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Abstract

A number of constitutive models have been developed for solid polymers to de-
scribe the large deformation behavior. However, most of the existing models
rely on a purely elastic or hyperelastic initial response when they are incapable
of accurately predicting the cyclic stress-strain hysteresis loops. In this work,
therefore, a compact cyclic viscoelastic-viscoplastic constitutive model is pro-
posed to improve the prediction of the loops below the peak yield stress. The
proposed approach is based on the distinguished model by Haward and Thack-
ray (1968) for glassy polymers, which is augmented by a few thermodynamically
motivated internal state variables able to predict the missing viscous deforma-
tion behavior, including the nonlinear cyclic hardening in three dimensions.
Based on the comprehensive uniaxial tension experiments, it is demonstrated
that this compact formulation, along with a calibration scheme, enables accu-
rate prediction of the shape of the hysteresis loops, as well as the representation
of ratcheting behavior. A comparison is also made with state-of-the-art models
that are capable of predicting the cyclic stress-strain hysteresis loops.

Keywords: Cyclic plasticity, Thermodynamics, Implementation,
Experimentation, Ratcheting

1. Introduction

Examples of engineering components that are manufactured from polymers
and are subjected to cyclic loadings are from fields such as automotive and
aerospace systems, marine structures, healthcare instruments, and sporting
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goods. The components may also be coated by polymers. Concurrently, fail-
ures of components due to damage under cyclic long-term loadings have been
assessed to be the most significant cause of huge financial losses, Ritchie (1999);
Beesley et al. (2017). Despite the importance of polymer components, their
cyclic deformation behavior is still under-researched, and much effort is needed
to improve their cyclic deformation properties and to develop capable tools for
their failure assessment. Considering solid or glassy polymers, the distinguished
and recent models are mainly focused on large strain plasticity (group 1),
Boyce et al. (1989); Wu and Van der Giessen (1993); Anand and Gurtin (2003);
Anand and Ames (2006); Bouvard et al. (2010); Gudimetla and Doghri (2017),
or serve a micro-mechanically motivated damage evolution (group 2), Tomita and Uchida
(2003); Engqvist et al. (2016); Deng et al. (2017); Jiang et al. (2017); Talamini et al.
(2018), or are applied in the research of crack-controlled failure (group 3),
Ritchie (1999); James et al. (2013); Ravi Chandran (2016); Awaja et al. (2016);
Hughes et al. (2017); Talamini et al. (2018); George et al. (2018). Models in
group 2 consider damage processes that emerge in micro-level failures, such
as polymer chain breakage and propagation of microscopic flaws termed micro-
voids and -cracks, Tomita and Uchida (2003); Jiang et al. (2017); Talamini et al.
(2018). The research in group 3 is focused on the coalescence of said mi-
croflaws when macroscopic cracks may originate and affect the final rupture,
James et al. (2013); Ravi Chandran (2016); Awaja et al. (2016); Hughes et al.
(2017); Talamini et al. (2018). Most models in group 3 have been implemented
to detect crack growth in tiny zones and have not been applied at component
level, James et al. (2013); Awaja et al. (2016); Hughes et al. (2017). Only the
models proposed in James et al. (2013); Ravi Chandran (2016) are being stud-
ied under cyclic loadings, although they are based solely on fatigue life (Wöhler
curve). However, owing to the purely elastic or hyperelastic initial response
produced by most existing models in groups 1 - 3, and by parallel rheological
network models in Bengström (2015), the cyclic stress-strain hysteresis loops
cannot be well predicted, especially when the stress levels remain below the
peak yield stress.

A recent research that is focused on the ratcheting and fatigue behaviors
under cyclic loading processes (group 4) can be found from Krairi and Doghri
(2014); Jiang et al. (2015); Beesley et al. (2017); Kang and Kan (2017); Shojaei and Volgers
(2018); Holopainen and Barriere (2018); Qi et al. (2019), i.e. work on the cyclic
deformation behavior of amorphous polymers is very limited. Beesley et al.
(2017) introduces an elastic-plastic model to simulate the low-cycle fatigue of
notched specimens made of a nickel based alloy. A hyperelastic-viscoplastic
model in Shojaei and Volgers (2018) and a parallel rheological network model
(elastic-viscoplastic) in Qi et al. (2019) provide capable tools for the investi-
gation of both low and high cycle regimes of a highly-crystalline and semi-
crystalline polymers, respectively. Considering glassy polymers, however, both
the viscoelastic and plastic elements are needed to accurately predict long-term
creep/recovery and thereby the cyclic deformation behavior (ratcheting and
shape/area of the loops), Anand and Ames (2006); Krairi and Doghri (2014);
Jiang et al. (2015).
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Figure 1: Representation of the three dimensional version of the Haward and Thackray
(1968)-model (according to Boyce et al. (1989)), the proposed model, and the
Anand and Ames (2006)-model. The models are governed by the following elements:
a) an elastic spring, b) a nonlinear system (from a single dashpot to Kelvin-Voigt-like
elements, i = 0, 1, ..., N), and c) a nonlinear spring.

This paper studies the modeling of the mechanically motivated cyclic long-
term deformation behavior without a remarkable temperature rise and which
behavior occurs at relatively small stress frequencies; practically, the stress lev-
els under such conditions remain below the peak yield stress. The paper aims at
developing a model capable of predicting more accurately, the shape of the hys-
teresis loops and amount of energy-dissipation under cyclic loading processes.
Another important objective is an exact prediction of the ratcheting behavior in-
cluding cyclic hardening. Furthermore, the model is suitable for the simulation
of very large deformations, i.e. it is based on the decomposition of the deforma-
tion gradient into viscoelastic-plastic and purely elastic parts, cf. Boyce et al.
(1989); Anand and Gurtin (2003). The formulation of the model follows both
the micro-mechanics (anisotropic hardening, Boyce et al. (1989), and yielding
including free volume, Anand and Ames (2006)), and internal state variable
methodologies (viscoelasticity, Anand and Ames (2006)), and stems from the
rheological (spring-dashpot) representations displayed in Fig. 1.

In detail, the proposed approach relies on the pioneering model of Haward and Thackray
(1968) for glassy polymers (based on Eyring’s theory) that is augmented by a
single set of internal variables able to predict the missing viscous deformation
behavior (area/shape of the hysteresis loops) and the nonlinear cyclic hardening
(ratcheting behavior) in three dimensions. Against the state-of-the-art models of
Anand and Gurtin (2003); Anand and Ames (2006); Jiang et al. (2015) that can
also predict the cyclic deformation behavior well, the elastic portion of the de-
formation is described by a single element a) clearly separated from viscoelastic-
plastic elements in accordance with the classical Haward and Thackray (1968)
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-model. As a result, the nonlinear Langevin spring c) applied in the model to
describe the anisotropic hardening of amorphous network structures is mod-
eled solely using the viscous deformation (as originally proposed in Boyce et al.
(1989) for three dimension). Moreover, the specified stress (τA in Fig. 1) de-
fines the stress in each micromechanism. Compared with state-of-the-art mod-
els, Anand and Ames (2006); Jiang et al. (2015), the proposed model requires
a reduced set of internal state variables and material parameters to be defined.
The model predictions are evaluated by comparison with the experiments for
uniaxial tension under different stress ratios, as well as with the consistent state-
of-the-art models’ predictions, Boyce et al. (1989); Anand and Ames (2006);
Jiang et al. (2015).

This paper is arranged as follows: Kinematics and a thermodynamically con-
sistent constitutive model are introduced subsequently. Section 3 starts with the
description of the applied tests, and the calibration procedure for the material
parameters is given in Section 3.2. Then, the effectiveness of the approach
under creep/recovery and different cyclic loadings for the technologically imper-
ative polymer is discussed in Section 4. Finally, the important conclusions and
hotspots for future research are presented.

2. The approach

2.1. Deformation kinematics

At time t ∈ R
+, deformation of a body P is determined by the map y : X 7→

x in which X ∈ B and x ∈ b denote the material points determined in the
undeformed reference and deformed current placements B and b, respectively1.
The motion of b is then given by the map x = y(X, t) and a deformation
gradient F := ∇y, in which J := det(F ) > 0 is the Jacobian and the operator
∇ denotes the gradient with respect to the point X.

The proposed model is founded on the Kröner-Lee decomposition, i.e. the
decomposition

F = F eF vep, (1)

where F e and F vep determine the local deformations for the intermediate place-
ment N̄ resulting from elastic and viscoelastic-viscoplastic mechanisms. Whereas
the elastic part represents the reversible elastic mechanisms of the chain net-
work, the viscoelastic-plastic part denotes the partially reversible mechanisms
of molecular chains, Anand and Gurtin (2003). The viscoelastic-plastic part
manifests as long-term creep strain and stress relaxation, due to the inertia of
the microstructure to reach its equilibrium. Purely viscoelastic effect appears
as recovery of strain after a stress removal, whereas the plastic effect is due to
irreversible, dissipative mechanisms, such as chain breakage and the slippage of
chain entanglements, Bouvard et al. (2010).

1The term placement means a certain configuration of a continuum body P, i.e. the place-
ment is given by S = k(P) under the configuration k : P → S, cf. (Zienkiewicz et al., 2014,
p. 449). Examples are the reference and current placements, B and b.

4



The intermediate placement N̄ , discussed above, is merely locally deter-
mined: F e and F vep respectively, being not real deformation gradients. How-
ever, det(F e) > 0 and det(F vep) > 0 hold, i.e. their inverses exist. Because F e

and F vep particularize the elastic and viscoelastic-plastic deformations, respec-
tively, they are regarded as uncoupled, and N̄ is stress-free.

Applying the polar decomposition,

F e = veRe, (2)

where ve is the symmetric stretch tensor and Re is the rotation associated with
the elastic deformation2.

The viscoelastic-viscoplastic deformation is defined by a symmetric stretch
tensor (in the intermediate placement)

C̄vep := F vepF vep,T. (3)

In (3), the transpose of tensor is symbolized by the letter T. To represent purely
elastic deformation, symmetric stretch tensor

be := F eF e,T =: (ve)2 (4)

given in the spatial placement is also defined. Moreover, the symmetric stretch-
like tensors

C̄vp, C̄ve (5)

are introduced. These tensors are given in the intermediate placement N̄ charac-
terizing the internal state and its change due to the viscoplastic and viscoelastic
deformations, elements (1) and (2) in Fig. 1. They can be viewed as the linear
transformations that map vectors in the relaxed space.

2.2. Rate kinematics

To model the motion of a solid body, the tensorial velocity gradient

l := grad(v) = Ḟ F−1, (6)

in which v is a velocity field, is defined; grad is the gradient with respect to a
deformed point x defined above, and the marker dot means the time derivative.
The decomposition (1) in (6) yields

l = le + lvep (7)

where

le := Ḟ eF e−1, lvep := φ∗(L̄
vep), L̄vep := Ḟ vepF vep−1. (8)

2Owing to path dependency of the viscoplastic deformation, observation of stretching and
rotations is challenging and thus, the polar decomposition of F vep is not used.
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The operator φ∗ in (8) denotes the push-forward operation of the quantity in the
parentheses by using F e, cf. (Belytschko et al., 2000, Box 5.16). The specific
form of φ∗ will be defined in Section 2.3.

Using (3) and (8)(right), the rate of C̄vep becomes

˙̄Cvep =
˙

F vepF vep,T = Ḟ vepF vep,T + F vepḞ vep,T = L̄vepC̄vep + C̄vepL̄vep,T.
(9)

Based on (9), (4) in (8) results in

ḃe = lebe + bele,T. (10)

The complements (symmetric, sym, and skew-symmetric, skew) are given
by:

d := sym(l), de := sym(le), dvep := sym(lvep), D̄vep := sym(L̄vep)
(11)

and

ω := skew(l), ωe := skew(le), ωvep := skew(lvep), W̄ vep := skew(L̄vep),
(12)

respectively. It then follows from (7) as follows:

l := d+ ω = de + dvep + ωe + ωvep (13)

where d := de + dvep and ω := ωe + ωvep.
As a departure from the previous formulations for polymers, cf. e.g. (Anand and Ames,

2006, eq. (19) with the presumption that the spins vanish therein), it is further
defined that

lvep := lvp + lve, lvp := dvp + ωvp, lve := dve + ωve. (14)

2.3. Thermodynamics of the model

Thermodynamic treatment as introduced in Anand and Gurtin (2003); Holopainen and Barriere
(2018) is used here to describe the dissipative, irreversible and prolonged effects
governing the plastic and viscoelastic deformations, respectively. The basis of
the theory is the virtual power comprising of two prerequisites:

[1 ] Power balance: the external and internal virtual powers are equal, i.e.
Wext(A,V) = Wint(A,V) within a part of the body A(t) ⊆ b(t) for all
virtual velocities V;

[2 ] Invariancy under all changes in frame: the internal power Wint(A,V)
must be frame-indifferent.

In order to treat the force and moment balances (symmetry of stress), which
are the consequences of an expenditure of the external virtual power, we refer
to previous works, see e.g. Anand and Ames (2006); Holopainen and Barriere
(2018).
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Frame-indifference

A theory is required to be invariant under changes in a frame of the space
(Euclidean), that considers time-dependent transformations as follows:

y(X, t) → q(t) +Q(t)(y(X, t) −O) (15)

in which O is a fixed origin, q(t) a vector, and Q(t) is an orthogonal rotation
tensor defined at time t for which Q−1 = QT holds.

Considering the reference placement to be invariant, whereas the current
and intermediate placements depend on the choice of changes in frame,

F → QF , F vep → Q̄F vep F e → QF eQ̄T (16)

where Q and Q̄ represent the rotations of the current and intermediate place-
ments. Then, the deformation measures in (3) and (4) are transformed by:

C̄vep → Q̄C̄vepQ̄T, be → QbeQT. (17)

The transformations (16) in (6) and (8) result in

l → QlQT + Q̇QT and d → QdQT,

L̄vep → Q̄L̄vpQ̄T + ˙̄QQ̄T, D̄vep → Q̄D̄vpQ̄T,

lvep → QlvepQT −QF e−T ˙̄QTQ̄F e−1QT,

le → QleQT + Q̇QT +QF e−T ˙̄QTQ̄F e−1QT.

(18)

When leading the results, the property Q̄T ˙̄Q = − ˙̄QTQ̄ has been used. Then,
based on (18) l = le + lvep → Q(le + lvep)QT + Q̇QT = QlQT + Q̇QT.

Supposing that virtual velocity fields transform as their non-virtual coun-
terparts do, the prerequisite [2] argues that in the current frame, Wint(A,V) =
Wint∗(A∗,V∗), where a part of the solid body A converts to a region A∗ and V

to a virtual velocity V∗. Similarly, the stress field τ transforms to τ ∗ conjugate
to virtual velocities when

Wint(A,V) :=

∫

A

τ : ldv = Wint∗(A∗,V∗) :=

∫

A

(τ ∗ : (Ql̃QT + Q̇QT)dv

(19)
where A : B := trace(AB). Because the body part A is arbitrary, (19) can be
localized, i.e. τ : l = τ ∗ : (Ql̃QT + Q̇QT). Since the change in frame, l̃, as
well as Q̇QT = −QQ̇T (skew-symmetric) are arbitrary, the stress (symmetric)
transforms by τ → QτQT.

Benefiting (18) in (19) and considering the symmetry of τ yields

τ : le → τ : (de + Q̇QT) + T̄ : ˙̄QTQ̄ = τ : de,

τ : lvep → τ : dvep + T̄ : Q̄T ˙̄Q = τ : dvep,
(20)

7



i.e. τ : l = τ : (le + lvep) = τ : (de + dvep) = τ : d holds. The stress
T̄ := F e−1τF e−T in (20) is the counterpart of τ given in the intermediate
placement3.

Constitutive theory

The proposed model includes a linear spring a) and a nonlinear spring c)
resulting in an initial elastic response and anisotropic effect of material in large
deformations, see Fig. 1. To predict increasing macro-yielding followed by a
notable softening effect, the model also includes a nonlinear dashpot (1). To
improve the predictions of the cyclic hysteresis loops, the model is augmented
by a system for viscoelastic micro-mechanisms consisting of a KelvinVoigt-like
element (2) arranged in series with the dashpot (1). Moreover, the element (2)
governs creep and recovery, and its action together with the spring a) is used to
model stress relaxation.

Using the equations (7) and (11), and noting the symmetry of stress τ , the
localized dissipation in its spatial form becomes

D = τ : de + τ : dvep − ψ̇ ≥ 0, (21)

where D is the power of the local dissipation and ψ̇ stands for the rate of the
Helmholtz free energy per unit volume. The Helmholtz free energy ψ is taken to
be a sum of several independent potentials, Chaboche (1997); Anand and Ames
(2006), i.e.

ψ = ψ̂(be, C̄vep, C̄ve, ϕ) = ψ̂e(be) + ψ̂vep(C̄vep) + ψ̂ve(C̄ve, ϕ) (22)

wherein ψe, ψvep, and ψve are the contributions associated with the elastic spring
a), the nonlinear Langevin spring c), and the nonlinear spring in the viscoelastic
element (2), respectively. The viscoelastic potential ψve is also taken to be the
function of the free volume, ϕ4.

Remark 2.1. To guarantee the invariance of the free energy, finally invariants
of the tensor arguments in the potential function (22) will be used.

The rate ϕ̇ is given by

ψ̇ =
∂ψe

∂be
: ḃe +

∂ψvep

∂C̄vep
: ˙̄Cvep +

∂ψve

∂C̄ve
: ˙̄Cve +

∂ψve

∂ϕ
ϕ̇. (23)

Taking advantage of (10), noting the symmetry of be, and considering ψe as
an isotropic function of be result in

∂ψe

∂be
: ḃe = 2

∂ψe

∂be
be : de. (24)

3It then follows that the operator φ∗ = F e−T(·)F e−1 in (8).
4Evolution of the local free-volume is considered an important source for the transient peak

associated with yielding of amorphous polymers, Anand and Ames (2006).
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In accordance with (24) and noting the symmetry of C̄vep by (9),

∂ψvep

∂C̄vep
: ˙̄Cvep = 2

∂ψvep

∂C̄vep
C̄vep : D̄vep =: B̄vep : D̄vep = βvep : dvep (25)

in which B̄vep represents an internal back stress quantity that controls the
anisotropic hardening at large strains owing to the viscous work accumulated in
a material body. The spatial complement βvep is derived by the push-forward
operation determined in (20) and represents the stress in branch B (Fig. 1), i.e.
τB := βvep.

Moreover, using the symmetry of C̄ve given by (5), one can define:

∂ψve

∂C̄ve
: ˙̄Cve =: 2

∂ψve

∂C̄ve
C̄ve : D̄ve =: B̄ve : D̄ve = βve : dve (26)

where B̄ve is an internal stress acting on the spring in the element (2). Its
spatial counterpart in the deformed current placement is βve. Consistent with
(26),

˙̄Cve := D̄veC̄ve + C̄veD̄ve. (27)

A complementary dissipation potential, associated with the dashpot (1) and
that in the element (2) (cf. Fig. 1), is as

φ(τ (1), τ (2)) := φvp(τ (1)) + φve(τ (2)) (28)

where τ (1) := τA and τ (2) := τA − βve stand for the driving stresses in the
dashpots of the elements (1) and (2), respectively.

Benefiting the potential φ, a part of the dissipation power becomes

D =
∂φvp

∂τ (1)
: τ (1) +

∂φve

∂τ (2)
: τ (2). (29)

Considering (29), substitution of (24), (25), and (26) into (21) results in
(

τ − 2
∂ψe

∂be
be
)

: de = 0,

(τ − βvep) : dvep − βve : dve − ∂ψve

∂ϕ
ϕ̇− ∂φvp

∂τ (1)
: τ (1) − ∂φve

∂τ (2)
: τ (2) = 0.

(30)

Equation (30) must be valid under any possible thermodynamically admissible
mechanisms, when the constitutive equation

τ = 2
∂ψe

∂be
be (31)

is obtained. Defining

˙̃s(1) := − ∂φvp

∂τ (1)
: τ (1) and ˙̃s(2) := − ∂φve

∂τ (2)
: τ (2), (32)

which represent the rates of the decreasing internal variables in the dashpots of
the elements (1) and (2), (30)2 can be written in the compact form as:

τA : dvep = βve : dve +
∂ψve

∂ϕ
ϕ̇− ˙̃s(1) − ˙̃s(2). (33)
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Theorem 2.2. The model satisfies the dissipation (Clausius-Duhem) inequality
D ≥ 0.

Proof. Considering (31), (32), and (33) in (30), the local dissipation power in
(21) becomes:

D = − ˙̃s(1) − ˙̃s(2). (34)

Since ˙̃s(1) ≤ 0 and ˙̃s(2) ≤ 0 in (34), D always is greater than or equal to zero

2.4. Distinct constitutive equations

2.4.1. Elasticity

The approach is refined to address amorphous polymers. The chain network
structure of the amorphous polymers is practically disorderly when a usual
isotropic strain energy function,

ψe =
1

2
κe(Ie1)

2 + 2µeJe
2 , (35)

where κe and µe denote the bulk and the shear moduli, is suitable. The invari-
ants in (35) are given by:

Ie1 := trace(ln ve) = ln Je, Je
2 :=

1

2
(lnve)dev : (ln ve)dev,

wherein Je := det(ve). The stress equation follows from (31) and (35):

τ = L
e : lnve, (36)

whereLe is the standard fourth order elasticity tensor, see (Holopainen and Wallin,
2012, eqs. (11,12)),(Holopainen et al., 2017, eq. (47)).

2.4.2. Inelasticity

Flow rule

According to (14), the rate of viscoelastic-plastic deformation is given by the
sum

dvep = dvp + dve. (37)

The viscoelastic contribution dve, associated with the mechanism (2) in Fig. 1,
is determined by a rule as:

dve := γ̇ven(2), n(2) :=
τ (2),dev

√
2τ (2)

, τ (2) :=

√

1

2
τ (2),dev : τ (2),dev (38)

where τ (2),dev = τA,dev − βve,dev and γ̇ve represents a positive, effective vis-
coelastic strain rate defined subsequently. The deviatoric part dev for each
tensor [·] is defined via the identity i as: [·]dev := [·]− 1/3trace([·])i.

Consistent with (38), the rate dvp, associated with the mechanism (1), is
determined as

dvp := γ̇vpn(1), n(1) :=
τ (1),dev

√
2τ (1)

, τ (1) :=

√

1

2
τ (1),dev : τ (1),dev (39)
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where τ (1),dev = τA,dev = τdev−βvep,dev and γ̇vp represents a positive, effective
viscoplastic strain rate. It then follows from (38) in (27) that

0 = trace(dve) = trace(D̄ve) = trace(C̄ve−T ˙̄Cve,T) =
1

det(C̄ve)

d

dt
det(C̄ve)

(40)
or det(C̄ve) = 1 (equals to the undeformed value). Similarly, using (9) and not-
ing (37), det(C̄vep) = 1, i.e. the viscoelastic-plastic stretching is incompressible
when Je := det(F e) =: J .

Plastic deformation

Plastic deformation, which governs the irreversible mechanisms of the ma-
terial, is considered the most dominant in amorphous solid polymers. Physi-
cally motivated Boyce et al. (1989)-model and Anand and Ames (2006)-model
represent two approaches capable of governing the development of the plastic
deformation through the element (1) in Fig. 1. Because the Anand and Ames
(2006)-model can predict the transient yield peak that is typical to amorphous
polymers more accurately, this model is used in this study.

The evolving plastic deformation through the dashpot (1) is modeled by the
following power-law type strain rate

γ̇vp = v̇0
( τ (1)

s(1) + αp

)1/m0
(41)

where v̇0, m0, and α denote the material parameters, and p = −trace(τA/J
e)/3

is the pressure. Strain softening is modeled by an internal variable as:

ṡ(1) = h0γ̇
vp(1 − s(1)/s̃(1)(ϕ)), s(1)(0) = s0 (42)

where
s̃(1) := ssv(1 + b(ϕsv − ϕ)) (43)

with

ϕ̇ := g0γ̇
vp(

s(1)

ssv
− 1), ϕ(0) = 0 (44)

for evolving free volume. Additional parameters needed are h0, s0, g0, ssv, b,
and ϕsv.

Anisotropic hardening

To model the anisotropic hardening behavior in large strains, several choices
for the plastic portion of the free energy are available. The most prominent
ones are based on the 8-chain and full network models, cf. Boyce et al. (1989);
Wu and Van der Giessen (1993) and Fig. 2.

According to the Anand and Ames (2006)-model, the anisotropic deforma-
tion behavior in large strains is based on the entire deformation (spring c) in Fig.
1). However, as discussed in Introduction, this treatment can be questioned for
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Figure 2: Idealized chain structure according to the 8-chain model (left) and the full
network model (right). The dimension of the 8-chain cube is given by r0 and φ0, and
R0 denotes the radius of the micro-sphere.

amorphous solid polymers, and the idea that the anisotropic deformation be-
havior is solely given in terms of the viscoelastic-plastic response is applied in
the proposed model. Based on the 8-chain modeling concept, cf. Boyce et al.
(1989), the viscoelastic-plastic portion of the free energy in the proposed model
(the element c) in Fig. 1) is governed by the function:

ψvep(λvepec ) = CR

(λvepec√
N
ξ + ln

( ξ

sinh(ξ)

))

≥ 0, ψvep(1) = 0 (45)

wherein CR and N stand for parameters, and ξ := L−1(λvepec /
√
N) means the

inverse of the Langevin function, L. Applying a non-affine network stretch

λvepec :=
1√
3

√

trace(C̄vep), (46)

as has been done in Boyce et al. (1989), the backstress B̄vep representing kine-
matic hardening becomes

B̄vep =
CR

3λvepec

√
NξC̄vep. (47)

When calculating ξ in (47), the Padé approximation is applied, cf. Cohen (1991).

Corollary 2.3. The spatial counterpart βvep of B̄vep takes the form

βvep =
CR

3λvepec

√
Nξcvep, (48)

where cvep = Je−2/3F eC̄vepF e,T.

Proof. Considering the kinetic, stress measures contravariant, cf. (Belytschko et al.,
2000, Box 5.16), C̄vep in (47) is in contravariant form. Then the push-forward
operation (determined in connection with (20)) of C̄vep results in ĉvep :=
F eC̄vepF e,T. Using (38) and (39) in (37) reveals that dvep is deviatoric, when

0 = trace(dvep) = trace(D̄vep) = trace(C̄vep−T ˙̄Cvep,T) =
1

det(C̄vep)

d

dt
det(C̄vep),

i.e. det(F e−1ĉvepF e−T) = det(F e−1)det(ĉvep)det(F e−T) = 1. It is then re-
quired that ĉvep = Je+2/3cvep
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Viscoelastic deformation

Consistent with (41) for viscoplasticity, the viscoelastic deformation through
the dashpot in element (2) is governed by

γ̇ve = v̇0
( τ (2)

s(2) + αp

)1/m1≥ 0 (49)

where m1 is a material parameter. Against the internal variable s(1) defined
above, s(2) is regarded as a constant parameter.

The back stress influencing the viscoelastic element is defined by the function
of the neo-Hookean form as follows:

ψve =
3

2
µ1

(

(λveec)
2 − 1

)

, (50)

where

λveec := 1/
√
3
√

trace(C̄ve) (51)

is an effective viscoelastic stretch, and the back stress modulus µ1 := µ̂1(ϕ) is
considered a function of the local free volume ϕ as

µ̇1 := c1
(

1− µ1

µ1,sat

)

ϕ̇, µ1(0) = µ0
1 (52)

involving the material parameters c1, µ1,sat, and µ
0
1. Expecting µ1,sat ≤ µ0

1, µ1

reduces to its saturation value µ1,sat as the free-volume increases. Then, in view
of (51),

∂ψve

∂C̄ve
=
µ1

2
Ī

where Ī is the identity given in the intermediate placement, gives

B̄ve := µ1C̄
ve. (53)

Benefiting Corollary 2.3, the spatial form becomes βve := µ1c
ve, where cve =

Je−2/3F eC̄veF e,T.
The treatment of the dissipation inequality (21) based on the constitutive

equations is given in Appendix A. A numerical solution method is introduced
in Appendix B. A brief summary of the approach is presented in Table 1.

3. Experimentation

An amorphous thermoplastic polycarbonate (PC) (Lexanr 223R granulate)
was used to calibrate and evaluate the proposed model. Dogbone-shaped spec-
imens for both monotonic and cyclic loading tests were injected in accordance
with the standard ASTMD638-03 with the type IV specimen, ASTM Committee
(2003),Barriere et al. (2018). The geometry of the specimen is demonstrated in
Fig. 3.
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Table 1: Summary of the proposed model.

1. Kinematics: F = F eF vep, be = F eF e,T, ve =
√
be, C̄vep := F vepF vep,T, cvep = Je−2/3φ∗(C̄

vep), C̄ve,

cve = Je−2/3φ∗(C̄
ve), D̄ve = φ∗(dve), dvep = dvp + dve, D̄vep = φ∗(dvep), L̄vep = D̄vep + W̄ vep.

2. Kinetics: τ = L
e : lnve = 2µ(ln ve)dev + κ ln Jei, τB =

CR

3λvep
ec

√
NL−1(

λ
vep
ec√
N

)cvep (anisotropic hardening),

τA = τ − τB, βvep := τB.

2.1 Micro-macro transition: λvep
ec =

1
√
3

√

(Ī : C̄vep) ∈ [0,
√
N ].

3. Viscoelastic and viscoelastic-plastic micromechanisms:

3.1 Flow rules: dvep = dvp + dve = γ̇vpn(1) + γ̇ven(2), n(1) :=
τdev
A√
2τdevA

, τdevA :=

√

1

2
τdev
A : τdev

A ,

n(2) :=
τdev
A − βve

√
2τ (2)

, τ (2) :=

√

1

2
(τdev

A − βve : τdev
A − βve).

3.2 Loading, unloading (viscoelasticity): γ̇ve := v̇0(
τ (2)

s(2) + αp
)

1
m1 , s(2) = s(2)(0), βve = µ1c

ve,

µ̇1 := c1(1−
µ1

µ1,sat
)ϕ̇, µ1(ϕ(0)) = µ0

1 > µ1,sat .

3.3 Yielding, softening (viscoplasticity): ϕ̇ = g0(
s(1)

scv
− 1)γ̇vp, ϕ(0) = ϕ0, γ̇vp := v̇0(

τdevA

s(1) + αp
)

1
m0 ,

p = −
1

3
trace(τA), ṡ(1) = h0(1−

s(1)

s̃(1)
)γ̇vp, s̃(1)(ϕ)) := ssv(1 + b(ϕsv − ϕ)), ϕ(0) < ϕcv.

3.5 Evolution of kinematical variables: Ḟ vep := L̄vepF vep, ˙̄Cve := D̄veC̄ve + C̄veD̄ve.

Model parameters: v̇0, α, s
(2),m1, c1, µ1,sat , µ

0
1 (viscoelasticity), s0,m0, CR, N, h0, g0, b, scv, ϕcv, ϕ0 (viscoplasticity).

3.1. Uniaxial tensile tests

The experiments were conducted under isothermal conditions (room temper-
ature and low stress/strain rates) without a marked temperature rise (below 10
◦C), i.e. the tests are considered quasi-static. An Instron Electropulse E10000
machine equipped with a 10 kN load sensor was used. An extensometer with
the gauge length of 25 mm was also applied to measure the axial elongation u,
see Fig. 3. The strain was defined by ǫ := u/L, where L is the gauge length
of the extensometer used. The stress was defined by σ := F/A, where F is
the force (measured by the machine) and the area of the initial cross section
is given by A5. The monotonic tensile tests were performed at different strain
rates (displacement control) ǫ̇ = 0.001 s−1, ǫ̇ = 0.01 s−1, and ǫ̇ = 0.1 s−1. The
acquisition frequency for these tests was 20 Hz.

5The measured stress is actually the 1st Piola Kirchoff stress, Belytschko et al. (2000);
the Kirchhoff stress applied in the model is τ := σλ, where σ is the Cauchy/true stress and
λ = 1+ ǫ is the axial stretch. However, the difference between the Kirchhoff, Cauchy, and 1st
Piola Kirchoff stress is small under the strains ǫ < 0.3.
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λ
vep
ec = 1.05

Figure 3: Flowchart for the test program comprising design of the test specimens,
uniaxial tensile test set up, and simulations.

The force-controlled cyclic tests were conducted under sinusoidal wave form
ranging between the maximum stress and minimum stress based on different
stress ratios of R = 0.1 and R = 0.5 (the ratio between the smallest and largest
stresses). The values of maximum stresses investigated were 97 %, 90 %, 75
%, and 50 % of the peak yield stress, 60 MPa. The data acquisition frequency
for cyclic tests was 1000 Hz while the loading frequency was f = 5 Hz, i.e. 200
points per each cycle were recorded. At least two specimens were tested at each
level, and the tests interrupted due to the failure of the specimens.
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Figure 4: Stress-strain curves (using the final set of material parameters) in tension on
PC at the constant strain rate of 0.001 s−1 (left). The markers indicate the points as
the viscoelastic (black circle) and viscoplastic (blue circle) micro-mechanisms (2) and
(1) start displaying a notable effect. Evolution of the free-volume ϕ for PC according to
the proposed model (blue curve) and the Anand and Ames (2006)-model (red curve).

For calibration and simulations, the proposed model and peer state-of-the-
art models were implemented in a computer program using the Intelr Fortran
application. The evolution equations used in the numerical solution method are
presented in the Appendix B.

3.2. Model calibration

In the gauge section of test specimens, uniaxial loading conditions prevailed,
and the model reduces to a simplified form facilitating the model calibration.
The elastic model parameters were extracted from the strain-controlled, mono-
tonic cold drawing tests. The Young’s modulus E was initially calculated from
the linear strain range (0 - 0.001) of the σ − ǫ curve, and then, during cali-
bration, the range was progressively increased (E was reduced) to sharpen the
predictions. The Poisson’s ratio ν typical for solid PC-polymer was found from
Holopainen and Wallin (2012); Holopainen (2013). A detailed calibration pro-
cedure to find the remaining parameters is discussed next.

Stage 1. The stress-strain response around the peak yield stress and for
subsequent softening and hardening at large deformations were first determined
under a displacement-controlled monotonic tension by least squares fitting and
the data is shown in Fig. 4. Initially, the viscoelastic mechanism (2) was con-
sidered constant, i.e. the initial values of both the variables and parameters
were applied in (49) and (52). Moreover, s(1) was first considered constant in
(41). Then, only the initial flow strength s0, the strain-rate-sensitivity parame-
ter m0, strain rate parameter v̇0, pressure sensitivity parameter α, the rubbery
modulus CR, and the locking stretch N were needed to be defined. The ini-
tial parameters CR and N governing anisotropic hardening at large srains were
taken from Boyce et al. (1989) (for a PC). Other initial values were taken from
(Anand and Ames, 2006, p. 1168) (for a PMMA-polymer).

Stage 2. Continuing with data given in Fig. 4, the deformation resistance
s(1) was allowed to evolve along with the free volume ϕ when the parameters
h0, g0, b, scv, and ϕcv were calibrated. Assuming that the change of ϕ is signif-
icantly small, the value ϕcv = 0.001 proposed in Anand and Ames (2006) was
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Figure 5: Evolution of the shear resistance s(1) for PC according to the proposed
(blue curve) and the Anand and Ames (2006)-model (red curve) based on the final set
of calibrated parameters. Corresponding evolutions of the stiffness µ1 (left). For the
Anand and Ames (2006)-model, also the stiffnesses µ2 (dashed curve) and µ3 (dashed-
and-dotted curve) for additional viscoelastic micro-mechanisms are shown.

chosen. The parameter h0 directly influences the pre-peak slope, whereas the
resting parameters influence the peak yield stress and its post-peak slope, and
were determined by the least squares fitting. The initial values of the param-
eters were extracted from (Anand and Ames, 2006, p. 1168). The parameters
determined in this stage have only a minor effect to the ones that had already
been determined in the previous stage for large deformations.

The development of the free volume ϕ and the deformation resistance s(1)

with strain is depicted in Fig. 4. The comparison of Fig. 4(right) with the
macroscopic stress-strain response in Fig. 4(left) (at strain values of 0.03 - 0.13)
reveals that the deformation resistance influenced by the free volume is the one
that strongly influences the shape of the yield peak.

Stage 3. The remaining parameters for viscoelasticity (m1, s
(2), c1, µ1,sat,

µ0
1) were finally defined. Fig. 4 schematically shows the point, in terms of s(2), as

the viscoelastic micromechanism approximately starts taking effect. The point
at which the viscoplastic deformations start governing the deformation behavior
(in terms of s(1)) has higher strain. Thus, an inspection of Fig. 4 indicates that
the initial values of these deformation resistances should range between 10 -
30 MPa, and satisfy s(1) > s(2). The slope that connects these two points is
governed by the modulus µ1 and is, based on the experimentally observed σ− ǫ
curves, greater than the elastic modulus E for the initial response (strains 0 -
0.012). The evolution of µ1 is shown in Fig. 5. The parameters c1 and µ1,sat in
(52) define the slope of softening and the final value of µ1, respectively.

To attain finer details of the experimentally observed stress-strain responses
including unloadings, the remaining parameter m1 was defined based on the
assumption m0 < m1. Only a few ad hoc iterations were needed to obtain its
reasonable value.

The final set of model parameters is given in Tables 2 and 3. For comparison,
the Anand and Ames (2006)-model parameters for the tested PC have been
determined, and the values are presented in Tables 4, 5, and 6. Moreover, a
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comparison is made with the Jiang et al. (2015)-model that is a straightforward
extension of the Anand and Ames (2006)-model. Its additional parameters are
presented in Table 7. Compared to the Anand and Ames (2006)-model and
Jiang et al. (2015)-model, each requiring 28 and 34 material parameters, only
19 parameters are required in the proposed model.

Table 2: Elastic and viscoelastic model parameters for a PC adapted to a cold drawing
test and a cyclic test using the proposed model.

Parameter E ν v̇0 α s(2) m1 c1 · 10−6 µ1,sat µ0
1

Unit ......... MPa s−1 MPa MPa MPa MPa
Value ......... 2100 0.37 0.038 0.204 11 0.19 4.5 1100 3500

4. Evaluation of the approach

4.1. Displacement-control

Based on the final set of parameters, the stress versus strain responses up
to the large strain are shown in Fig. 4. For comparison, the Anand and Ames
(2006)-model response is also shown. Despite a fairly reduced parameter set, the
proposed model captures the experimental response well. A low post-peak slope
observed in the experimental response right after the peak yield stress is due
to an inhomogeneous three-axial deformation behavior exhibiting short-term
necking (strain increases at almost a constant stress level).

The capability of the model in predicting the strain rate dependence is
demonstrated in Fig. 6. The model can predict the increasing peak yield stresses
with increasing strain rates well. At the highest strain rate, the test specimens
showed a brittle fracture, immediately when the peak yield stress was reached.
Further, other experimental responses up to this strain value are presented in
Fig. 6. Because the model predictions represent a single material (integra-
tion) point without failure, the model responses are able to replicate significant
softening followed by hardening at large strains.

Table 3: Viscoplastic parameters using the proposed model (ϕ(0) = 0).

Parameter s0 m0 CR N h0 g0 b scv ϕcv

Unit ......... MPa MPa MPa MPa
Value ......... 28.5 0.055 14.0 1.65 4500 0.017 755 27.5 0.001
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Table 4: Elastic and viscoelastic parameters for the PC using the Anand and Ames
(2006)-model. Moreover, m2 = m3 = m1.

Parameter E ν v̇0 α s(1) s(2) s(3) m1

Unit ......... MPa s−1 MPa MPa MPa
Value ......... 2100 0.37 0.038 0.204 11 17 21 0.19

4.2. Load-control

A creep-recovery test was first conducted because during cyclic loadings a
part of the accumulated deformation comes from creep, and also the capac-
ity to predict recovery implicates the capacity to predict cyclic response. The
isochronous test comprises the elastic domain (the first load-unload), viscoelastic
domain (second load-unload), and the viscoelastic-plastic domain (third load-
unload), see Fig. 7, ASTM Committee (2001). As it has been shown, the
proposed model captures the creep strains (at nonzero constant stress levels)
and subsequent recovery at zero-stress fairly well. Although the model seems
to exaggerate the irreversible plastic strain, the value of the residual strain at
the end of the test is small.

Figure 8 shows the predicted and experimentally observed hysteresis loops,

Table 5: Viscoelastic model parameters using the Anand and Ames (2006)-model (con-
tinued).

Parameter c1 · 10−6 c2 · 10−6 c3 · 10−6 µ1,sat µ2,sat µ3,sat µ0
1 µ0

2 µ0
3

Unit ......... MPa MPa MPa MPa MPa MPa MPa MPa MPa
Value ......... 4.5 1.8 1.3 1100 600 250 3500 3500 3900

Table 6: Viscoplastic parameters for the PC using the Anand and Ames (2006)-model
(ϕ(0) = 0).

Parameter s0 m0 CR N h0 g0 b scv ϕcv c0 · 10−6

Unit ......... MPa MPa MPa MPa MPa
Value ......... 28.0 0.055 14.0 1.65 16500 0.028 860 27.0 0.001 0

Table 7: Additional viscoelastic constitutive model parameters for the PC using the
Jiang et al. (2015)-model.

Parameter s1,sat s2,sat s3,sat d1 d2 d3

Unit ......... MPa MPa MPa MPa MPa MPa
Value ......... 40.0 40.0 40.0 75.0 60.0 50.0
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Figure 6: Experimental tensile stress-strain curves on PC at constant strain rates of
0.001 s−1 (black solid curve), 0.01 s−1 (black dashed curve), and 0.1 s−1 (black dash-
and-dot curve) (left). The blue colored curves implicate the model responses. Peak
yield stress vs strain rate in tension (right).
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Figure 7: Loading for the creep-recovery test (left). The corresponding strain responses
according to the experiment (black) and the proposed model (blue) (right).

as the maximum stress is right below the peak yield stress. Despite the reduced
set of material parameters, comparison of the responses reveals that the pro-
posed model is even more accurate than the Anand and Ames (2006)-model.
However, due to a large number of parameters needed in the Anand and Ames
(2006)-model, the optimum set of calibrated parameters is difficult to find. It
can also be observed that the incorporation of only one viscoelastic micro-
mechanism in the proposed model makes possible the nonlinear loading and
unloading responses with acceptable accuracy. This characteristic is due to the
evolution of µ1 shown in Fig. 5 that results in a suitable material stiffness which
is primarily responsible for slightly increasing stiffness of the initial loading re-
sponse as well as the nonlinear unloading behavior, Anand and Ames (2006).

For comparison, the prediction by the Boyce et al. (1989)-model is also
demonstrated in Fig. 8. Owing to the linear elastic constitutive description
without viscoelasticity, Boyce et al. (1989)-model is not able to predict the non-
linear hysteresis loops or ratcheting under the applied maximum stress.

The influence of the loading frequency, predicted by the proposed model,
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Figure 8: First hysteresis loops of the Anand and Ames (2006)-model vs data with the
stress ratio R = 0.1 and the frequency f = 5 Hz (left). Comparison of the loops by
the proposed model, data, and Boyce et al. (1989)-model predictions (right).
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Figure 9: First hysteresis loops by the proposed model with R = 0.1 and different
loading frequencies (left). 30th, 300th, and 2500th loop when f = 5 Hz (right).

is demonstrated in Fig. 9(left). The material shows hardening, i.e. stretching
reduces apparently with increasing loading frequency. This behavior is typical
for many amorphous polymers, Boyce et al. (1989); Anand and Ames (2006).

The selected loops under lower maximum stress values are depicted in Fig-
ures 9(right) and 10. Hysteresis loops exhibit ratcheting (also termed cyclic
creep), i.e. the mean strain grows as the applied load varies between its max-
imum and minimum values, cf. Jiang et al. (2015); Holopainen et al. (2017);
Kang and Kan (2017). A significant initial increase of ratcheting deformation is
due to the great mean stress level used. Then the growth of mean strain gradu-
ally reduces during the fluctuating loading, which characteristic can be termed
as cyclic hardening. In our test specimens, cyclic hardening was recognized
as a slightly inhomogeneous deformation behavior (macro-scopically manifested
as initial necking), i.e. stretch initially increased at fixed maximum/minimum
tensional stress levels, but rapidly attained its stabilized final value.

To demonstrate the ratcheting behavior more precisely, the ratcheting (mean)
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Figure 10: 30th and 7000th hysteresis loops. The black and blue colors imply the
experimental data and predicted results according to the proposed model.

0 2000 4000 6000 8000
0

0.005

0.01

0.015

0.02

0.025

0.03

N

ǫ r

0 0.01 0.02 0.03 0.04
0

10

20

30

40

50

60

ǫ

σ
[M

P
a
]

Figure 11: Ratcheting strain responses with R = 0.1 and the frequency f = 5 Hz.
The black, blue, and red colors imply the experimental data and predicted results
according to the proposed model and the Anand and Ames (2006)-model, respectively
(left). Corresponding hysteresis loops by the Anand and Ames (2006)-model (right).

strain is defined by:

ǫr :=
1

2
(ǫmin + ǫmax) (54)

wherein ǫmin and ǫmax mean the minimum strain and the maximum strain in
each cycle.

Development of ǫr is demonstrated in Fig. 11(left). Under the high mean
stresses applied, the proposed model slightly overestimate the ratcheting strain
as the number of cycles N < 2000. Considering the highest maximum stress,
the model response also seems to differ from the experimental curve in the
intermediate region as N=2000-6000. The difference in this region is due to
an experimentally observed temperature peak resulting in slightly nonisother-
mal conditions and thus, increased ratcheting strain, Fig. 12. Otherwise, the
temperature increase remains low, and the proposed model well captures the
experimentally observed ratcheting deformation at different stress levels.

Using the parameters given in Tables 4, 5, and 6, Anand and Ames (2006)-
model slightly overestimates the strains at minimum stress values as shown in
Fig. 8 and thus, also overpredicts the ratcheting strains demonstrated in Fig.
11. Using the additional material parameters for Jiang et al. (2015)-model in
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Figure 12: The temperature rise during the loading as the maximum stress is 54 MPa
(left). 30th, 3000th, and 10,000th hysteresis loops (right). The black and blue colors
imply the experimental data and predicted results according to the proposed model.
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Figure 13: 30th, 3000th, and 10,000th hysteresis loops. The black and blue colors imply
the experimental data and predicted results according to the proposed model.

Table 7, no difference with the Anand and Ames (2006)-model response was
observed, cf. (Jiang et al., 2015, Fig. 5).

The loops and the development of the ratcheting strain under different max-
imum stresses for R = 0.5 are demonstrated in Figs 12, 13, and 14, respec-
tively. Because the temperature now does not influence the mechanical behav-
ior (the rice remains under 5 ◦C), the proposed model is able to predict the
ratcheting strain with reasonable accuracy, especially when compared to the
Anand and Ames (2006)-model, Fig. 14.

5. Concluding remarks and further research avenues

The article introduces a compact viscoelastic-viscoplastic constitutive model
for solid polymers capable of improving the predictions of the cyclic deforma-
tion behavior at stress levels below the peak yield stress. It is also evidenced
that the model is accurate under very large strains, as monotonic loadings are
applied. The proposed model is based on the celebrated Haward and Thack-

23



0 2000 4000 6000 8000
0

0.01

0.02

0.03

0.04

0.05

N

ǫ r

σ
[M

P
a
]

ǫ

Figure 14: Ratcheting strain responses with the stress ratio R = 0.5. The colors
black and blue imply the experimental data and predicted results according to the
proposed model (left). The Anand and Ames (2006)-model predictions are also shown
(red color). Corresponding predictions of the hysteresis loops by the Anand and Ames
(2006)-model (right). The loops up to 3000 cycles have been shown.

ray (1968)-model and its three dimensional extension by Boyce et al. (1989)
for glassy polymers being augmented by a few thermodynamically motivated
internal state variables able to predict the missing viscous deformation behav-
ior (correct unloading and ratcheting behavior) under cyclic loadings. Against
the distinguished models by Anand and Ames (2006); Jiang et al. (2015) that
also are able to predict cyclic deformation behavior well, the proposed model
possesses the following advantages:

- a reduced set of internal state variables and material parameters need to
be defined;

- elastic portion of the deformation is clearly described by a linear spring
separate to viscoelastic-plastic elements according to the classical Haward and Thackray
(1968) -model;

- the nonlinear Langevin spring is defined solely using the viscous (viscoelastic-
plastic) deformation in accordance with the micromechanics-based Boyce et al.
(1989)-model;

- purely plastic and viscoelastic deformation are defined by the specified
stress controlling the corresponding micromechanisms.

From a number of uniaxial tension experiments, it is shown that this com-
pact formulation, in combination with the calibration procedure can reasonably
predict the shape of the hysteresis loops and long-term ratcheting behavior. The
comparison with Anand and Ames (2006); Jiang et al. (2015) -models indicates
that, despite the larger number of parameters needed in these distinguished
models, the proposed model is at least as accurate. Creep-recovery tests evi-
denced also the capability of the model. Due to the compact formulation, the
proposed model is easy to implement and can be used as a built-in feature in
different finite-element packages.

Although the uniaxial experimentation has been comprehensive, the pro-
posed model needs to be evaluated under cyclic shear/torsion and arbitrary
multidimensional loadings. It should be noted that the research concerning the
experimentation of multi-axial cyclic plasticity is practically nonexistent in lit-
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erature. Considering the high loading rates, the effect of temperature rises and
needs to be encompassed in the model. Furthermore, an important problem is
the modeling of fatigue damage (incl. microstructural changes) that supposedly
develops under the applied load levels.
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Appendix A. Dissipation inequality vs specific constitutive equations

Using (33) in (21) for the dissipation inequality, yields

D = τA : dvep − βve : dve − ∂ψve

∂ϕ
ϕ̇,

which needs to be positive or zero. Using the function (50), ∂ψve/∂ϕϕ̇ =
3
2 µ̇1

(

(λveec)
2−1

)

6. Since µ̇1 is negative or zero (see (52) and Fig. 5),
(

(λveec)
2−1

)

must be positive or zero in order to get −∂ψve/∂ϕϕ̇ ≥ 0. Using (51) for λveec ,
gives trace(C̄ve) ≥ 3. It can be shown (using principal stretches and noting
incompressibility, det(C̄ve) = 1 by (40)) that this condition is always valid.

It remains to show that τA : dvep−βve : dve ≥ 0. Using (37), (38), and (39),

τA : dvep−βve : dve =
√
2τ (1)

(

γ̇vp+γ̇ve
τ (1)

τ (2)
)

− γ̇ve√
2τ (2)

[

tr
(

βve(τA−βve)
)

+tr
(

τAβve
)

]

(A.1)
where the abbreviation tr means trace. Since γ̇vp, γ̇ve, τ (1), and τ (2) are positive,
it is sufficient to show that the last term in (A.1) is less than the sum of other
terms. Since trace

(

τAβve
)

≤ trace(
(

τA)2
)

= 2(τ (1))2,

γ̇ve√
2τ (2)

[

tr
(

(βve)(τA − βve)
)

+ tr
(

τAβve
)

]

≤
√
2γ̇ve

(τ (1))2

τ (2)

which is less than the sum of other terms on r.h.s of (A.1).

Appendix B. Numerical solution method

System of the equations

To define the intermediate placement uniquely, F e is regarded as symmet-
ric, see Boyce et al. (1989); Holopainen and Wallin (2012). This implies that
the visco-plastic spin W̄ vp is generally nonzero. This restriction is adjusted by

6 Evolution of the viscoelastic stretching ˙̄Cve (and thus, C̄ve) is considered independent
on the free volume ϕ which is meant for the viscoplastic stretching in accordance with its
evolution law (44). Actually, change in the free-energy due to the free-volume change can be
shown to be small, cf. (Anand and Ames, 2006, p. 1159).
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proposing a spin W̃ vep which is algorithmically consistent, i.e. it becomes fi-
nally skew-symmetric at the end of the integration step, Holopainen and Wallin
(2012); Engqvist et al. (2016); Holopainen et al. (2017). Then, supposing the
current deformation gradient F is known (as it does in standard finite-element
implementations), the variables needed to be solve become:

Y := [F e C̄ve W̃ vp s(1) µ1 ϕ]. (B.1)

The deformation measure C̄ve defines the backstress needed in the flow-type
rule (38) and its evolution is defined in (27). Moreover, the viscoelastic spin
is considered zero. Consistent with (27), but noting the evolution of the vis-
coplastic deformation can include a spin, the evolution of C̄vp can be defined

by ˙̄Cvp := L̄vpC̄vp + C̄vpL̄vp,T. However, this strain measure is optional, and
only used for post plotting purposes, see (39) for viscoplastic flow. Once F e is
known, F vep is solved from the decomposition (1).

Based on an implicit Euler scheme, the exponential update of F vep in ac-
cordance with Miehe et al. (1993) is used, i.e.

F vep = exp(∆tL̃vep)F vep
n , (B.2)

where L̃vep = D̄vep + W̃ vp. To simplify notation, n + 1 for indicating the
updated state is omitted, whereas n is used to refer to the known state tn.

To evaluate W̃ vp, its skew-symmetry-property as well as the symmetry of F e

at the end of the integration interval are used. Finally, the following equations
must to be solved:

R1 : = F e − FF vep−1
n exp(−∆tL̃vep),

R2 : = C̄ve − C̄ve
n − D̄veC̄ve − C̄veD̄ve,

R3 : = skew(F e),

R4 : = sym(W̃ vp),

R5 : = (s(1) − s(1)n −∆tṡ(1))/s0,

R6 : = (µ1 − µ1,n −∆tµ̇1)/µ
0
1,

R7 : = ϕ− ϕn −∆tϕ̇,

(B.3)

where the first system R1 encases (B.2) in the decomposition (1). The residuals
R2 and R4 in (B.3) consist of six equations and R3 of three equations (27 state
variables in all).

Solution of (B.3) is obtaioned by the Newton-Raphson method. The solution
becomes Yn+1 = Yn +∆Y , where

∆Y = −J−1R, J :=
∂R

∂Y
(Jacobian), R := [R1 R2 R3 R4 R5 R6 R7].

(B.4)
The system (B.3) is well suitable for standard finite-element codes, Holopainen and Wallin

(2012); Engqvist et al. (2016). Therein, the algorithmic tangent stiffness (ATS)
tensor is of major importance. The procedure to obtain the ATS tensor can be
found from (Holopainen and Wallin, 2012, p. 8). An initial simulation result
based on the system (B.3) is shown in Fig. 3.
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Reduction to uniaxial stress

The evolution equations for uniaxial loadings used in the calibration and
simulations are defined below. The total deformation gradient under such con-
ditions is expressed by:

F = v11e1 ⊗ e1 + v22e2 ⊗ e2 + v33e3 ⊗ e3, (B.5)

where {ei, i = 1, 2, 3} are the unit base vectors and vii = Fii denote the prin-
cipal stretches having the relation J = det(F ) = v11v

2
22 > 0 with the rotation

R being unity. The only nonzero stress component is given by:

σ11 =
1

J
E ln(ve11) (B.6)

where E is the Youngs modulus and ve11 is the principal stretch of ve defined in
(2). Owing to the uniaxial stress state, the elastic deformation is constrained
by

ln(ve33) = ln(ve22) = −ν ln(ve11) (B.7)

where ν is the Poissons ratio. Due to the symmetry, v33 = v22 in (B.5), when
it follows from the decomposition (1) and (B.7) that F vep

33 = F vep
22 . Since F vep

and F e are diagonal, C̄vep
33 = C̄vep

22 in (3). Then, noting volume-preserving
viscoelastic-plastic deformation, the relation

C̄vep
22 = (F vep

22 )2 = 1/F vep
11 (B.8)

holds. Similarly, based on (40) also C̄vp
33 = C̄vp

22 = 1/
√

C̄vp
11 and C̄ve

33 = C̄ve
22 =

1/
√

C̄ve
11 in (5) are isochoric strains.

Because the uniaxial stress state is inherently spin less and results in F e

being symmetric, the tensor valued equations in the system (B.3) reduces to

R1 : = C̄vep
11 − C̄vep

n,11 − 2D̄vep
11 C̄

vep
11 ,

R2 : = C̄ve
11 − C̄ve

n,11 − 2D̄ve
11C̄

ve
11 . (B.9)

Considering displacement-control: once C̄vep
11 and thus, F vep

11 are known, F e
11

can be solved from the decomposition (1) during iterations, i.e. F e
11 = F11/F

vep
11 .

When force-control is applied, F e
11 = ve11 is directly available from the constitu-

tive equation (B.6). Then, once C̄vep
11 and thus, F vep

11 are known, F11 is available
from the decomposition (1).
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