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Safe Disassociation of Set-Valued Datasets

Nancy Awad1,2, Bechara AL Bouna1, Jean-Francois Couchot2, and Laurent Philippe2

1 TICKET Lab., Antonine University, Hadat-Baabda, Lebanon.
nancy.awad,bechara.albouna@ua.edu.lb

2 FEMTO-ST Institute, UMR 6174 CNRS, Université of Bourgogne Franche-Comté, France.
jean-francois.couchot, laurent.philippe@univ-fcomte.fr

Abstract. Disassociation introduced by Terrovitis et al. is a bucketization based
anonimyzation technique that divides a set-valued dataset into several clusters to
hide the link between individuals and their complete set of items. It increases the
utility of the anonymized dataset, but on the other side, it raises many privacy
concerns, one in particular, is when the items are tightly coupled to form what is
called, a cover problem. In this paper, we present safe disassociation, a technique
that relies on partial-suppression, to overcome the aforementioned privacy breach
encountered when disassociating set-valued datasets. Safe disassociation allows
the km-anonymity privacy constraint to be extended to a bucketized dataset and
copes with the cover problem. We describe our algorithm that achieves the safe
disassociation and we provide a set of experiments to demonstrate its efficiency.

Keywords: Disassociation, cover problem, data privacy, set-valued, privacy pre-
serving

1 Introduction

Privacy preservation is a key concern in data publishing where individual’s per-
sonal information must remain protected under all circumstances. This sounds
straightforward, but it is somehow difficult to achieve. The AOL search data leak
in 2006 (BZ06) is an explicit example that shows the consequences of a unsu-
pervised data publishing. The query logs of 650k individuals were released after
omitting all explicit identifiers. They were later withdrawn due to multiple reports
of attackers linking individuals to their sensitive records. Alternatively, provid-
ing a ”complete” privacy over the data requires sacrifices in terms of utility, in
other words, usefulness of the data (Sam01,Swe02,MGKV06,XT06,DMNS06).
Hence, it is pointless to publish datasets that do not provide valuable informa-
tion. A suitable trade-off between data utility and privacy must be achieved. The
point is to provide not only a value anonymization technique, but instead a dataset
anonymization technique, that hides/anonymizes the link between individuals and
their sensitive information, and, at the same time, keeps the dataset useful for
analysis. When publishing a set-valued dataset (e.g., shopping and search items)
it is important to pay attention to attackers that try intentionally to link individ-
uals to their sensitive information. These attackers may be able to single out an
individual’s complete record/itemset by associating data items from the dataset
to their background knowledge. The example in Figure 1(a) shows a set-valued
dataset T consisting of 6 records r1,. . . ,r6, which are itemsets linked to individu-
als 1, . . . , 6 respectively. For instance, r1 : {a,e} can be interpreted as individual
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1 has searched for item a and item e. If an attacker knows that individual 1 has
searched for items d and e, he/she will be able to link 1 to his record r2.

T
r1 a e
r2 a b c d e
r3 a b c d
r4 a b c d
r5 a b c d
r6 a b

(a) Original dataset

T ∗
RC1 RC2

a e
a b c d e
a b c d
a b c d
a b c d
a b

(b) 22-Disassociated
dataset

T 1©
a e
a b c d e
a b c d
a b c d
a b c d
a b

T 2©
a e
a b c d
a b c d
a b c d
a b c d
a b e

T 3©
a
a b c d e
a b c d
a b c d
a b c d
a b e

(c) Reconstructed datasets from T ∗

Fig. 1. Disassociation leading to a cover problem

Several techniques (Sam01, Swe02, XT06, LLZM12, DCdVFJ+13, WWFW16,
WDL18) have been defined in the literature to anonymize the dataset and cope
with this particular association problem. Anonymization by disassociation (TMK08,
LLGT14,LLGDT15) is a bucketisation technique (XT06,LLZM12,DCdVFJ+13)
that keeps the items without alternation/generalization but separates the records
into clusters and chunks to hide their associations. More specifically, disassocia-
tion transforms the original data into km-anonymous clusters of chunks to ensure
that an attacker who knows up to m items cannot associate them with less than
k records. First, disassociation divides the dataset horizontally, creating clusters
of records with similar frequent items. In Figure 1(a), the item a has the highest
number of occurrences in the records; thus, all records containing the item a are
added to the cluster. Next, disassociation divides the clusters vertically, creating
inside each cluster km-anonymous record chunks of items, and one item chunk
containing items that appear less than k times. Figure 1(b) shows the result of
disassociation with only one cluster, namely T ∗, containing 2 record chunks RC1 ,
and RC2 and no item chunk. Both RC1 and RC2 are 22-anonymous. That is, an at-
tacker who knows any two items about an individual will be able link them to at
least two records from the dataset.

In a previous work (BaBNG16), the disassociation technique has been evaluated
and found to be vulnerable to what is called, a cover problem. This cover prob-
lem provides attackers with the ability to associate itemsets in consequent record
chunks with individuals’ records, and compromises the disassociated dataset. Fig-
ure 1(c) highlights all datasets T 1©, T 2©, and T 3© that could be reconstructed
from the disassociated dataset T ∗ by associating records from different record
chunks. Suppose now the attacker knows that an individual has searched for items
d and e , {d,e}. In such a case, he/she can remove T 2© from the possible recon-
structed dataset and will be able to link every record containing d and e with
certainty to {a,b,c} from the two remaining reconstructed datasets leading to a
privacy breach.



This paper extends the previous work (BaBNG16) by providing a theoretical and
practical solution to this cover problem. It introduces a privacy preserving tech-
nique to safely disassociate a set-valued dataset and address this cover problem.
This method is further denoted as safe disassociation. Our contributions are sum-
marized as follows:

– We define the privacy guarantee for safe disassociation and provide the ap-
propriate algorithm to achieve it.

– We investigate the efficiency of safe disassociation and its impact on the
utility of aggregate analysis and the discovery of association rules.

The rest of the paper is organized as follows. Section 2 presents an overview of
some of the related works in set-valued dataset anonymization . In Section 3,
we describe the formal model of disassociation and discuss the cover problem
that makes disassociation vulnerable. We define safe disassociation in Section. 4.
Experimental evaluations of this method is presented in Section 5. Finally, we
conclude in Section 6 and present outlines for future work.

2 Related Work

Anonymization techniques can be divided into several categories, namely cate-
gorization, generalization, and bucketization, detailed hereafter.
With categorization (JPX+14, CLZ+16, WDL18), attributes are classified into
several categories with respect to their sensitivity: identifying, sensitive or non-
sensitive. On the opposite, all the data in this current work are considered to be
grouped into sets whose items have the same level of sensitivity; the items com-
bined together are sensitive and therefore only the link between the individual
and their corresponding items must be protected.
Generalization techniques (Sam01,Swe02,MGKV06) create homogeneous sub-
sets by replacing values with ranges wide enough to create ambiguity. Reducing
the extent of generalization, and thus decreasing the information loss is critical
to preserving the usefulness of the data. In (HN09), only a local generalization is
applied whereas in (FW10) a clustering based technique is implemented to min-
imize the abstraction. On the opposite, initial data in this current work are not
generalized to ensure privacy or even modified.
Bucketization techniques (XT06,CVF+10,BPW11) are valuable due to their abil-
ity to keep the values intact. Identifiable links between items are hidden by sepa-
rating the attributes of the data. Under this category lies the disassociation tech-
nique (TMLS12,LLGT14,LLGDT15,BLLL17) that works on clustering the data
and hiding identifiable links in each cluster by separating the attributes. Unfor-
tunately, disassociation has shown to be vulnerable to a privacy breach when the
items are tightly coupled. It is the ability of an attacker to link his/her partial back-
ground knowledge represented by at most m items that he/she is allowed to have,
according to the privacy constraint km-anonymity, with certainty to less than k
distinct records in a disassociated dataset.
Differential privacy (DMNS06) is an anonymization technique that adds noise to
the query results. It is based on a strong mathematical foundation that guarantees
that an attacker is unable to identify sensitive data about an individual if his/her
information were removed from the dataset. Unlike differential privacy, this dis-
association based work does not distinguish between sensitive and non-sensitive
attributes and is capable to retrieve viable and trustful information that has not



been altered nor modified. The authors in (ZHZ+15) defined cocktail a frame-
work that uses both disassociation to anonymize the data for publishing as well
as differential privacy to add noise on data querying. In spite of the originality
of the idea, their technique subsumes the drawbacks of both disassociation and
differential privacy; as it is vulnerable to the cover problem and releases ques-
tionable information.

3 Background

To be self-content, this section recalls the basis of disassociation (Sec. 3.1 and
Sec. 3.2) introduced in (TMLS12). Next (Sec. 3.3), it exhibits a class of privacy
breach called cover problem inherent to this anonymization technique already
sketched in (BaBNG16) showing its repercussion on data privacy.

3.1 Data model

Let D = {x1, ...,xd} be a set of items (e.g., supermarket products, query logs, or
search keywords). Any subset I ⊆D is an itemset (e.g., items searched together).
Let T = {r1, ...,rn} be a dataset of records where each ri ⊆ D for 1 ≤ i ≤ n is
a record and ri is associated with a specific individual i of a population. Let RT
be a subset of records in T . Both T and R have the multiset semantic, which can
contain more than one instance for each of its elements.
With such notations, s(I,T ) is the number of records in T that contain all the
elements in I. More formally, it is defined by the following equation

s(I,T ) = |{r ∈ T | I ⊆ r}| (1)

By extension s(T ) = s( /0,T ) and s(RT ) = s( /0,RT ) are the number of records in
T and RT respectively.
Table 1 recalls the basic concepts and notations used in the paper.

Table 1. Notations used in the paper

D a set of items
T a dataset containing individuals related records
T ∗ a disassociated dataset i.e. a dataset anonymized using the disassociation tech-

nique
T .© a dataset reconstructed by cross joining the itemsets of the record chunks in a

cluster from the disassociated dataset
r a record (of T ) which is set of items associated with a specific individual of a

population
I an itemset included in D
s(I,T ) support of I in T i.e. the number of records in T that are superset of I
R a cluster in a disassociated dataset, formed by the horizontal partitioning of T
RT an item chunk in a disassociated cluster
RC a record chunk in a disassociated cluster
δ maximum number of records allowed in a cluster
n number of records in T



3.2 Disassociation
Disassociation works under the assumption that the items should neither be al-
tered, suppressed, nor generalized, but at the same time the resulting dataset must
respect the km-anonymity privacy constraint (TMK08). Formally, km-anonymity
is defined as follows:

Definition 1 (km-anonymity). Given a dataset of records T whose items belong
to a given set of items D . The dataset T is km-anonymous if ∀I ⊆ D such that
|I| ≤m, the number of records in T that are superset of I is greater than or equal
to k, i.e., s(I,T )≥ k.

Given a dataset T , applying km-disassociation3 on T produces a dataset T ∗ com-
posed of q clusters, each divided into a set of record chunks and an item chunk,

T ∗ =
{
{R1C1

, . . . ,R1Ct
,R1Y }, . . . ,{RqC1

, . . . ,RqCv
,RqT }

}
such that ∀RiCj

∈ T ∗, RiC j
is k-anonymous, where,

– RiC j
represents the itemsets of the ith cluster that are contained in its jth

record chunk.
– RiT is the item chunk of the ith cluster containing items that occur less than

k times.
The example in Figure 1(b) shows that the 22-disassociated dataset contains only
one cluster with two 22-anonymous record chunks. We thus have T ∗= {RC1 ,RC2}
with RC1 = {{a},{a,b,c,d},{a,b,c,d},{a,b,c,d},{a,b,c,d},{a,b}}, and RC2 =
{{e},{e}}.
According to (TMLS12) and by construction, km-disassociation guarantees all
the produced record chunks are km-anonymous. This can be better explained in
this example as: any combination of two items (m = 2) from Figure 1(a), for
example {a,b}, is found at least in two records (k = 2) in the record chunk, thus
satisfying km−anonymity in Figure 1(b).
However, to ensure the privacy of a disassociated dataset, km-anonymity has to
be guaranteed in one of the valid reconstructed datasets of T ∗ since an attacker
can produce all of them, provided he/she knows T ∗, k, and m (TMLS12). This
privacy guarantee is formally expressed as follows:

Definition 2 (Disassociation Guarantee). Let G be the inverse transformation
of T ∗ with respect to a km disassociation, i.e., the set of all possible datasets
whose km disassociation would yield T ∗. Disassociation guarantee is established
if for any I ⊆D such that |I| ≤m, there exists T .© ∈ G(T ∗) with s(I,T .©)≥ k.

The Disassociation Guarantee ensures that for any individual with a complete
record r, and for an attacker who knows up to m items of r, at least one of the
datasets reconstructed by the inverse transformation contains the record r k times
or more. That is, the record r, as all other records, exists k times in at least one of
the inverse transformations.
The authors in (BaBNG16) demonstrate that this disassociation guarantee is not
enough to ensure privacy. They show that whenever a disassociated dataset is
subject to cover problem, a privacy breach might be encountered. In the following
section, we briefly present the cover problem.

3 In what follows, we use km-disassociation to denote a dataset that is disassociated and satisfies
km-anonymity.



3.3 Cover Problem

Let us recall, from Subsection 3.2 that the disassociation technique hides itemsets
that occur less than k times in the original dataset for a given m items, by 1)
dividing them into km-anonymous sub-records in record chunks and 2) ensuring
that all the records reconstructed by the inverse transformation are km-anonymous
in at least one of the resulting datasets.
A cover problem is defined by the ability to associate one-to-one or one-to-many
items in two distinct record chunks, from the same cluster, in the disassociated
data. Without loss of generality, we focus on one cluster R = {RC1 , . . . ,RCt ,RT }
of T ∗ resulting from a km-disassociation. Formally, the cover problem is defined
as follows.

Definition 3 (Cover Problem). Let I j be the set of items in RC j , I j = {x ∈ RC j}.
If there exists an item z ∈ I j such that the support of I j is equal to the support of
the singleton {z} in RC j , i.e.,

s(I j,RC j ) = s({z},RC j ), (2)

the cluster R, and the dataset T ∗ as a consequence, are subject to a cover prob-
lem.

∀ z ∈ I j, if z satisfies equation (2), z is denoted as covered item. The set of all the
covered items is denoted as L j, which is contained in I j. ∀x ∈ I j, such that x /∈ L j,
x is not a covered item, then x is denoted as a covering item. Obviously, the set of
covering items is I j \L j. For instance, in Figure 1(b), I1 = {a,b,c,d}. The support
of the itemset I1 in RC1 , which is s(I1,RC1), is equal to 4. In turn, it is equal to the
minimum support of the items in I1, which, in our example, is s({c},RC1) = 4.
Therefore, we say that the item c is covered by the items a and b. Similarly, the
item d is also covered by the items a and b.
Intuitively, a privacy breach occurs if an attacker is able to link m items from
his/her background knowledge, to less than k records in all the datasets recon-
structed by the inverse transformation. More subtle is when these records contain
the same set of items in all the reconstructed datasets, thus linking more than
m items to the individual, or worse leading to a complete de-anonymization by
linking, with certainty, the complete set of items to the individual.
We will show in the following that this privacy breach might occur whenever the
dataset is subject to a cover problem. Formally speaking:

Lemma 1. Let T ∗ be a km-disassociated dataset subject to a cover problem. The
disassociation guarantee is thus not valid for m≥ 2.

Proof. Let T ∗ be a km-disassociated dataset subject to a cover problem. The fol-
lowing set I j = {x|x∈RC j} is thus not empty and there exists a covered item z∈ I j
such that s(I j,RC j ) = s({z},RC j ). This means that each record r of RC j that con-
tains z includes also I j. Suppose now that the attacker’s background knowledge
is the set {z,y} where y is an item in another record chunk RCl .
By contradiction, suppose that the disassociation guarantee is valid, i.e., z and y
are associated together in k records in at least one of the datasets T .©, recon-
structed by the inverse transformation of T ∗. Since z is a covered item, it appears
in each record r defined above. The item y will also be associated k times with all
the items in I j.



While this is correct from a privacy perspective, it cannot be considered for dis-
association. Items, y, z and any covering item x ∈ I j are indeed considered as
km-anonymous, and, therefore, should have been allot to the same record chunk
RC j according to disassociation4, whereas z and y are respectively items of chunks
RC j and RCl by hypothesis.

4 Safe Disassociation

In this section, we show that a safe disassociation can be achieved, to ensure that
a released/published dataset is no longer subject to a cover problem. This privacy
guarantee is formally defined as follows:

Definition 4 (Safe Disassociation). Let G be the inverse transformation of T ∗
with respect to a km-disassociation, whose set of items is D . The dataset T ∗ is
safely disassociated if ∀I ⊆D such that |I| ≤ m, there exists
T .© ∈ G(T ∗) with s(I,T .©)≥ k and T .© is not subject to a cover problem.

Safe disassociation ensures that at least a dataset T .© reconstructed by the in-
verse transformation of T ∗:

– contains k records for an itemset of size m or less, abiding to the km-anonymity
privacy constraint, and

– the dataset T .© has no covered items.
In the following, we show how this safe disassociation can be achieved by apply-
ing a partial suppression on a disassociated dataset.

4.1 Achieving safe disassociation with partial suppression

In previous works dedicated to privacy preservation (JPX+14), partial suppres-
sion is used to ensure that no sensitive rules can be inferred with a confidence
greater than a certain threshold. Here, we assume that partial suppression can
achieve disassociation safely regardless the sensitivity of the data; all items are
considered with the same level of sensitivity. Moreover, using partial suppression,
we minimize the information loss with respect to our privacy guarantee. Unlike
global suppression that removes the items in question from all the records, partial
suppression remains more efficient in terms of utility.

Partial Suppression. Applying the following rules until the hypothesis is estab-
lished produces a safely disassociated dataset.

– Hypothesis: Let I, as defined in Definition 3, be the itemset of the record
chunk RC j that suffers from a cover problem.

– Preconditions: Let card = d |I|
2
e be the count of records that are going to be

partially suppressed from RC j , and let δ be the maximum number of records
allowed in the cluster. Partial suppression is applicable over RC j when:

|RC j | ≤ δ−2 (3)

s(I,RC j ) ≥ k+min(card,m) (4)
4 Vertical partitioning creates km-anonymous record chunks.



– Rules:
1. Create a random partition I1 ∪ I2....∪ Icard of I where each set I j is

composed of two items, but Icard, which is a singleton if the cardinality
of I is odd.

2. Create two empty sets L1 and L2, known as the ghost records.
3. For each Ii ∈ I, successively:

(a) suppress Ii from a record ri ∈ RC such that ri = I and
(b) add the items x1 and x2 from Ii to respectively L1 and L2:

L1 = L1∪{x1} and L2 = L2∪{x2}
4. Add the two ghost records L1 and L2 to RC j

By definition, a cover problem is the ability to link one-to-one or one-to-many
items in two record chunks. This arises when there exists x∈ I j such that s(I j,RC j )=
s({x},RC j ). The aim of partial suppression is to suppress items in such a way
as to ensure that s(I j,RC j ) remains different than s({x},RC j ), thus s(I j,RC j ) 6=
s({x},RC j ).

4.1.1 Discussion on preconditions Preconditions (3) and (4) play an im-
portant role in ensuring that the safe disassociation is preserved throughout the
process of partial suppression.
Precondition (3) is defined to keep the size of the clusters bounded by the max-

imum cluster size δ. In fact, in the horizontal partitioning, no additional
records are added to the cluster if the maximum cluster size is reached. As a
consequence, the record chunks created from the vertical partitioning have a
cardinality less or equal to δ. Hence, to add the two ghost records L1 and L2
to a record chunk, its cardinality must be less than δ−2.

Precondition (4) is defined to preserve the km-anonymity constraint in the record
chunk. Partial suppression modifies card occurrences of I, and, therefore,
leaves s(I,RC j )− card unmodified. Thus, we have:

s(I,R′C j
) = s(I,RC j )− card

≥ k+min(m,card)− card (5)

Let X = {x1,x2, ...xm} be a subset of I, X ⊂ I. There are two cases to con-
sider, depending on whether m is greater than card or not.

– if card ≤ m: s(I,R′C j
) is greater than k according to inequality (5). We

have s(X ,R′C j
) ≥ s(I,R′C j

) ≥ k. This means that km-anonymity is satis-
fied.

– if m < card: s(I,RC j )− card records are kept unchanged by the partial
suppression. After applying step 3a in partial suppression, we notice
that s(X ,R′C j

)≥ card−m. This is because the smallest value, card−m,
is obtained when each item in X belongs to a distinct pair I j . In this
situation, m records do not associate items x1, x2,. . . ,xm together. As a
result, the following applies according to hypothesis (4).

s(X ,R′C j
) ≥ s(I,RC j )− card+ card−m

≥ s(I,RC j )−m

≥ k+min(card,m)−m

≥ k



Lemma 2. Given a record chunk RC j , we say that partial suppression achieves
safe disassociation on RC j if preconditions (3) and (4) are verified.

Proof. Let R′C j
be the result of applying the partial suppression rules on the record

chunk RC j . The itemset I is randomly partitioned in card (where card = d |I|
2
e)

disjoint subsets of cardinality equal to 2, and possibly one singleton if |I| is odd.
Those subsets are used successively to perform partial suppression. Since the
preconditions are verified, it is straightforward to prove that due to the rules of
partial suppression, the support of any item in RC j remains the same. ∀x ∈ I, x
is suppressed from a record ri = I and then added randomly to one of the ghost
records L1 or L2, therefore:

s({x},R′C j
) = s({x},RC j ). (6)

However, what has been partially suppressed is the association between any two
items x and y in I. Two case scenarios can arise:

– items x and y belong to the same subset Ii of I. Thus, x and y are suppressed
once from the same record ri, and added to L1 and L2 respectively. This
ensures that they cannot be associated again in the ghost records:

s({x,y},R′C j
) = s({x,y},RC j )−1 = s({x},R′C j

)−1 = s({y},R′C j
)−1

– items x and y belong to two different subsets of I, Ii and I j respectively.
The association between x and y is lost twice since these items were sup-
pressed from two distinct records in RC j , then: s({x,y},R′C j

) is equal to
s({x,y},RC)− 2 (resp. to s({x,y},RC)− 1) if x and y are added to the dif-
ferent ghost records L1 and L2 (resp. if x and y are added to the same ghost
records).

In both cases, we have:

s({x,y},R′C j
) < s({x},R′C j

)

< s({y},R′C j
)

Due to the inequality S(I,R′C j
) ≤ s({x,y},R′C j

) and ∀x,y in I we have s(I,R′C) <
s({x},R′C), which concludes the proof.

To illustrate how a cover problem can be eliminated through partial suppression,
let us consider the example in Figure 2(a). Both items c and d are covered items in
the disassociated dataset T ∗. After applying partial suppression, in Figure 2(a),
two subsets I1 = {a,b} and I2 = {c,d} are created after randomly partitioning
I = {a,b,c,d}. From I1 and I2, two ghost records are created L1 = {a,d} and
L2 = {b,c}, containing one of the items from each suppressed subsets. Next,
these two ghost records are added to RC1 . We illustrate, in Figure 2(b), all pos-
sible reconstructed datasets of the final disassociated dataset. Now, if an attacker
knows that a specific individual has searched for items {d,e} (considered as the
attacker’s background knowledge), he/she will be able to associate them with
three possible records {c,d,e}, {a,d,e} and {a,b,c,d,e}. While these extra as-
sociations are considered noise, for the sake of privacy, they added ambiguity to
the result since the attacker cannot link {d,e} to a particular record. In the next
section, we will study and evaluate the impact of partial suppression on the utility
of the dataset.
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Fig. 2. Eliminating a cover problem with partial suppression

5 Experimental Evaluation

In keeping with the previous work (BaBNG16), we elaborate our experiments on
two datasets, the BMS1 and the BMS2, which contain click-stream E-commerce
data. Table 2 shows the properties of the datasets.
The aim of the experiments can be summarized as follows:

– Evaluating the privacy breach in the disassociated dataset.
– Evaluating the utility loss w.r.t the suppression of items (or their occur-

rences).
– Studing the loss in associations when disassociating and safely disassociat-

ing a dataset.
– Evaluating the performance of partial suppression.

5.1 Privacy and utility metrics

5.1.1 Privacy Evaluation Metric (PEM) represents the number of vul-
nerable record chunks in a disassociated dataset. In fact, we consider that every



Table 2. Datasets properties

Dataset # of distinct individuals # of distinct items count of items’ occurrences
BMS1 59602 497 149639
BMS2 77512 3340 358278

record chunk that is subject to a cover problem is a vulnerable record chunk. We
formally define our PEM as:

PEM = vRC
RC

where,
– vRC represents the number of vulnerable record chunks in T , the disassoci-

ated dataset, and
– RC represents the total number of record chunks in T .

5.1.2 Relative Loss Metric (RLM) determines the relative number of sup-
pressed occurrences of items with partial suppression. Formally,

RLM =
∑∀x∈D(s({x},T ∗)− s({x},T ′))

∑∀x∈D(s({x},T ∗))

where,
– s({x},T ∗) represents the support of the item x in the disassociated dataset

T ∗, and
– s({x},T ′) represents the support of the item x in the safely disassociated

dataset T ′.

5.1.3 Relative Association Error (RAE) evaluates how likely two items
remain associated together in an anonymized dataset (TMLS12). In fact, using
RAE, we are able to evaluate the information loss due to the anonymization of
the dataset (whether it is disassociated or safely disassociated). Formally, RAE is
defined as follows:

RAE =
s({x,y},T )− s({x,y}, [T ∗|T ′])

AV G(s({x,y},T ),s({x,y}, [T ∗|T ′]))
where,

– s({x,y},T ) represents the support of items {x,y} in the original dataset T ,
the disassociated dataset T ∗, or the safely disassociated dataset T ′.

5.2 Experimental results

In this section, we present the results of the conducted experiments, evaluating
privacy and data utility over the safely disassociated dataset.



5.2.1 Evaluating the privacy breach We consider that a privacy breach
occurs if an attacker is able to link m items, which he/she already knows about an
individual, to less than k records in all the datasets reconstructed by the inverse
transformation. In this test, we study the impact of the cover problem on the pri-
vacy of the disassociated dataset. In fact, we consider that a potential privacy
breach exists whenever a cover problem is identified in a record chunk regard-
less of the background knowledge of the attacker. It is typically a strong attacker
(BaBNG16) who is able to link any two items to a specific individual. Hence, we
determine the following:

– the relationship between the PEM and both, k and m.
– the relationship between the PEM and the maximum cluster size δ.

Varying k and m: we vary k and m from 2 to 6. For each value, we compute the
PEM to evaluate how the privacy constraint remains satisfied in the record
chunks. Figure 3 shows the results of the evaluation. When k increases in
both datasets BMS1 and BMS2, the PEM decreases from 46% to 30% in
BMS1 and from 56% to 39% in BMS2. While varying k affects the PEM,
varying m has no noticeable impact on the PEM in both datasets. This is
not surprising since, due to the cover problem, any two items known to the
attacker can lead to a privacy breach.
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Fig. 3. Evaluating the PEM while varying k and m

Varying δ: we vary δ from 10 to 60. For each value, we compute the PEM to
evaluate how the privacy constraint remains satisfied in the record chunks.
The results in Figure 4 show that the PEM increases from 17% to 52% in
BMS1 and from 26% to 57% in BMS2. This means that with more records in
the cluster, the higher the chances are to compromise the dataset due to the
cover problem.
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Now, given that the privacy breach is directly related to the value of δ, we choose
to vary δ and fix the values of k and m in the remaining tests. We use k = 3 to keep
computational time to a minimum and m = 2 since only two items are sufficient
to raise a privacy breach.

5.2.2 Evaluating the number of suppressed items In this test, we eval-
uate the number of items to be suppressed to safely disassociate a dataset. We
note that the record chunks that do not comply with preconditions (3) and (4)
in partial suppression, for the sake of privacy, their items are completely sup-
pressed. We use the RLM to estimate this loss of items. We vary the maximum
cluster size δ from 10 to 60 and compute, for each value, the RLM. Figure 5 shows
the results of our evaluation. It is not surprising that BMS2 is more susceptible
to partial suppression since it is more vulnerable to the cover problem due to its
size, as noted in the previous test (Figure 4). In addition, in both datasets, when
the maximum cluster size δ increases, we notice an increase in the RLM. This is
actually consistent with the fact that the more vulnerable the record chunks are,
the more items will be suppressed. Overall, the 20% suppressions of items repre-
sent an acceptable trade-off between privacy and utility, especially that, with safe
disassociation, we release real datasets without modifying the items.
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5.2.3 Evaluating the association error In this test, we evaluate the error
in associations, which is the result of dividing the records into chunks after the



partitioning process. Eventually, some of the itemsets will be separated and their
items will be stored into different chunks. This adds noise to the dataset since the
support of associations between these separated items might be higher in the re-
constructed datasets. This leads to this error in associations that can be calculated
using the RAE, which is the relative difference between the support of the asso-
ciation of an itemset in the original dataset and the anonymized dataset (XT06).
Again, we vary the maximum cluster size δ from 10 to 60 and compute, for each
value, the RAE on disassociated and safely disassociated datasets. The results in
Figure 6 shows that the RAE is higher in a safely disassociated dataset. It is not
surprising because, with safe disassociation, we suppress some items to prevent
the privacy breach. However, the difference between RAE in safe disassociation
and disassociation remains acceptable; varying between 1% for BMS1 and 0.1%
for BMS2.
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5.2.4 Performance evaluation We compare the performance of our algo-
rithm with different dataset size. The datasets used in this experiment are formed
from BMS1 and BMS2. We vary, in the x− axis, the number of records with
{358k, 149K, 100K, 80K, 50k, 30k 10k}; and the maximum cluster size δ is
fixed to 30. Figure 7 shows an increase in the run time with the increase of the
dataset size.

6 Conclusion

Disassociation is an interesting anonymization technique that is able to hide the
link between individuals and their complete set of items while keeping the items
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without generalization. In a previous work (BaBNG16), disassociation was con-
sidered vulnerable due to a cover problem. Basically, it is the ability to associate
one-to-one or one-to-many items in two subsequent record chunks of the disas-
sociated data. In this paper, we propose safe disassociation to solve this problem.
We use partial suppression to achieve safe disassociation by suppressing some
of the items that lead to a cover problem from subsequent record chunks. In the
experiments, we show that the vulnerability of a disassociated dataset depends
on the size of the cluster. We evaluate the utility of a safely disassociated dataset
in terms of 1) the number of items to be suppressed to achieve safe disassocia-
tion, and 2) the additional noisy associations added due to item suppression and
partitioning. The results of our evaluations showed that an acceptable trade-off
between privacy and utility is met.
In future works, we aim at maximizing the utility of a safely disassociated dataset
by modifying the clustering algorithm to keep user-defined itemsets associated
together.
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cial thanks to Ms. Sara Barakat for her contribution in identifying the cover prob-
lem.

5 www.inmobiles.net

www.inmobiles.net


Bibliography

Sara Barakat, Bechara al Bouna, Mohamed Nassar, and Christophe Guyeux. On
the evaluation of the privacy breach in disassociated set-valued datasets.
In Christian Callegari, Marten van Sinderen, Panagiotis G. Sarigiannidis,
Pierangela Samarati, Enrique Cabello, Pascal Lorenz, and Mohammad S.
Obaidat, editors, Proceedings of the 13th International Joint Conference on
e-Business and Telecommunications (ICETE 2016) - Volume 4: SECRYPT,
Lisbon, Portugal, July 26-28, 2016., pages 318–326. SciTePress, 2016.

Michael Bewong, Jixue Liu, Lin Liu, and Jiuyong Li. Utility aware clustering for
publishing transactional data. In Jinho Kim, Kyuseok Shim, Longbing Cao,
Jae-Gil Lee, Xuemin Lin, and Yang-Sae Moon, editors, Advances in Knowl-
edge Discovery and Data Mining, pages 481–494, Cham, 2017. Springer
International Publishing.

Joachim Biskup, Marcel PreuB, and Lena Wiese. On the inference-proofness of
database fragmentation satisfying confidentiality constraints. In Proceed-
ings of the 14th Information Security Conference, Xian, China, oct 26-29
2011.

Michael Barbaro and Tom Zeller. A face is exposed for aol searcher no. 4417749,
2006.

Chen, Liuhua, Shenghai Zhong, Li-E. Wang, and Xianxian Li. A sensitivity-
adaptive ρ-uncertainty model for set-valued data. In International Con-
ference on Financial Cryptography and Data Security, Berlin, Heidelberg,
2016., pages 460–473. Springer, 2016.

Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara Foresti, Sushil Jajodia,
Stefano Paraboschi, and Pierangela Samarati. Combining fragmentation
and encryption to protect privacy in data storage. ACM Trans. Inf. Syst.
Secur., 13:22:1–22:33, July 2010.

Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Giovanni Livraga,
Stefano Paraboschi, and Pierangela Samarati. Extending loose associations
to multiple fragments. In Proceedings of the 27th International Conference
on Data and Applications Security and Privacy XXVII, DBSec’13, pages
1–16, Berlin, Heidelberg, 2013. Springer-Verlag.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. In Proceedings of the Third
Conference on Theory of Cryptography, TCC’06, pages 265–284, Berlin,
Heidelberg, 2006. Springer-Verlag.

Amin Milani Fard and Ke Wang. An effective clustering approach to web query
log anonymization. In Security and Cryptography (SECRYPT), Proceedings
of the 2010 International Conference on, pages 1–11. IEEE, 2010.

Yeye He and Jeffrey F. Naughton. Anonymization of set-valued data via top-
down, local generalization. Proc. VLDB Endow., 2(1):934–945, August
2009.

Xiao Jia, Chao Pan, Xinhui Xu, KennyQ. Zhu, and Eric Lo. ρ-uncertainty
anonymization by partial suppression. In SouravS. Bhowmick, CurtisE.
Dyreson, ChristianS. Jensen, MongLi Lee, Agus Muliantara, and Bernhard
Thalheim, editors, Database Systems for Advanced Applications, volume



8422 of Lecture Notes in Computer Science, pages 188–202. Springer In-
ternational Publishing, 2014.

Grigorios Loukides, John Liagouris, Aris Gkoulalas-Divanis, and Manolis Ter-
rovitis. Utility-constrained electronic health record data publishing through
generalization and disassociation. In Aris Gkoulalas-Divanis and Grigo-
rios Loukides, editors, Medical Data Privacy Handbook, pages 149–177.
Springer International Publishing, 2015.

Grigorios Loukides, John Liagouris, Aris Gkoulalas-Divanis, and Manolis Ter-
rovitis. Disassociation for electronic health record privacy. Journal of
Biomedical Informatics, 50:46–61, 2014.

Tiancheng Li, Ninghui Li, Jian Zhang, and Ian Molloy. Slicing: A new approach
for privacy preserving data publishing. IEEE Trans. Knowl. Data Eng.,
24(3):561–574, 2012.

Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrish-
nan Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. In Pro-
ceedings of the 22nd IEEE International Conference on Data Engineering
(ICDE 2006), Atlanta Georgia, April 2006.

Pierangela Samarati. Protecting respondents’ identities in microdata release.
IEEE Trans. Knowl. Data Eng., 13(6):1010–1027, 2001.

Latanya Sweeney. k-anonymity: a model for protecting privacy. Interna-
tional Journal on Uncertainty, Fuzziness and Knowledge-based Systems,
10(5):557–570, 2002.

Manolis Terrovitis, Nikos Mamoulis, and Panos Kalnis. Privacy-preserving
anonymization of set-valued data. PVLDB, 1(1):115–125, 2008.

Manolis Terrovitis, Nikos Mamoulis, John Liagouris, and Spiros Skiadopoulos.
Privacy preservation by disassociation. Proc. VLDB Endow., 5(10):944–
955, June 2012.

J. Wang, C. Deng, and X. Li. Two privacy-preserving approaches for publishing
transactional data streams. IEEE Access, pages 1–1, 2018.

Ke Wang, Peng Wang, Ada Waichee Fu, and Raymond Chi-Wing Wong. Gener-
alized bucketization scheme for flexible privacy settings. Information Sci-
ences, 348:377 – 393, 2016.

Xiaokui Xiao and Yufei Tao. Anatomy: Simple and effective privacy preserva-
tion. In Proceedings of 32nd International Conference on Very Large Data
Bases (VLDB 2006), Seoul, Korea, September 12-15 2006.

Zhang, Hongli, Zhigang Zhou, Lin Ye, and D. U. Xiaojiang. Towards privacy
preserving publishing of set-valued data on hybrid cloud. In IEEE Transac-
tions on Cloud Computing, 2015.

View publication statsView publication stats

https://www.researchgate.net/publication/333986457

	Safe Disassociation of Set-Valued Datasets

