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Abstract

This paper presents SpCLUST, a new C++ package that takes a list of
sequences as input, aligns them with MUSCLE, computes their similarity
matrix in parallel and then performs the clustering. SpCLUST extends
a previously released software by integrating additional scoring matrices
which enables it to cover the clustering of amino-acid sequences. The sim-
ilarity matrix is now computed in parallel according to the master/slave
distributed architecture, using MPI. Performance analysis, realized on two
real datasets of 100 nucleotide sequences and 1049 amino-acids ones, show
that the resulting library substantially outperforms the original Python
package. The proposed package was also intensively evaluated on simu-
lated and real genomic and protein data sets. The clustering results were
compared to the most known traditional tools, such as UCLUST, CD-HIT
and DNACLUST. The comparison showed that SpCLUST outperforms
the other tools when clustering divergent sequences, and contrary to the
others, it does not require any user intervention or prior knowledge about
the input sequences.

Keywords: Sequences clustering, Genomics, Laplacian Eigenmaps, Gaussian
Mixture Model, Parallel computation, Spectral clustering .

1 Introduction

Sequence clustering refers to the act of partitioning an input group of sequences into
clusters, each containing a group of somehow related sequences. It can involve either
nucleotide or protein based sequences and is mainly used to identify sequences that are
potentially derived, by mutations or substitutions, from each others or from a common
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ancestor. Reaching a good speed and accuracy in nucleotide or protein sequences clus-
tering, involving large numbers of divergent sequences, is a very challenging problem.

Mutations and substitutions, in the nucleotide sequences, happens in different rates
and for many reasons [1, 2, 3]. While some substitutions and mutations happen as a
natural environment adaptation process, e.g. the crisis-causing bacterial adaptation
to antibiotics [4, 5] that is emerging as a reason of excess of mortality [6], others might
be linked to some artifacts, such as the exposure to some pollutants, and result in
diseases and anomalies [7], e.g. cancerous cells.

As a result of the increasing number of mutations’ causes and the large number
of new sequences discoveries, linking these sequences to their siblings and ancestors
becomes more complex and the use of clustering tools is essential to tackle this prob-
lem. Many clustering tools, based on hierarchical or greedy algorithms, relying on a
user input similarity threshold, and targeting high speed clustering of highly similar
sequences, currently exist and some of them became widely used. Some of these tools
use parallel computing to provide even higher clustering speeds. In [8], an innovative
clustering module for genomic sequences that uses Laplacian Eigenmaps and a Gaus-
sian Mixture Model, was presented. The first implementation of the algorithm gave
very promising results when compared to other existing tools, especially in terms of
clustering accuracy of potentially divergent sequences. However, since it computes the
similarity matrix between all the input sequences which is a computationally intensive
operation, its execution time significantly increases when clustering large sets of input
sequences.

In the present paper, a new implementation of the clustering algorithm is presented.
A special attention was given to improve the overall performance and scalability of
this new version. The new hybrid C++/Python clustering package, called SpCLUST,
computes in parallel the similarity matrix using the Message Passing Interface (MPI)
which drastically reduces the execution time of this stage. This new package was inte-
grated into a GALAXY platform [9] and is freely available online. Many experiments
were conducted to evaluate the accuracy and the performance of SpCLUST while us-
ing simulated and real data sets. It was also compared to other clustering packages,
such as UCLUST, CD-HIT and DNACLUST.

The rest of this paper is organized as follows. In Section 2, the motivations for
this research work are presented with regard to the state of the art: the most known
clustering packages are described, with particular emphasis put on a new unsupervised
learning-based package [8]. In Section 3, the improvements added to the initial Python
package are detailed. In Section 4, a performance comparison between the different
versions of the package is presented. It is followed by a comparative study between
SpCLUST and other packages. The article ends with a discussion that recapitulates the
contributions of this work with regard to other available clustering tools and provides
some future perspectives.

2 Motivation with regard to the state of the art

The variable and unpredictable degree of mutations of biological sequences contained
in increasingly large databases, makes it harder to perform an accurate clustering us-
ing traditional tools that rely either on a user input (e.g., the similarity threshold) or
on such increasing databases. This is why mixture models were recently introduced
to tackle these hard problems. They are based on unsupervised learning techniques,
differentiate from classical ones by performing grouping based on probability distri-

2



butions [10]. With this in mind, mixture models have been used in [8] to perform
biosequence clustering. While the number of clusters has been decided using a statis-
tical criterion, namely the so-called BIC [11], leading to a process that does not rely on
any user input (e.g., similarity threshold). This model exhibited competitive results
in the case of really divergent sequences, but its speed needed to be improved.

Indeed, several packages for high speed clustering of nucleotide and/or protein
sequences are publicly available, such as CD-HIT [12], UCLUST [13], DNACLUST [14]
and SUMACLUST [15]. All these packages rely on greedy algorithms for clustering
the sequences. Conversely, DACE [16] relies on the scalable Dirichlet Process means
(DP-means) algorithm, making it an algorithm similar to K-means. HPC-CLUST [17],
for its part, is based on a hierarchical algorithm. The main features and characteristics
of these tools are presented below:

• CD-HIT is a suite of tools for biological sequence handling, including modules
for clustering both nucleotide and protein sequences using word counting for
computing the similarities, in order to avoid costly pairwise sequences align-
ments. It processes the input sequences by their order of length, starting from
the longest and considers the first one as the first cluster representative. It then
classifies the following sequences subsequently, based on the input similarity
threshold, as either a new cluster representative or part of a cluster for a pre-
viously classified representative. CD-HIT is very fast and can handle extremely
large databases [12].

• UCLUST uses a module named USEARCH for assigning the sequences to their
clusters, based on a given identity threshold and, optionally, an input of the
centroid units. In contrast with CD-HIT, UCLUST does not sort the input se-
quences by length prior starting the clustering, thus the order of the sequences
can impact the result since most clusters representatives (or centroids) are cho-
sen from the first sequences. UCLUST can also cluster both nucleotide and
protein sequences, and is able to produce a better clustering quality than its
competitor CD-HIT [13] while consuming less memory.

• DNACLUST was designed for quick clustering of highly similar DNA sequences,
but it does not handle protein sequences. Similarly to CD-HIT, it first sorts the
sequences in their decreasing order of length. If the sequences have equal length,
they are sorted in their decreasing order of abundance. The first sequence is
considered as the current cluster centroid and all the input sequences having
a distance with the centroid inferior than the user input distance threshold
are added to that cluster. This procedure is repeated until all the sequences
are clustered. Based on its authors study, DNACLUST outperforms UCLUST
when high similarity thresholds, above 0.95, are chosen.

• SUMACLUST, along with SUMATRA, is a package aiming for a fast and exact
DNA sequences comparison. It first compares the pairwise similarities between
sequences using SUMATRA, then sorts the sequences by abundance, and fi-
nally it clusters the sequences with a greedy algorithm similar to CD-HIT and
UCLUST. The main difference between SUMACLUST and its competitors, CD-
HIT and UCLUST, is that it uses a pairwise sequence alignment algorithm before
clustering the sequences. Moreover, the alignment step is preceded by a filtering
step which enables to only align couples of sequences that potentially have an
identity greater than the chosen threshold. Finally to improve the performance
of the package, the filtering and the alignment steps are parallelized according
to the SIMD model.
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• DACE is a parallel high performance clustering tool for very large data sets.
It iteratively partitions the input data set into several non intersecting subsets
before using the DP-means algorithm for clustering the subsets in parallel. Based
on [16], DACE runs up to 80 times faster than its competitors including CD-HIT
and UCLUST. However, this is valid only for very large data sets while for small
data sets it might perform slower than the mentioned competitors.

• HPC-CLUST is a tool featuring a distributed hierarchical clustering algorithm.
It enables HPC-CLUST to cluster large data nucleotide sequences at high speed.
In contrast with the previously described tools, HPC-CLUST takes aligned se-
quences as input, thus saving the computation time of the alignment task. The
hierarchical algorithm starts by grouping close sequences, then it forms larger
clusters by iteratively merging the closest groups.

• Gclust [18] is a trans-kingdom (or trans-domain) classification package for pro-
teins, using automatically selected similarity threshold for individual protein
groups. The similarity selection relies on the entropy-optimized organism count
method, which is a heuristic involving E-value, overall similarity and organism
count. The homologous sequences are then assembled using single-linkage clus-
tering. Finally, any produced duplication is solved by either merging the smaller
groups to larger ones or decomposing the smaller groups based on the overlaps
and cross-links they share with the larger groups.

A comparative study of clustering methods was proposed in [19] where these meth-
ods were applied to the clustering of 16S rRNA sequences. They were divided into
three classes: hierarchical, heuristical, and model-based clustering. The study included
widely used tools such as CD-HIT [12], UCLUST [13], DNACLUST [14], Mothur [20],
ESPRIT [21], and CROP [22]. It concludes that these methods will continue to play a
vital role in microbial analysis because taxonomy dependent algorithms strongly rely
on the completeness of existing databases, while the majority of microbe species are
unknown. Moreover, the study shows that the estimation of the number of operational
taxonomic units (OTUs)1 is severely affected by the choice of the dissimilarity thresh-
old. Therefore, supervised tuning of this parameter is crucial for accurate clustering
of nucleotide sequences.

In [8], a clustering Python module that uses Laplacian Eigenmaps and a Gaus-
sian Mixture Model, was presented. Unlike most clustering packages, that largely
utilize greedy approaches and just aim to improve the speed of clustering highly sim-
ilar sequences, this one focuses mainly on improving the accuracy of the clustering
for nucleotide sequences. Only few intelligent clustering tools use machine learning
approaches. For instance, MeShClust [23] is a multi-threading enabled package based
on a mean shift algorithm. But based on its usage instructions, the input identity of
the sequences parameter is the most important parameter. To our knowledge, the pro-
posed package, namely SpCLUST, is the first clustering method that uses unsupervised
learning [24] and does not require any sequences identity or centroid sequences user
input. Such methods can help researchers make progress in a field where good balance
between accuracy in clustering, even for potentially distant and divergent biological
sequences, and high computational speed is required. Reaching this balance is unfor-
tunately very difficult in practice. In particular, although the computational speed
of the method proposed in [8] was demonstrated to be only moderately worse than
the competitors on the ND3 test set of 100 sequences, its performance is significantly
degraded when applied to larger sets composed of a few hundreds of sequences.

1Clusters of closely related organisms grouped by DNA sequence similarity
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The clustering package presented in [8] is made of three main stages:

1. Sequences alignment using MUSCLE [25]: in this phase, the input sequences
are sent to the MUSCLE package in order to obtain an aligned set. MUSCLE
is available as an external and independent executable module, in addition to
its existence as a function in Python’s COmparative GENomics Toolkit [26]
(cogent). (See for more details on how MUSCLE can be called from a Python
package in [8].)

2. Similarity matrix calculation: this phase relies on pairwise sequence comparison.
For a set of N sequences, a NxN square matrix is computed. The value of
the (i, j) element in this matrix is the similarity index between the pair of
sequences i and j. This similarity index is based on the distance between these
two sequences, which is calculated using the scoring matrix EDNAFULL.

3. Sequences clustering: this last stage is the core of the clustering method. It takes
the similarity matrix as input, and clusters the sequences using the Laplacian
Eigenmaps and the Gaussian Mixture Modelling.

The first and third stages depend on third party modules and existing libraries’ func-
tions, whereas the second stage, is an internally developed code to construct the simi-
larity matrix. This latter is an intensive computation step with a complexity of order

O(N2−N
2

), where N is the number of input sequences2. To be able to cluster large
sequences in a reasonable time, the execution time of this step must therefore be
improved.

3 SpCLUST: an improved clustering package

In this section, we recall the main ideas underlying the construction of the Python
module in [8] and describe the main proposed changes for improving its performance
and expanding its functionality. We also present a description of each sub-module of
the code.

3.1 Analysis of the original Python package

The main objective of the original package was to provide a good clustering method.
For a given relatively divergent sets of sequences and without a previous knowledge
of the number of clusters, it should produce high quality clusters with high intra-
class similarity and low inter-class similarity. It solely focused on the quality of the
clusters and little measures were taken to improve the performance of the method.
Therefore, in this paper great emphasis was placed on improving the performance of
this clustering method. A thorough analysis of the execution time of each stage of the
package was performed in order to detect the main bottlenecks.

This analysis was done using two data sets consisting of 100 and 1024 sequences
respectively, and using two computers equipped with different processors: an i3-5005U
2.0GHz dual-core (4 core threads) processor and an i7-6700 3.4GHz quad-core (8 core
threads) processor. The profiling results are displayed in Table 1.

As shown in Table 1, the similarity matrix calculation, which is mostly composed
of the distance matrix computation, is by far the most time consuming task in the

2This matrix is symmetric and thus only the upper or lower diagonal must be computed.
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i3-5005U 2.0GHz processor i7-6700 3.4GHz processor

100 sequences 1049 sequences 100 sequences 1049 sequences

Alignment phase 8 seconds 73 minutes 5 seconds 36 minutes

Similarity matrix calculation phase 18 minutes 5696 minutes 9 minutes 2848 minutes

Clustering phase 7 seconds 33 minutes 4 seconds 15 minutes

Total 18 minutes 5802 minutes 9 minutes 2899 minutes

Table 1: Execution time of the original Python package.

overall pipeline. Therefore, optimizing the computation of the similarity matrix should
drastically reduce the overall execution time of the clustering package.

In consequence, most of the modifications presented in this paper concern this
stage. In particular, it was re-implemented in the C++ programming language which,
although it is a more complex programming language than Python [27], is clearly
faster [28]. Moreover, to furthermore reduce the execution time of the computation
of the similarity matrix which computes independently the similarity indexes between
all the sequences, it was parallelized using MPI according to the Master/Slave model.
The content of each phase of the package and the added modifications to each one of
them are detailed in the next subsections

3.2 Alignment phase

This phase consists of obtaining an aligned version of the input sequences. Many align-
ment packages, such as MUSCLE [25], T-Coffee [29], MAFFT [30], PASTA [31], and
ClustalW [32], are available but have different accuracy and performance. Notredame
states in [29] that T-Coffee provides a dramatic improvement in accuracy with a mod-
est sacrifice in speed. On the other hand, ClustalW is widely used, has cross-platform
releases and offers both command line and a graphical user interface version. Kuo-Bin
Li also worked on improving its performance by introducing in [33] a parallel version,
called ClustalW-MPI.

However, MUSCLE remains better supported than ClustalW for command line
calls, requiring no user intervention, and can on average achieve both higher accu-
racy and lower execution time than ClustalW or T-Coffee, depending on the chosen
options [34]. For instance, in the case of aligning large data sets which is an ex-
tremely time consuming task, after just two iterations, MUSCLE gives an alignment
with a precision equal to the one computed by T-Coffee and takes less time than
ClustalW [34]. Moreover a study, published in [35], proposes a parallel computation
version of MUSCLE that should theoretically improve further its performance. How-
ever, the implementation of the proposed parallel version of MUSCLE was not found
online.

Further benchmarks [36, 37, 38] showed that MAFFT outperforms the other tools,
including MUSCLE, in terms of alignment’s speed and quality. Moreover, MAFTT
has a multi-threaded version where the alignment can be computed in parallel using
all the available core threads in a workstation. However, unlike the results presented
in [36, 37, 38], our alignment test, performed on a set of random nucleotides sequences
and conducted over a workstation equipped with a dual-core (4 core threads) 2.0GHz
processor, gave the following results: MUSCLE’s official and sequential module com-
puted the alignment in 11 seconds while the multi-threaded version of MAFFT took
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13 seconds and the sequential one required 18 seconds. Moreover, MUSCLE had the
following advantages:

• It is a single 4MB executable file, whereas MAFFT’s module is a package con-
taining over 100 files with a total size higher than 60MB after extraction.

• It does not generate any interfering outputs when called with the ”-quiet” pa-
rameter, unlike MAFFT that only omits the alignment progress output using
this parameter.

For these reasons, the proposed SpCLUST package continues on using MUSCLE for
aligning the sequences.

3.3 Similarity matrix computation phase

In the original package, for each pair of aligned sequences, the distance between them is
computed using the EDNAFULL [39] scoring matrix. They are stored in the distance
matrix, where the element of index (i, j) contains the distance between the ith and jth

sequences. The similarity matrix is then computed from the distance matrix. In the
new version, this procedure was re-coded in C++ to reduce its execution time and it
was extended to use two additional scoring matrices: BLOSUM62 and PAM250 [40]
which can be specified as a parameter. The added scoring matrices extends SpCLUST’s
operational scope to include protein sequences clustering.

Since the computation of the distance matrix is the most time consuming phase
of the clustering package and it is quadratically proportional to the size of the input
sequences, it was also parallelized to reduce its execution time. The parallel version
uses MPI to distribute the computations. For each available core thread on the used
workstation, a slave process is created and the master process assigns to each slave
process an equal number of sequences pairs. The distances between the assigned
pairs of sequences are computed in parallel on P slave processes and sent back to
the master which stores them in the distance matrix. This inter-process interactions
are illustrated in Figure 1. Since the computed distance between two sequences is a
commutative operation, the resulting distance matrix is symmetric. Therefore, only
the upper triangular matrix is computed and the lower one is the transpose of the
upper triangular matrix, such as d(i,j) = d(j,i) for j < i.

3.4 Clustering phase

This phase uses the previously calculated similarity matrix to cluster the sequences.
It also relies on the use of the Laplacian Eigenmaps and the Gaussian Mixture Model,
as a machine learning model, in order to produce the clustering. In the new version,
obsolete functions were replaced and some parameter calibration were necessary to
get the same clusters as in [8], for 100 DNA sequences taken from the mitochondrially
encoded NADH dehydrogenase 3 (ND3) gene.

3.5 Package availability

SpCLUST is available in command line versions for both Windows and Linux. A basic
graphical user interface allows the user to browse input and output files, and to view the
obtained clustering. The source code and the executable files of the SpCLUST package
are available online3. They could be customized by passing parameters that can modify

3https://github.com/johnymatar/SpCLUST
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Figure 1: Processes Master-Slave architecture.

the quality and the execution time of the alignment performed by MUSCLE. The latest
version is also integrated to a publicly accessible GALAXY server4. It can be found
under the menu item ”SpCLUST”.

4 Performance evaluation of SpCLUST

After describing the workflow and the improvements offered in the new clustering
module, the performance of the different versions will be investigated. The following

4http://galaxy.ul.edu.lb
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experiments will detail the performance of each phase in the proposed module.

4.1 Alignment phase

In this section, the execution time of the alignment phase, performed by MUSCLE,
is presented for different sizes of data sets, different number of iterations, and while
running on different workstations. Figures 2 and 3 show the time taken to align, in
different numbers of iterations, two data sets using the 2.0GHz i3-5005U processor and
the 3.4GHz i7-6700 processor.

For large data sets, the choice of the number of iterations drastically impacts the
alignment time. Therefore, a trade-off between the quality of the alignment and its
execution time should be considered. The impact of this choice on the clustering
quality will be discussed in Section 5.2.3.

Figure 2: Alignment time for the 100-sequences ND3 set.

4.2 Similarity matrix calculation phase

As mentioned in Section 3, the similarity matrix calculation was re-implemented in
C++ then parallelized using MPI to reduce its execution time. Figure 4 illustrates the
execution times taken by each version to compute the similarity matrix of the 1049-
sequences set with the three scoring matrices. These experiments were conducted
on a workstation equipped with the I3-5005U 2.0GHz dual-core Intel processor. The
parallel version was using the four core threads of that processor.

The results in Table 1 show a huge performance improvement when compared to
the execution time needed by the initial Python module. The modulated version is a
C++ version where the main module and the sequence pairwise distance calculation
module were two separate executables. It took 342 minutes to compute the similarity
matrix using the EDNAFULL scoring matrix while the original Python module re-
quired 5696 minutes, resulting in around 16.6X speed-up. The serial one executable
version took just 99 minutes, showing a speed-up of 57.5X. Finally, the parallel ver-
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Figure 3: Alignment time for the 1049-sequences set.

Figure 4: Similarity matrix calculation time using the I3-5005U 2.0GHz dual-
core (4 core threads) processor.

sion, running on 4 core threads, took 34 minutes, a 167.5X speed-up over the Python
package and a 2.91X speed-up over the serial C++ version.

The results also show that for all the versions, the similarity matrix calculation
time is nearly the same, regardless of the chosen scoring matrix: the use of the newly
integrated matrices does not affect the performance of the package.

Moreover, to study the scalability of the parallel similarity matrix computation, its
normalized execution time and its strong scaling efficiency5 were measured. Figure 5
shows the normalized execution time and the strong scaling efficiency of this matrix

5If the amount of time to complete a work unit with 1 processing element is t1, and
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computation using different number of slave processes running on the 3.4GHz I7-6700
quad-core (8 core threads) processor for the same data set. As shown in Figure 5,
the strong scaling efficiencies with 2, 4 and 8 slave processes were equal to 96%, 80%
and 59% respectively. Those numbers demonstrate that although the parallel version
do not scale linearly due to communication and I/O overheads, its execution time is
continuously reduced while increasing the number of used slave processes up to the
number of available core threads.

Figure 5: Scalability on a 3.4GHz processor with 8 core threads.

A similar experiment was conducted on a workstation equipped with 4 slower
1.87GHz quad-core XEON E7520 processors and using up to 16 core threads. Fig-
ure 6 shows the normalized execution time and the strong scaling efficiency of the
parallel similarity matrix computation. As in the previous experiment, and as shown
in Figure 6, it can be noticed that the strong scaling efficiency of this parallel appli-
cation slowly decreases from 99% with 8 slave processes to 59% with 16. It can also
be noticed that the optimal number of slave processes to use is 8, and beyond this
number the IO overhead from reading sequences in parallel significantly reduces, on
this workstation, the scalability of the parallel similarity matrix computation. This
second workstation is currently hosting the publicly accessible GALAXY server with
the latest SpCLUST version.

To conclude the scalability study, the similarity matrix computation time was
recorded for five larger sets of sequences. These sets contained 2000, 5000, 10000,
20000 or 30000 sequences, extracted form a set of aligned archaea nucleotide sequences
that was retrieved from the Linux package of HPC-CLUST6. These experiments were
performed over a cluster of 34 nodes, where each node has a 3.4GHz processor with
4 cores and 2GB RAM. Figure 7 shows the recorded computation time for each input
number of sequences, ranging from 0.66 minutes for the 2000-sequence set to 42 minutes
for the 30000-sequence set. As previously shown, the complexity of the similarity

the amount of time to complete the same unit of work with N processing elements is tN , the
normalized execution time is (tN/t1)∗100 and the strong scaling efficiency is t1/(N ∗tN)∗100

6https://www.meringlab.org/software/hpc-clust/hpc-clust-1.2.1-bin.tar.gz
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Figure 6: Scalability on four 1.87GHz processors using 16 core threads.

matrix computation is of order O(N2−N
2

), where N is the number of input sequences.
Therefore, the number of operations should scale quadratically to N . However, the
experiments show that the computation time of the similarity matrix scales on a slower
rate. For example, between the 5k and the 10k sets the computation time scales by a
ratio of 3 while the number of operations was multiplied by 4. Similarly, between the
10k and the 20k sets, the computation time only scales by a ratio of 3.5. These ratios
show that the proposed solution is indeed scalable and the difference of proportionality
comes from communication time needed to distribute the increasing data set to the
cluster’s slave processes over the network.

Figure 7: Scalability on a cluster of 34 nodes having 3.4GHz processors.
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4.3 Clustering phase and overall performance

The clustering phase’s sub-module, as stated in Section 3, was updated and uses the
latest Gaussian Mixture model package [41]. The recorded runtime values reflect the
clustering phase’s performance after the replacement of the obsolete functions. These
tests allow us to conclude the profiling analysis and assess the overall performance
improvement of the full package. Figure 8 shows the detailed profiling results of
SpCLUST while running on the 2.0GHz dual-core (4 core threads) i3-5005U processor
and for a set of 1049 sequences. It took 153 minutes while using a maximum precision
alignment and just 67 minutes with a fast alignment. These values show a speed-
up of 37.9X and 86.5X, respectively, when compared to the original Python module.
Moreover, the total runtime, on the quad-core (8 core threads) i7-6700 3.4GHz and for
the same set of 1049 sequences, was equal to 65 minutes using a maximum precision
alignment and 23 minutes using a fast alignment, giving a 44.6X and 126X speed-up,
respectively.

Figure 8: Run time for all phases execution.

5 A comparative study between SpCLUST and
four competing clustering tools

This section presents a comparative study between SpCLUST and four competing
clustering tools. The experimental protocol is first described, then the clustering
results are compared in terms of number of clusters and their contents. Finally, the
effect of the alignment quality on the clustering is discussed.

5.1 Experimental protocol

The comparative study, interpreted in this section, used eighteen sets of simulated data
(12 genomic sets and 6 protein sets) and eight sets of real data (4 genomic sets and 4
protein ones). The simulated data sets derive from the following reference sequences:
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• four different NADH dehydrogenase 3 (ND3) sequences, extracted from a col-
lection of Platyhelminthes and Nematoda species. The mutated sequences, gen-
erated from these four reference sequences, should produce four clusters.

• five different protein sequences (should produce five clusters).

• six different gene sequences extracted from chloroplastic genomes (should pro-
duce six clusters).

From each group of reference sequences, new mutated sets which contains 30 mu-
tations from each initial sequence, were generated. Each set had different properties
in terms of mutation criteria and divergence rate between its sequences. The mutated
sets were divided into two categories based on the used transition. The transition is
performed in either of the following two ways:

1. the nucleotide or protein transition is performed on a random base.

2. the nucleotide transition is performed according to a real computed rate for
URA3, published in [42], whereas the protein transition is performed according
to the rates of the PAM1 substitution matrix.

Each category includes three mutated sets from each group of reference sequences,
namely {S1, S2, S3} and {S’1, S’2, S’3} for each group. The mutation is performed
using the following criteria:

• the S1 and S’1 are the result of four generations of mutation with 15% mutation
rate, 10 maximum random insertions of size inferior to 9 nucleotides or proteins
and a gap rate equal to 30% of the number of insertions with a maximum gap
size of 10.

• the S2 and S’2 are the result of four generations of mutation with 10% mutation
rate, 7 maximum random insertions of size inferior to 6 nucleotides or proteins,
and a gap rate equal to 20% of the number of insertions with a maximum gap
size of 7.

• the S3 and S’3 are the result of two generations of mutation with 5% mutation
rate, 4 maximum random insertions of size inferior to 4 nucleotides or proteins,
and a gap rate equal to 10% of the number of insertions with a maximum gap
size of 4.

Based on the mentioned criteria, the sets S1 and S’1 contain the most divergent se-
quences when compared to the initial ones, whereas S3 and S’3 contain the least
divergent ones. Figure 9 shows part of a ND3 sequence on which four generations
of simulated mutations were performed. The first row contains the original sequence
content and the next four rows show the added mutations, gaps and insertions from
one generation to the other.

Figure 9: ND3 simulated mutation
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The real data sets were formed from mixes of genomic or protein sequences gathered
and downloaded using NCBI’s HomoloGene online tool7 and NCBI’s virus resources8,9.
The starting genomic or protein sequences are from:

• homologous genes to the human genes FCER1G, S100A1, S100A6, S100A8,
S100A12 and SH3BGRL3 which all belong to the first chromosome, and to the
human gene MC1R which belongs to the 16th chromosome. These homologous
genes are extracted from a collection of mammal species.

• variants for segments PB2 and PB1 from the most fatal type A influenza’s
serotypes [43]. These serotypes are H1N1, H2N2, H3N2, H5N1, and H7N9.

• variants for the C-E genome region of the Zika virus.

The sequences in each data set were randomly shuffled. The following describes the
content of each data set and how many clusters are expected in the clustering results:

• Set 1 consists of six series of homologous genes to the FCER1G, S100A1, S100A6,
S100A8, S100A12, and SH3BGRL3 genes which belong to the human’s first
chromosome. The sequences should be separated into six clusters.

• Set 2 contains a series of homologous genes to the MC1R gene, found in the
human’s sixteenth chromosome, in addition to the series in the first set. The
clustering of set 2 should therefore produce seven clusters.

• Set 3 contains variants of the segment PB2 of the influenza type A serotype and
should produce five clusters.

• Set 4 contains variants of the Zika’s C-E segment, influenza’s AH1N1 PB2 seg-
ment, and influenza’s AH2N2 PB1 segment and should produce three clusters.

All these data sets are available on SpCLUST’s GitHub repository10.
In this comparative study, besides SpCLUST, six other clustering tools were con-

sidered: CD-HIT, UCLUST, DNACLUST, SUMACLUST, DACE, and HPC-CLUST.
However, since SUMACLUST failed to run correctly on many data sets and HPC-
CLUST generated clusters containing only singletons on most of the data sets, only
the remaining four tools were evaluated and compared to SpCLUST.

To cover multiple levels of sequence divergence, we used 3 similarity thresholds: 0.9,
0.6, and 0.4. These values have been chosen according to [44], an article investigating
homologous sequences similarity for a wide range of organisms. According to this
research work, 0.9 identity allows to identify highly similar groups of sequences, while
identities ranging from 0.4 to 0.6 cover the majority of highly to moderately divergent
groups of sequences.

5.2 Results comparison and interpretation

The interpretation of the experiment’s results is organized in three tracks. The number
of clusters, in each clustering, is discussed in the first track, the clusters’ contents are
assessed in the second one, whereas SpCLUST’s results, using a high quality (slow) or
fast alignment, are compared in the third track.

7https://www.ncbi.nlm.nih.gov/homologene
8https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi#mainform
9https://www.ncbi.nlm.nih.gov/genomes/VirusVariation/Database/nph-select.cgi

10https://github.com/johnymatar/SpCLUST
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5.2.1 Analysis of the number of returned clusters

The number of clusters in the clustering results of each evaluated tool, reflects a first
aspect of the clustering accuracy. Obtaining a number of clusters equal or relatively
very close to the real value, is an essential but not a sufficient condition for considering
it to be a good quality clustering. The content of the clusters must corresponds to the
reality too.

The data presented in Table 2 show the resulting clusters’ numbers for the simu-
lated sets that were produced from the sequences previously mentioned in the experi-
mental protocol. In Table 2, ”Prot.” and ”Clp” are the abbreviations of ”Protein” and
”Chloroplast”. On the other hand, an ”E” value indicates that the concerned tool was
not able to cluster the specified data set with the given options, e.g. DNACLUST and
DACE failed to handle the large chloroplast sequence sets while CD-HIT-Est failed to
run with similarity thresholds equal to 0.6 or 0.4. Moreover, a ”-” indicates that the
current tool or parameter is not designed to handle this type of sequences, i.e. this
tool is designed for genomic sequences while the set contains protein sequences, or vice
versa. Finally, two tools of CD-HIT were used: for the genomic sets CD-HIT-Est was
used whereas for the protein sets it was replaced by CD-HIT-Protein.

CD-HIT DNACLUST UCLUST DACE SpCLUST

Similarity threshold

or scoring matrix 0.9 0.6 0.4 0.9 0.6 0.4 0.9 0.6 0.4 0.6 0.4 DNAF. PAM. BLOS.

ND3 simul. set S1 124 E E 124 36 1 124 30 13 E E 2 - -

ND3 simul. set S2 94 E E 110 23 1 106 18 10 E E 5 - -

ND3 simul. set S3 76 E E 99 4 1 65 4 3 8 8 4 - -

ND3 simul. set S’1 124 E E 124 36 1 124 31 20 E E 2 - -

ND3 simul. set S’2 85 E E 109 18 1 110 14 13 E E 4 - -

ND3 simul. set S’3 68 E E 97 4 1 74 5 4 22 22 5 - -

Prot. simul. set S1 155 54 26 - - - 155 66 40 E E - 4 5

Prot. simul. set S2 110 36 13 - - - 151 46 17 E E - 6 6

Prot. simul. set S3 89 5 4 - - - 114 8 4 40 22 - 6 6

Prot. simul. set S’1 155 58 34 - - - 155 51 34 E E - 5 5

Prot. simul. set S’2 113 34 15 - - - 150 36 13 E 18 - 6 5

Prot. simul. set S’3 102 5 4 - - - 112 7 4 21 E - 5 5

Clp. simul. set S1 186 E E E E E 186 63 32 E E 6 - -

Clp. simul. set S2 133 E E E E E 142 40 24 E E 5 - -

Clp. simul. set S3 78 E E E E E 86 6 6 E E 4 - -

Clp. simul. set S’1 186 E E E E E 186 65 43 E E 5 - -

Clp. simul. set S’2 133 E E E E E 146 45 33 E E 5 - -

Clp. simul. set S’3 72 E E E E E 89 6 6 E E 5 - -

Table 2: The number of clusters returned by each clustering tool for the simu-
lated sets.

As described in the experimental protocol, the expected number of clusters for
each data set are:

• 4 clusters for the ND3 simulated sets.

• 5 clusters for the protein simulated sets.
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• 6 clusters for the simulated sets derived from chloroplast genes.

A general overview of Table 2 shows that in the cases of the highly and moderately
divergent sets, S1, S’1, S2 and S’2, all the tools except SpCLUST returned a number
of clusters far from what was expected. Conversely, for the least divergent sets, S3
and S’3, these same tools, except DACE, gave the exact number of clusters or a close
number to the expected one. In particular, it can be noticed that DNACLUST, while
using a similarity threshold equal to 0.6, returned the expected number of clusters
for the ND3 simulated sets, S3 and S’3. Moreover, UCLUST, while using a similarity
threshold equal to either 0.6 or 0.4, produced the expected number of clusters for the
ND3 and chloroplast genes simulated sets, S3 and S’3. In addition, CD-HIT-Protein,
while using a similarity threshold equal to 0.6, was able to find the expected number
of clusters for the protein simulated sets, S3 and S’3. Finally, SpCLUST gave either
the exact number of clusters or a close one for all the simulated sets, including the
most divergent ones.

The above observation shows that CD-HIT, DNACLUST and UCLUST are effi-
cient in determining a correct or closely correct number of clusters in the case where
the clusters’ member sequences are convergent. For instance, for the least divergent
simulated sets, these tools were efficient in most cases when applied with a similarity
threshold equal to 0.6 or 0.4. But, unlike SpCLUST, these tools failed to cluster the
relatively divergent sets.

Table 3 shows the numbers of clusters, produced by each tool while clustering the
real data sets. The expected numbers of clusters are equal to 6 clusters for the first
set, 7 for the second set, 5 for the third set and 3 for the fourth set. CD-HIT-Est,
and similarly to the experiments performed on the simulated sets, failed to run using
the similarity thresholds 0.6 or 0.4. CD-HIT-Protein also failed while processing the
protein sequences of the third set. DNACLUST failed to process the genomic sequences
of the first and second sets, while DACE failed to process all the genomic sets. DACE
also failed processing three out of the four protein sets using the similarity thresholds
0.9 or 0.6.

It is important to highlight that both High Performance Computing tools, DACE
and HPC-CLUST, were successfully tested using a data set provided by one of their
authors and containing tens of thousands of sequences. The main difference between
this data set and ours is the length of the sequences. Therefore, although these tools
might be well optimized to cluster large number of sequences, it seems they cannot
handle lengthy sequences which are very common in real life cases.

The results displayed in Table 3 show that, for the genomic sets, SpCLUST suc-
ceeded in producing the exact number of clusters for the third set and a close number
for the others. CD-HIT-Est and UCLUST produced the exact number for the third
and fourth sets while using a similarity threshold equal to 0.9, and UCLUST returned
close numbers of clusters for the first and second sets while using a similarity threshold
of 0.4. For the protein sets, the results displayed in Table 3 show that SpCLUST, for
all the sets, only returned close number of clusters to the expected ones while CD-HIT-
Protein and UCLUST produced the exact number for the first, second, and fourth sets
with a similarity threshold equal to 0.4, while DACE produced close numbers for the
first three sets only.

Given these results, it can be noticed that for the real data sets some tools in
some cases give equal or better quality clustering than SpCLUST. However, it is also
important to highlight the high impact of the similarity threshold’s choice on the
quality of the clustering. For example, for the genomic sequences of the second set,
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CD-HIT DNACLUST UCLUST DACE SpCLUST

Similarity threshold

or scoring matrix 0.9 0.6 0.4 0.9 0.6 0.4 0.9 0.6 0.4 0.9 0.6 0.4 DNAF. PAM. BLOS.

Set 1 genomic 33 E E E E E 33 17 8 E E E 4 - -

Set 2 genomic 40 E E E E E 40 19 6 E E E 4 - -

Set 3 genomic 5 E E 10 43 44 5 1 1 E E E 5 - -

Set 4 genomic 3 E E 10 10 24 3 3 1 E E E 4 - -

Set 1 protein 19 7 6 - - - 19 7 6 E E 5 - 4 4

Set 2 protein 25 9 7 - - - 25 9 7 E E 5 - 3 4

Set 3 protein 1 E E - - - 1 1 1 3 1 1 - 3 4

Set 4 protein 3 3 3 - - - 3 3 3 E E 1 - 4 4

Table 3: The number of clusters returned by each clustering tool for the real
data sets.

UCLUST returned 6 clusters instead of 7 when given a similarity threshold equal to
0.4. On the other hand, it returned 19 and 40 clusters for similarity thresholds equal
to 0.6 and 0.9 respectively. Therefore, for sequence sets with an unknown degree of
similarity and an unknown expected number of clusters, SpCLUST remains a better
choice because it returns exact or close number of clusters in all cases and without
any prior knowledge about the input sequences. Moreover, for the highly similar
protein sequences of the third set SpCLUST returned 4 clusters instead of 5, using
BLOSUM62’s matrix while CD-HIT-Protein and UCLUST put all the sequences in
one cluster even with a similarity threshold equal to 0.9.

In summary, for the most divergent sets of the artificially mutated data sets, only
SpCLUST gave the exact or close number of clusters, the results of the other tools
were very far from the expected ones. In the less divergent simulated and real sets,
SpCLUST gave better or at least good results when compared to the other tools. In the
next section, the clusters’ contents in these experiments are compared and discussed.

5.2.2 Analysis of the clusters’ contents

In this section, the contents of the clusters, returned by the selected clustering tools,
are compared in order to evaluate their accuracy. To evaluate the degree of similarity
between a given clustering and the expected one, a metric should be defined. In the
literature, many metrics are proposed, and some are presented in [45]. In this paper
the Adjusted Rand Index was selected. It computes a similarity measure between
two clusterings, the predicted and the true clusterings, by considering all pairs of
samples and counting pairs that are assigned in the same or different clusters. The
Adjusted Rand Index requires the knowledge of the correct cluster which is the case in
the previous described experiments. This index ranges between 0 for two completely
different clusterings to 1 for identical clusterings. The compared clusterings do not
have to have the same number of clusters. Moreover, the Adjusted Rand Index is
symmetric: swapping or changing the clusters’ labels, in a certain set, does not affect
the calculation, e.g. the sets [a,a,a,b,b,c,c] and [c,c,c,a,a,d,d] are still detected identical
although the labelling of the clusters’ elements was changed. Therefore, the Adjusted
Rand Index is a good fit in our case since it only requires, for its calculation, the
labeling of the clusters’ elements according to which cluster they belong in the perfect

18



clustering.
Table 4 displays for each simulated data set, the Adjusted Rand Index calculated

between the known exact clustering and the one returned by each tool. Only the
clusterings that had the correct number of clusters or a very close one are considered
because the remaining clusterings have an Adjusted Rand Index close to 0. Based on
the values of the computed Adjusted Rand Index, and beside the fact that SpCLUST
was the only tool to cluster well all the data sets, the average Adjusted Rand Index
for the clustering of the 16 sets was equal to 0.805. Therefore, it can be stated that
the proposed module, SpCLUST, performed well, compared to the other tools, and
delivered a good overall clustering quality. In contrast, the other clustering tools
returned good results in only 1/3 of the studied cases. Therefore, Even if for 1/3 of
the cases the average of the displayed Adjusted Rand Indexes for certain tools is better
than SpCLUST’s average index, when considering the remaining 2/3 cases, where this
index falls to nearly zero for the other tools, their overall index averages are way below
SpCLUST’s average index.

CD-HIT DNACLUST UCLUST SpCLUST

Similarity threshold

or scoring matrix 0.6 0.4 0.6 0.6 0.4 DNAFULL PAM250 BLOSUM62

ND3 simul. set S1 - - - - - 0.082 - -

ND3 simul. set S2 - - - - - 0.637 - -

ND3 simul. set S3 - - 1 1 0.476 1 - -

ND3 simul. set S’1 - - - - - 0.282 - -

ND3 simul. set S’2 - - - - - 0.734 - -

ND3 simul. set S’3 - - 1 0.778 0.741 0.913 - -

Prot. simul. set S1 - - - - - - 0.406 0.7

Prot. simul. set S2 - - - - - - 0.933 0.933

Prot. simul. set S3 1 0.778 - 0.876 0.778 - 0.992 0.992

Prot. simul. set S’1 - - - - - - 0.438 0.984

Prot. simul. set S’2 - - - - - - 0.933 0.643

Prot. simul. set S’3 1 0.778 - 0.945 0.778 - 0.968 1

Clp. simul. set S1 - - - - - 0.406 - -

Clp. simul. set S2 - - - - - 0.797 - -

Clp. simul. set S3 - - - 1 1 0.783 - -

Clp. simul. set S’1 - - - - - 0.368 - -

Clp. simul. set S’2 - - - - - 0.517 - -

Clp. simul. set S’3 - - - 1 0.987 0.82 - -

Table 4: Adjusted Rand index for simulated data sets clustering

In addition, it can be noticed, from the data in Table 4, that CD-HIT-Protein was
the only tool to return the exact clustering for one of the least divergent sequences’
sets of protein, S3. However SpCLUST gave a nearly perfect clustering for this set,
with a scored Adjusted Rand Index of 0.992, and using either scoring matrices. As for
the other proteins sets, SpCLUST returned the exact clustering for one of them and
for the rest of the data sets it gave good quality clustering results having an Adjusted
Rand Index varying between 0.7 and 0.992 using either PAM250 or BLOSUM62.

For the genomic sets, on the one hand, DNACLUST and UCLUST succeeded in
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returning a perfect clustering for the least divergent sets, S3 and S’3. But on the
other hand, SpCLUST also performed well and returned clusterings with Adjusted
Rand Indexes varying between 0.783 and 1 for these same sets. But although the tools
returned very good results, in the case of the least divergent genomic or protein sets
they require a user intervention to choose the adequate similarity threshold.

Moreover, since SpCLUST does not rely on any user input identity parameter,
it outperforms the other tools in the case of clustering highly divergent data sets.
Conversely, the other tools proved to be highly accurate in clustering convergent sets,
and at least one of these tools succeeded in finding the true clustering for each one of
the least divergent sets.

The mentioned sequence divergence is illustrated in Table 5, using Levenshtein
distance [46] which counts the number of characters insertions or substitutions between
two strings. A random starting sequence was chosen from each group of reference
sequences and the Levenshtein distance was calculated between this sequence and a
randomly chosen mutation of this same sequence from each set, S1 to S’3. The values
displayed in Table 5 show how the Levenshtein distance decreases from sets S1 and S’1
to sets S3 and S’3. The distances for the other reference sequences in each set should
be close to the calculated ones since they were generated using the same mutation
criteria.

S1 S’1 S2 S’2 S3 S’3

ND3 167 178 147 119 41 38

Prot 186 167 158 137 36 44

Clp 120 81 77 56 20 17

Table 5: Levenshtein distance between the original and mutated sequences

Finally, although SpCLUST’s results do not seem good in the case of the ND3 sets
S1 and S’1 (Adjusted Rand Indexes equal to 0.082 and 0.282), a logical reason might
explain this phenomenon: in fact, contrary to the other sets which originate from
sequences of different genes, the ND3 sets derive from 4 initially divergent sequences
of the same ND3 gene. Therefore, the simulated mutations might randomly cause the
descendent sequences to converge or make some of the descendent sets highly diverge
from the others. In this last case, the distance between the resulting mutated genes
might make them look like being, more likely, part of two different clusters instead
of four: one cluster containing the descendents that either re-converged towards each
other or reached a closely equal distance between each other, and another cluster
containing the remainder of the sequences that diverged more from the others. Indeed,
the clusters contents, of the clustering of ND3’s S1 and S’1, supports the presented
theory: for both sets, one cluster contains a certain number of descendents from the
same original sequence and the other cluster contains all the remaining sequences.

Table 6 presents, for each real data set, the Adjusted Rand Index calculated be-
tween the true and the predicted clusterings. SpCLUST was the only tool that was
able to return acceptable clusterings for all the real data sets. It produced good overall
clustering quality for all the real data sets whereas the other clustering tools failed
to return acceptable results for at least one of the sets. Moreover, it can be noticed
that SpCLUST outperforms CD-HIT and UCLUST in the first 3 genomic sets and
returns better quality clusterings. For the protein sets, CD-HIT and UCLUST gave
better quality clusterings than SpCLUST and DACE gave the lowest quality cluster-
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CD-HIT UCLUST DACE SpCLUST

Similarity threshold

or scoring matrix 0.9 0.6 0.4 0.9 0.6 0.4 0.9 0.4 DNA. PAM. BLOS.

Set 1 genomic - - - - - 0.359 - - 0.386 - -

Set 2 genomic - - - - - 0.356 - - 0.47 - -

Set 3 genomic 0.68 - - 0.68 - - - - 0.786 - -

Set 4 genomic 1 - - 1 1 - - - 0.869 - -

Set 1 protein - 0.974 0.58 - 0.958 0.712 - 0.409 - 0.625 0.493

Set 2 protein - 0.928 0.658 - 0.914 0.772 - 0.327 - 0.241 0.354

Set 3 protein - - - - - - 0.205 - - 0.206 0.456

Set 4 protein 1 1 1 1 1 1 - - - 0.869 0.869

Table 6: Adjusted Rand index for real data sets clustering

ings. Another remarkable phenomenon is that, in contrary to the tests results on the
simulated data sets, CD-HIT and UCLUST performed, in general, better than Sp-
CLUST on the real data sets. In fact, a closer look at the data sets shows that 2 out
of the 4 sets are very convergent. In fact, CD-HIT and UCLUST both delivered either
a perfect or a good clustering for the genomic sets 3 and 4 as well as the protein set 4
with a similarity threshold equal to 0.9. Moreover, for the protein sets 1 and 2, CD-
HIT and UCLUST also produced better results than SpCLUST, and for a similarity
threshold of 0.6. This shows that the first couple of sets’ clusters contents are also not
very divergent like it was the case in most of the simulated data sets.

Appendix A presents some tables illustrating SpCLUST’s clustering contents. Ta-
bles 10 and 11 show SpCLUST’s clustering contents for the genomic real data sets 2
and 4 that scored Adjusted Rand Indexes equal to 0.47 and 0.869 respectively. Each
column in these tables holds an SpCLUST cluster’s content. The cells sharing the same
color hold sequences that should be in the same cluster. Thus, looking to Table 10
shows that SpCLUST successfully isolated in one cluster, the MC1R sequences that
belongs to a gene coming from a different chromosome than all the other sequences is
this set. The other clusters contain mainly a mix of 2 or 3 true clusters, and not a
random shuffle of elements. This is caused by the fact that elements of these clusters
may share by chance a certain percentage of similarity, without presenting the same
characteristics or reflecting a real homology. Similarly, looking to Table 11 shows that
SpCLUST perfectly isolated Zika virus’ sequences from Influenza’s. The other clusters
also tend to be perfect and only 3 Influenza’s H2N2 sequences, that might be a bit too
divergent from their other relatives, were clustered separately. It is the same for the
set of protein sequences, as shown in Table 12.

Since SpCLUST scored the lowest indexes, 0.386 and 0.354, thus the worst clus-
tering quality, for the first real genomic set and the second real protein set, a further
investigation was undertaken for these two sets. The quality of their clustering was
evaluated again using another metric, the purity of a cluster [47] which is computed
for each cluster as in equation 1. The purity of a given cluster might vary between
]0, 1]. It will be close to zero if the cluster’s elements are found in different clusters
in the perfect clustering and on the other hand it will increase up to 1, if the cluster
have all its elements from the same cluster in the perfect clustering. The quality of a
single cluster Ci is computed according to the maximum of pij which is the number of
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elements that Ci has in common with the cluster j in the perfect clustering.

purity(Ci) =
1

|Ci|
∗maxj(p

i
j) (1)

Table 7 shows the purity of the clusters obtained for the first real genomic set and
the second real protein set: the clustering of the first set had three pure clusters out
of four and the clustering of the second one had two pure clusters out of four and a
third cluster with a high purity. Therefore, the resulting low adjusted Rand Indexes
do not come from having a bad quality clustering but rather from the merger of two
or three clusters with similar elements from the perfect clustering. These results are
consistent with the previous analysis of the clustering results of these sets.

C1 C2 C3 C4

Set 1 Genomic 1 0.38 1 1

Set 2 Protein 1 1 0.32 0.82

Table 7: Clusters purity

Finally, it can be concluded that based on the clusters’ contents quality interpreted
in this section, SpCLUST presents a better tool for clustering highly divergent data
sets, while the other tested tools remain a good choice for more convergent sets, but
only in the case of a good similarity threshold choice. However, choosing a good
similarity threshold is usually not trivial and requires some knowledge about the data
set contents, or the expected number of clusters, which is almost never available in
practice for newly discovered sequences. Meanwhile, SpCLUST does not need any user
intervention and it offers an innovative tool for clustering new or unknown, genomic
or protein, sequence sets.

5.2.3 Effect of sequences alignment quality on clustering results

Since, in the proposed module, the result of the input sequences alignment represents
the starting point of the clustering process pipeline, the quality of that alignment, as
mentioned in Section 4, might impact both the process running time and the clustering
accuracy. In this section, the effect of the alignment quality on SpCLUST’s results is
analyzed on the previously described real data sets.

The Levenshtein distance will be used to compute the distance between the same
sequence in two alignments: a fast and a normal one. The ratio between the computed
Levenshtein distance and the length of the sequence represents a normalized distance
value going from 0 (for exactly similar sequences) to 1 (for completely distinct se-
quences). Thus, the distance between two alignments can be defined as the average of
the distances ratios for all the sequences in the alignment. Table 8 shows the distance
between the normal alignment and the fast alignment for the genomic and protein
mixes of the real data sets. While the second genomic set has the biggest distance,
the third genomic and protein sets have identical alignments with the fast and normal
alignment.

Starting with the cases where the distance between the alignments did not affect
the clustering results. In the case of the third mix from the real data sets, containing
sequences from Influenza viruses variants, the fast and the normal alignment were
identical and they both produced the same clustering. In the case of the fourth mix
from the real data sets, containing mixed sequences from Influenza and Zika viruses,
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Set 1 Set 2 Set 3 Set 4

Genomic 0.1352 0.3 0 0.1473

Protein 0.1424 0.0878 0 0.0368

Table 8: Distance between normal and fast alignments

the fast and the normal alignments were slightly different, their normalized distance
was equal to 0.1473. However, the SpCLUST’s clustering result, using a fast alignment,
was similar to the one using a normal alignment, for both genomic and protein sets
of this mix. This shows that even with a small normalized distance between two
alignments, the quality of the clustering was not affected for these sets. Conversely,
for the other sets, and although some distances between their alignments were smaller
than 0.1473, it made a difference in the clustering quality.

Set 1 gen. Set 1 prot. Set 2 gen. Set 2 prot.

SpCLUST normal align. 0.053 0.568 0.41 0.38

Perfect clustering 0.289 0.404 0.383 0.386

Table 9: Adjusted Rand Index - Fast alignment

Table 9 displays the Adjusted Rand Index between the clustering produced from
a fast alignment and those produced from a normal alignment. It also shows the
Adjusted Rand Index between the clustering produced from a fast alignment and the
true clustering. Fast alignment produced a moderately dissimilar clustering in 3 out
of 4 cases when compared to the clustering produced using a normal alignment. More-
over, the calculated Adjusted Rand Index between the clustering, produced from a
fast alignment, and the true clustering reflects, in 3 cases out of 4, a slight deterio-
ration in this clustering quality, compared to the one done with a normal clustering.
This can be seen by comparing the current values of the Adjusted Rand Index with
those in Table 6. Appendix A, Table 13 shows, for the second genomic real data set,
the SpCLUST clustering produced from a fast alignment and can be compared to the
clustering produced from a normal alignment and displayed in Table 10.

Based on the presented results, and knowing that the used viruses’ genes sequences
(in sets 3 and 4) are much smaller in size than the used mammals genes sequences (in
sets 1 and 2), it can be said that a small distance, between a normal alignment and a
fast one, does not affect the clustering results in the case of relatively small sequences.
Conversely this distance, although being small, slightly impacts the quality of the
clustering for larger sequences.

6 Discussion and future directions

In this work, an efficient and fast clustering package for potentially divergent nucleotide
sequences is proposed. This package is based on the Python module presented in [8]
which uses an unsupervised learning method to produce the clustering. However, the
new package offers many improvements over the old one such as enhanced performance
due to its implementation in C++ and its parallelization with MPI. A performance
comparison between the original package and the new one shown a speed-up ranging
from 37.9X to 44.6X when performing a high quality alignment and up to 126X when
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performing a fast alignment. Moreover, two additional substitution matrices for the
distance matrix calculation, PAM250 and BLOSUM62, were added to the package
which extends its capabilities to cluster protein sequences. The proposed package
compiles and runs on both Linux and Windows and can be easily integrated to a
GALAXY server.

A comparative study between SpCLUST and some existing and widely used clus-
tering tools, such as UCLUST [13], CD-HIT [12], DNACLUST [14] and DACE [16], was
conducted over different sets of simulated and real, genomic and protein, sequences.
In contrast with these state of the art tools, SpCLUST does not mainly aim for higher
clustering speeds, of highly similar sequences, than its competitors. SpCLUST aims
for fast clustering of data sets containing potentially divergent elements, and without
any a priori knowledge of the similarity threshold or the number of clusters. The
experiments shown that in the most cases SpCLUST gave better or fairly good re-
sults, compared to the other tools, in terms of number of clusters and their contents.
Moreover, for highly divergent sequences that the other tools were not able to cluster,
SpCLUST gave good clustering quality compared to the expected clustering. Finally,
unlike the other tools that need a highly influencing similarity threshold parameter
input, SpCLUST does not require any user intervention.

Despite proving that the use of the Gaussian Mixture Model (GMM) along with the
Bayesian Information Criterion (BIC) provides a good clustering tool for potentially
divergent sequences that does not require any user intervention, and despite the huge
performance improvement introduced in SpCLUST when compared to the previous
implementation of the algorithm, the complexity of this model remains by far higher
than the complexity of the traditional greedy or hierarchical ones. Therefore, the
proposed parallel tool remains much slower than the traditional High Performance
Computing tools based on hierarchical algorithms. The traditional tools are better
suited to cluster highly similar sequences with a well known similarity threshold, while
SpCLUST successfully serves its intended purpose of fast clustering in the case of
highly divergent sequences or when a typical similarity threshold is hard to specify.

Possible future extensions to the proposed package include the development of a
custom and a faster parallel alignment sub-module instead of using MUSCLE. Further
performance improvement could be gained by implementing in C++ the clustering
sub-module, in addition to increasing its convergence rate. Moreover, introducing a
graphical user interface for the proposed tool and enabling a graphical visualization
of the clustering could improve the accessibility of the package and the analysis of the
clustering results. Finally, a comparison with other tools, based on machine learning
models might be interesting, along with the evaluation of the effect of different affinity
matrices, as well as some parameters in the GMM model, on the performance and
accuracy of SpCLUST.
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Appendix A Clusters contents

C1 C2 C3 C4

H.sapiens MC1R H.sapiens SH3BGRL3 H.sapiens S100A6 G.gallus S100A6

P.troglodytes MC1R C.lupus SH3BGRL3 P.troglodytes S100A6 H.sapiens S100A8

C.lupus MC1R B.taurus SH3BGRL3 M.mulatta S100A6 M.mulatta S100A8

B.taurus MC1R M.musculus Sh3bgrl3 C.lupus S100A6 C.lupus S100A8

M.musculus Mc1r R.norvegicus Sh3bgrl3 B.taurus S100A6 B.taurus S100A8

R.norvegicus Mc1r M.musculus S100a6 M.musculus S100a8

G.gallus MC1R R.norvegicus S100a6 R.norvegicus S100a8

D.rerio mc1r G.gallus SH3BGRL3 H.sapiens S100A1

H.sapiens FCER1G P.troglodytes S100A1

P.troglodytes FCER1G M.mulatta S100A1

C.lupus FCER1G C.lupus S100A1

B.taurus FCER1G B.taurus S100A1

M.musculus Fcer1g M.musculus S100a1

R.norvegicus Fcer1g R.norvegicus S100a1

G.gallus S100A1

D.rerio s100a1

H.sapiens S100A12

P.troglodytes S100A12

C.lupus S100A12

B.taurus S100A12

Table 10: Clustering - Real data genomic set 2

C1 C2 C3 C4

KU758869 ZIKA CY083917 H1N1 PB2 CY021939 H2N2 PB1 CY021027 H2N2 PB1

KU312313 ZIKA CY063613 H1N1 PB2 CY020323 H2N2 PB1 AY210016 H2N2 PB1

KU758873 ZIKA CY083782 H1N1 PB2 CY022019 H2N2 PB1 CY020419 H2N2 PB1

KU758868 ZIKA CY073732 H1N1 PB2 CY021811 H2N2 PB1

KU312314 ZIKA CY062698 H1N1 PB2 CY021795 H2N2 PB1

KU758872 ZIKA CY062706 H1N1 PB2

KU758876 ZIKA

KU758871 ZIKA

KU758870 ZIKA

KU758875 ZIKA

Table 11: Clustering - Real data genomic set 4
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C1 C2 C3 C4

AML81020 ZIKA ADX98969 H1N1 PB2 ABQ01363 H2N2 PB1 ABO52255 H2N2 PB1

ALX35660 ZIKA ADH01967 H1N1 PB2 ABO38106 H2N2 PB1 AAO46332 H2N2 PB1

AML81024 ZIKA ADX98798 H1N1 PB2 ABQ44468 H2N2 PB1 ABO38742 H2N2 PB1

AML81019 ZIKA ADN05235 H1N1 PB2 ABP49467 H2N2 PB1

ALX35661 ZIKA ADG42162 H1N1 PB2 ABP49445 H2N2 PB1

AML81023 ZIKA ADG42172 H1N1 PB2

AML81027 ZIKA

AML81022 ZIKA

AML81021 ZIKA

AML81026 ZIKA

Table 12: Clustering - Real data protein set 4

C1 C2 C3 C4

H.sapiens MC1R H.sapiens SH3BGRL3 H.sapiens S100A6 H.sapiens S100A8

P.troglodytes MC1R C.lupus SH3BGRL3 P.troglodytes S100A6 M.mulatta S100A8

C.lupus MC1R B.taurus SH3BGRL3 M.mulatta S100A6 C.lupus S100A8

B.taurus MC1R M.musculus Sh3bgrl3 C.lupus S100A6 B.taurus S100A8

M.musculus Mc1r R.norvegicus Sh3bgrl3 B.taurus S100A6 M.musculus S100a8

R.norvegicus Mc1r M.musculus S100a6

G.gallus MC1R R.norvegicus S100a6

D.rerio mc1r G.gallus S100A6

G.gallus SH3BGRL3

R.norvegicus S100a8

H.sapiens S100A1

P.troglodytes S100A1

M.mulatta S100A1

C.lupus S100A1

B.taurus S100A1

M.musculus S100a1

R.norvegicus S100a1

G.gallus S100A1

D.rerio s100a1

H.sapiens FCER1G

P.troglodytes FCER1G

C.lupus FCER1G

B.taurus FCER1G

M.musculus Fcer1g

R.norvegicus Fcer1g

H.sapiens S100A12

P.troglodytes S100A12

C.lupus S100A12

B.taurus S100A12

Table 13: Clustering - Real data genomic set 2 - Fast alignment
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