bars correspond to the empirical estimation from 10 000
Monte-Carlo simulations. The graphs are plotted using a linear X-scale.
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1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 0.01  0.1  1  10  100

σ
P2

σ̂A
2

σA
2 theoretical 95 % c. i.

σA
2 empirical 95 % c. i.

σB,C
2    theoretical 95 % c. i.

σB,C
2    empirical 95 % c. i.

Fig. 8. Influence of the final estimate σ̂2
A on the 95 % confidence interval

over the σ2
A parameter (red) and over the σ2

B or σ2
C parameters (green). The

σ̂2
B and σ̂2

C final estimates was set at 1 and the EDF is 100. The colored
area corresponds to the assessment of the confidence interval by our method
whereas the error bars correspond to the empirical estimation from 10 000
Monte-Carlo simulations.

green), there is a good agreement between our method and the
simulations. However, our method shows a 2.5 % bound which
increases for a final estimate σ̂2

A < 0.1 which is, unexpectedly,
not confirmed by the simulations.

Figure 7 shows the same parameters versus the same final
estimate σ̂2

A but by using a linear X-scale allowing us to plot
the negative values of the final estimate. For σ2

A (red plot on
Figure 7), our method gives good results down to σ̂2

A = −0.3
but, surprisingly, the 97.5 % bound increases for σ̂2

A < −0.3.
Here also, it is not confirmed by the simulations The same
odd behavior may be observed for σ2

B and σ2
C (green plot on

Figure 7) for the 2.5 % bound around 0 as well as for the 97.5
% bound below −0.3.

These discrepancies between our method and the simula-
tions are due to the difference between the true χ2 distribution
with a small number of EDF and the normal law approxima-
tion in step S6 of the algorthm (see §IV-A2). However, it
does not really matter since, on one hand, these discrepancies
are limited, and on the other hand, they occur only for final
estimates close to the low limit (-0.5, see Section IV-A3) and
are therefore rare.

– High EDF: ν = 100
Figures 8 shows that our method works perfectly for 100

EDF. The only noticeable discrepancies concern the 2.5 %
bound and is, once again, clearly due to the computational
artifact of the simulation error bars mentioned above.

V. CONCLUSION

We have performed a thorough theoretical study of the
statistics of the 3 cornered hat or Groslambert covariance
estimates (direct problem) showing that they are formed by
random variables which are the differences of 2 χ2 r.v. Massive
simulations have been performed and the agreement between
these simulations and the results of the theoretical study is
very convincing.

We have also proposed a first attempt to assess a confidence
interval over the true clock stabilities (inverse problem) relying
upon the determination of the posterior probability density
function by a Monte-Carlo computation. Here also, we have
compared the results of this method to massive simulations.
This study shows that this method may be used from EDF
larger than 2 but is fully reliable from 5 EDF and beyond.
This means that for a data run of duration T , the uncertainty
domain is valid for an integration time τ ≤ T/10 in the case
of a white FM noise and below for flicker or random walk
FM.

On the other hand, this method is relatively slow since
its algorithm relies on a Monte-Carlo scheme involving 107

random draws. This causes a computation time of the order
of 1 minute per confidence interval (per error bar).

However, since the analysis of the direct problem presented
in this paper seems to be convincingly achieved, it could
constitute the basis of a new method of solving the inverse
problem, i.e. of estimating confidence intervals around the true
stability of the clocks knowing the results obtained by the three
cornered hat/GCov method.
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APPENDIX
A. Difference of two random variables following two indepen-
dent χ2

ν distributions

1) Definition: We consider a random variable X which is
the difference of two independent random variables following
each a χ2 law with the same number of degrees of freedom
ν:

X = Aχ̇2
ν − Bχ̈2

ν (16)

with A,B, ν ∈ R+ and ν ≥ 1. The upper dots of χ̇2
ν and χ̈2

ν

make it possible to distinguish 2 independent random variables
following the same χ2 distribution.

The probabality density function (PDF) p(x) of the random
variable X is the variance-gamma distribution:

p(x) =
κ2λ|x− µ|λ−1/2Kλ−1/2 (η|x− µ|)

√
πΓ(λ)(2η)λ−1/2

eθ(x−µ) (17)

with η = (A+B)/4AB, θ = (A−B)/4AB, λ = ν/2, µ = 0,
κ =

√
η2 − θ2 and Kω(z) is a hyperbolic Bessel function of

second kind (ω ∈ R and z ∈ C)2.
2) Simulation: The random variable X following the dis-

tribution defined in (16) was simulated with A = 1, B = 1/3
and ν = 5 :

X = χ̇2
5 −

1

3
χ̈2
5.

A number of N = 10 000 000 random draws was realized.
The probability density expressed in (17) was compared

to the histogram obtained from N draws. The agreement is
almost perfect.

Finally, the CDF fractiles were calculated for 2.5 % and
97.5 % to achieve a 95 % confidence interval. Here too, the
agreement is excellent.

A similar study was conducted for the (A,B, ν) triplets
in {(1, 1/3, 5), (1, 1/2, 1), (1, 1/4, 1), (2, 2, 1), (1, 1, 1)}. The
results were equally concordant.

B. Calculation of the true covariance matrix of the estimates

We suppose in this appendix that the true variances are
known. With this hypothesis of the model world, the estimates,
either final or elementary, become random variables, with
means equal either to the true variances (final estimates) or to
the sum of two variances (elementary estimates). We calculate
in this appendix their covariance matrix, that is used to solve
the inverse problem.

1) Covariance matrix of the elementary estimates: From
now on, we will denote E(·), Var(·) and Cov(·) respectively
the mathematical expectation, the variance and the covariance
of the quantity · which stands here for z measurements as well
as elementary or final estimates (variance of variances!).

To be specific, we calculate in the following a di-
agonal element, Var(σ̂2

AB), and a non diagonal element,
Cov(σ̂2

AB , σ̂
2
AC). We assume that successive measurements

of the same quantity are independent, meaning that the vari-
ances and covariances after m measurements are equal to the

2References : https://math.stackexchange.com/questions/85249/
distribution-of-difference-of-chi-squared-variables and https://en.wikipedia.
org/wiki/Variance-gamma_distribution. The relationships between the η, θ
coefficients and the A,B parameters have been empirically determined.

(co)variances after one measurement divided by m. Hence,
the following calculations are presented with m = 1. For a
diagonal element, we obtain:

Var(σ̂2
AB) = E

[
(zA − zB)4

]
−
{

E
[
(zA − zB)2

]}2
= Var(z2A) + Var(z2B) + 4Var(zA) ·Var(zB)

We assume that zA is centered Gaussian, meaning that z2A
follows a χ2 law of mean Var(zA). For such a law, we
have Var(z2A) = 2 [Var(zA)]

2, which allows a more compact
formulation of the above result:

Var(σ̂2
AB) = 2 [Var(zA)]

2
+ 2 [Var(zB)]

2

+4Var(zA) ·Var(zB)

= 2 [Var(zA) + Var(zB)]
2
.

We pass now to a non diagonal element:

Cov(σ̂2
AB , σ̂

2
AC) = E

[
(zA − zB)2(zA − zC)2

]
−E
[
(zA − zB)2

]
· E
[
(zA − zC)2

]
= 2 [Var(zA)]

2
.

2) Covariance matrix of the final estimates: We use the
Groslambert covariance definition of the final estimates, σ̂2

P =

ĜCovPO,PQ and calculate, as above, the covariance of these
estimates: Cov(σ̂2

P , σ̂
2
Q). We assume no measurement noise.

As in the previous subsection, we consider the case m = 1
measurement and we give explicit clock symbols to P and
Q: first, we calculate the diagonal elements of the estimates
covariance matrix by choosing P = Q = A, then the non
diagonal elements by choosing P = A, Q = B. In the first
case, we obtain:

Var(σ̂2
A) = E

{
[(zA − zB)(zA − zC)]

2
}

−{E [(zA − zB)(zA − zC)]}2

= Var(z2A) + Var(zB) ·Var(zC)

+Var(zA) ·Var(zB) + Var(zA) ·Var(zC)

The non diagonal case gives:

Cov(σ̂2
A, σ̂

2
B) = E [(zA − zB)(zA − zC)

·(zB − zA)(zB − zC)]

−E [(zA − zB)(zA − zC)]

·E [(zB − zA)(zB − zC)]

= Var(zA) ·Var(zB)

−Var(zC) [Var(zA) + Var(zB)]

In both cases, we have used the independence of the
oscillators, giving: E

(
z2P z

2
Q

)
= E

(
z2P
)
·E
(
z2Q
)

and their zero
mean, giving Var(zP ) = E

(
z2P
)
.

Using the elementary or the final estimates gives exactly
the same results, for the same measurements and the same
Monte-Carlo set.

https://math.stackexchange.com/questions/85249/distribution-of-difference-of-chi-squared-variables
https://math.stackexchange.com/questions/85249/distribution-of-difference-of-chi-squared-variables
https://en.wikipedia.org/wiki/Variance-gamma_distribution
https://en.wikipedia.org/wiki/Variance-gamma_distribution
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