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Abstract— The three-cornered hat / Groslambert Covariance
methods are widely used to estimate the stability of each
individual clock in a set of three but no method gives reliable
confidence intervals for large integration times.

We propose a new method which takes into account all the
measurements between the pairs of clocks in a Bayesian way.
The result is the Cumulative Density Function which yields
confidence intervals for each clock AVAR. This CDF provides
also a stability estimator which is always positive.

Checked by massive Monte-Carlo simulations, this method
proves to be perfectly reliable even for two degrees of freedom.
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I. INTRODUCTION

Although the three-cornered hat [1] and the Groslambert
Covariance [2] methods are widely used to measure the
stability of each individual clock in a set of three, the only
methods which exists to compute error bars are limited to
the smallest integrations times, i.e. when the number of
Equivalent Degrees of Freedom (EDF) is high [3], [4], [5].
However, there are no reliable method to assess confidence
intervals over the estimates if their number of Equivalent
Degrees of Freedom (EDF) is low. However, since this case
occurs for the largest integration times, it is an important
issue for all applications dealing with long term stability (e.g.
time keeping).

In a previous paper, we performed a first Bayesian attempt
to estimate confidence intervals from the three-cornered
estimates but we observed that this method was only valid
beyond 5 EDF [5]. We propose then a new method, which
is also based on Bayesian statistics, but which takes into
account all the measurements between the pairs of clocks
rather than the three-cornered hat estimates. The results is
the Cumulative Density Function (CDF) which yields the
lower and upper bounds of the 95 % confidence interval or
the 95 % upper limit when the lower bound is 0.

The performances of this method have been checked
by using massive Monte-Carlo simulations. The principle
of these simulations is described in this paper and the
comparisons with the theoretical confidence intervals given
by our new method are discussed.
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II. PRINCIPLE OF THE METHOD

A. Clock comparisons

Let us consider 3 independent clocks: A, B and C.
It is possible to compare these clocks by pairs and to
estimate the corresponding AVARs. Let us denote ȳABk

the kth frequency deviation sample between A and B and
z̄ABk = (ȳABk+1 − ȳABk). For clocks A and B, the AVAR
is σ2

AB = 1
2

〈
z̄2ABk

〉
. Since σ2

AB = σ2
A + σ2

B , the three-
cornered hat is based on the following property: σ̂2

A =
1
2

(
σ2
AB − σ2

BC + σ2
CA

)
where the symbol ·̂ means that σ̂2

A

is an estimate of the true AVAR value σ2
A.

On the other hand, the Groslambert covariance is based
on this other property: GCovA = 1

2 〈z̄ABk · z̄ACk〉 = σ̂2
A.

The only difference between these two approaches con-
cerns the measurement noise due to the counters, since GCov
rejects it [4]. However, since we deal only with high τ values,
the measurement noise is negligible regarding the clock noise
and we do not distinguish these two approaches.

B. Bayesian inference

In Bayesian analysis, we have to consider the model
parameters ~Θ = (θ1, . . . , θm)T which are m real values and
the measurements ~X = (x1, . . . , xn)T which are n random
variables (r.v.). In our case, the parameters are the 3 true
AVAR values of the 3 clocks that we want to know and
the measurements are either the 3 estimates obtained with
the three-cornered hat method (KLTG method for Karhunen-
Loéve Transform with Gaussian approximation, see [5])
or the 3N differences between the clock pairs z̄ABk with
k ∈ {1, . . . , N − 1} (the present method).

On the other hand, two issues are considered: (1) the
direct problem, which consists in calculating the Probability
Density Function (PDF) of the estimates knowing the model
parameters p( ~X|~Θ); (2) the inverse problem, which consists
in calculating the PDF of the model parameter knowing the
estimates p(~Θ| ~X). The direct problem has been solved in
[5] and the inverse problem may be solved thanks to the

Bayes theorem:
{
p(~Θ|~x) ∝ π(~Θ) · p( ~X|~Θ)∫
p(~Θ| ~X)d ~X = 1

where π(~Θ),

called the prior, is the a priori probability of the parameter
~Θ before any measurement.

C. The KLTS method

However, due to the complexity of p( ~X|~Θ), only an
approximation was achieved in [5], the so-called KLTG
method, which has proved to be valid for EDFs greater than
5.



We propose then the KLTS method (for Karhunen-Love
Transform using Sufficient statistic) which relies on the use
of the z̄ABk (or BC or CA), which are Gaussian r.v.,
instead of the σ̂2

A estimates (or B or C), which are a
linear combination of χ2 laws. The main advantage of this
approach lies in the property of the Gaussian estimates which
remains Gaussian when they are linearly combined.

However, these estimates are strongly correlated for two
reasons: (1) the z̄ABk and z̄ABk+1 are not independent
(except in the case of White FM and AVAR without over-
lapping); (2) the z̄ABk, z̄BCk and z̄CAk are not indepen-
dent since their sum is null (if the measurement noise is
neglected).

Now, if the estimates are independent, the PDF is easy
to calculate since p( ~X|~Θ) =

∏3N
j=1 p(xj |~Θ). It is then

necessary to transform the 3N estimates z̄ABk into 2M (with
M ≤ N ) uncorrelated estimates zPj . This is performed by
the successive diagonalizations of 2 covariance matrices: (1)
to transform the N estimates z̄ABk into M estimates w̄ABj ;
(2) to transform each set of 3 estimates (w̄ABj , w̄BCj , w̄CAj)
into a set of 2 estimates (w̄Pj , w̄Qj).

The last step of the KLTS method concerns the choice of
the prior. We have chosen a prior following a 1/θ behavior
in such a way that all orders of magnitude have the same
probability (total lack of knowledge).

Finally, we obtain the PDF and the CDF of the parameter
knowing the estimates which allows us to calculate the
bounds of any confidence interval as well as the median
value, i.e. the argument giving the CDF equal to 0.5. This
value, always positive, may be an alternative estimate of the
parameters.

III. VALIDATION OF KLTS METHOD BY
MONTE-CARLO SIMULATIONS

A. Principle of the simulation
In order to validate the KLTS method, we have compared

its results to Monte-Carlo simulations according to two ways.
The first way concerns the direct problem. It consists in

fixing the parameter triplet (σ2
A, σ

2
B , σ

2
C), randomly drawing

the estimates z̄ABk and computing the confidence interval by
using the KLTS method. If it is correct, the parameter values
should generally remain within the confidence intervals.

The second way concerns the inverse problem. The algo-
rithm is as follows:

1) Select a set of 3N measurements z̄ABk, N being
the chosen EDF number, in such a way that they
provide a chosen final estimate triplet (σ̂2

A, σ̂
2
B , σ̂

2
C) =

(A0, B0, C0). We call “reference measurement set” this
set of 3N measurements z̄ABk.

2) Draw at random a parameter triplets (σ2
A, σ

2
B , σ

2
C) and

then randomly draw 3N measurements z̄ABk accord-
ing to these parameters.

• If this 3N measurement set is not equal to the
reference measurement set, the corresponding pa-
rameter triplet (σ2

A, σ
2
B , σ

2
C) are thrown.

• But if the randomly drawn measurement set
is close to this reference measurement set

Fig. 1. Validation by the direct problem with the following fixed
parameters: σ2

A = 0.1, σ2
B = 1, σ2

C = 10. The EDF number is 2.

within 10 %, the corresponding parameter triplet
(σ2

A, σ
2
B , σ

2
C) are kept.

3) Go to Step 2).
Each simulation run stops when 10,000 achievements have
been obtained.

This ensemble of 10,000 parameter triplets giving
(σ̂2

A, σ̂
2
B , σ̂

2
C) = (A0, B0, C0) is then compared to the

confidence interval obtained by the KLTS method.
Thanks to the sufficient statistic properties of the final

estimate triplets, it turns out that any 3N measurement set
providing the given (A0, B0, C0) final estimate triplet leads
to the same statistical distribution of the parameter triplet.

B. Results and discussion

Figure 1 shows an example of validation by the first way
for estimates with 2 EDF. We can remark that the parameter
values (0.1 for the blue error bars, 1 for the red and 10 for the
green) are well in the confidence intervals except in 1 case
(realization number 14, red error bar, where the parameter
value σ2

B = 1 is clearly above the upper limit). Although
this test seems conclusive, it remains somewhat qualitative.

Table I uses the second validation way and shows if the
confidence interval obtained by the KLTG method of [5] or
by the new KLTS method are really at 95 % of confidence.
It compares also the bounds to the empirical bounds given
by 10,000 Monte-Carlo simulations. Unlike the results of
KLTG, the KLTS bounds show a good agreement with the
empirical bounds and the confidence intervals are almost
equal to 95 %. Other tests performed with other choices of
parameters and with higher EDF show the same concordance
with the simulations.

IV. CONCLUSIONS

This study shows that this new KLTS method is fully
reliable even with 2 EDF. However, its computation can
not been achieved for EDF greater than a few 100s. We
recommend then to use this method below 300 EDF and to
use the KLTG method described in [5] above.



TABLE I
COMPARISON OF THE CONFIDENCE INTERVALS OBTAINED BY THE MONTE-CARLO SIMULATIONS (EMPIRICAL), BY THE KLTG METHOD OF [5] AND

BY THE NEW KLTS METHOD. THE (A0, B0, C0) ESTIMATE TRIPLET IS (0.1, 1, 10) AND THE NUMBER OF EDF IS 2.

Bound σ̂2
A = 0.1 σ̂2

B = 1 σ̂2
C = 10

Emp. 2.5 % 0.0065 (2.5 %)
95 % 20 (95 %) 21 (95 %)
97.5% 370 (97.5 %)

KLTG 2.5 % 3 (8.8 %)
95 % 2.2 (74.5 %) 2.4 (73.9 %)
97.5% 44 (80.2 %)

KLTS 2.5 % 0.0055 (2.4 %)
95 % 20 (95.0 %) 21 (94.9 %)
97.5% 280 (96.6 %)
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