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ABSTRACT: The key issue of this contribution is the magneto-mechanical behavior of a magnetically hard
magnetorheological elastomer (H-MRE). A numerical model based on the conservation laws of continuum me-
chanics and magnetism is presented and then applied to a specific 2-dimensional case of an H-MRE specimen.
The interaction between two remanently magnetized particles and its dependence on the relative positioning of
the particles to one another are studied. The reaction of the elastomer matrix to the particle-particle interaction
is analyzed for three configurations of the particles in the specimen. In a second step, the specimen is exposed
to a unidirectional tensile load. It is demonstrated that the magnetization of the particles induces a change in
the modulus which strongly depends on the arrangement of the particles in the matrix: an increase as well as
a decrease of the modulus are observed. By the help of the principal stresses, three different types of magnetic
interactions are identified and assigned to the corresponding softening and stiffening reactions of the specimen.

1 INTRODUCTION

The term magnetorheological elastomer (MRE) de-
scribes a composite material which consists of mag-
netosensitive particles dispersed in an elastomer ma-
trix. MRE are interesting for engineering applications
because their mechanical properties can be influenced
by magnetic fields. The particles can be either dis-
persed randomly in the matrix (isotropic MRE) or
be aligned in chains (anisotropic MRE). To align the
particles, the composite is cured in an external mag-
netic field (Rigbi and Jilkén 1983, Ginder et al. 1999).
MRE can furthermore be divided in S-MRE, contain-
ing magnetically soft particles and H-MRE in which
magnetically hard particles like NdFeB are present.

1.1 Modelization of MRE

In order to better understand the magnetomechanical
behavior of S-MRE observed in experiments, several
models have been developed over the last years as
the review of Cantera et al. (2017) shows. A coupled
model can be based on the conservation laws of con-
tinuum mechanics and magnetism as well as on the
potential energy (Danas et al. 2016). In both cases, an
external magnetic field is necessary to generate mag-
netic interactions in an S-MRE as the particles can-
not be remanently magnetized. The particles are of-

ten considered as spherical and their magnetization
as unidirectional, as for example in the work of Jolly
et al. (1996). By analyzing the magnetic interaction
energy between aligned particles, a raise of the shear
stiffness due to the magnetic field can be found. In
a parametrical study conducted by Han et al. (2013),
straight chains are compared to wavy particle chains.
It is shown that the modulus varies with the particles’
misalignment and an increase as well as a decrease
is observed. An analytical model for randomly dis-
tributed particles has been proposed by Borcea and
Bruno (2001). They study the macroscopic behavior
of an S-MRE with a statistically homogeneous dis-
tribution of particles. A study of the magnetic forces
between two spherical, magnetically soft particles is
presented as well.

The work presented in the following is using the
direct method to model the behavior of MRE. In con-
trast to most of the models existing in the literature,
the numerical model presented in the following con-
cerns an H-MRE. Instead of an external magnetic
field creating magnetic dipoles in the matrix, the re-
manently magnetized particles generate a magnetic
field. The model is implemented in the finite element
software COMSOL and the magnetic interactions be-
tween two magnetic dipoles as well as their impact on
the elastomer matrix are studied.



2 MAGNETOMECHANICAL MODEL

2.1 Fundamental assumptions

Several assumptions are made for the numerical
model, on the one hand to simplify the validation of
the model and on the other hand to reduce calcula-
tion time. The influence of time depending effects
is neglected for both physical domains which means
that creep or relaxation behavior is not considered.
A static study without electric current is assumed. A
rigid connection between the particles and the matrix
is supposed. Figure 1 sketches the general case of a
magnetic particle Ωp enclosed by an elastomer ma-
trix Ωe in a volume of air Ωa. The interfaces between
two materials or boundaries are denoted with the sym-
bol Γ. In the following section the magnetomechani-
cal model is presented on the example of this general
case.

2.2 Governing equations

The absence of currents allows the definition of a
magnetic scalar potential Vm which is related to the
magnetic field H⃗ by equation (1). The magnetic be-
havior is assumed to be linear for all materials. In this
case, the relation between the magnetic field and the
magnetic flux density B⃗ is established by the vacuum
permeability µ0 and the relative permeability µr of a
material. A remanent magnetic flux density B⃗r is as-
sociated with the magnetized material while for the
air and the elastomer B⃗r is equal to the zero vector
in equation (2). The magnetic flux is conserved by
the Maxwell equation (3). The magnetic stress tensor
σmag is obtained from the magnetic field, the mag-
netic flux density and the magnetization M⃗ of the dif-
ferent materials (4).

The mechanical material behavior is assumed to
be linear. For an isotropic linear elastic behavior,
the deformation tensor ε is linked to the mechani-
cal stress tensor σmech by the fourth order elasticity
tensor C (5) which can be obtained from the Young
modulus E and the Poisson’s ratio ν. The deforma-
tion can furthermore be expressed as a function of the
displacement field u⃗ (6).

In a static case and under absence of external vol-
ume forces the magnetomechanical coupling can be
established in different ways. In a volume based ap-
proach, equation (7) describes the fact that the mag-
netic and mechanical stresses counterbalance each
other in the equilibrium state. The coupling can also
be established by a boundary condition since the
stress state has to be continuous on a boundary be-
tween two materials. According to Eringen and Mau-
gin (1990), the boundary condition at the interface be-
tween the particle and the elastomer can be expressed
with equation (8) for a quasi-static case. ⟦X⟧ =X+ −

X− corresponds to the tensor jump at the interface, the
normal vector n⃗p is pointing from − to +. The indices

p and e of the mechanical and the magnetic stress ten-
sors, σmech and σmag, stand for the particle and the
elastomer domain.

When post-processing the results of the magne-
tomechanical problem, an equivalent magnetic force
F⃗ acting on the particle’s center of gravity G can be
calculated by the help of σmag from equation (9). In
the same way, an equivalent torque T⃗ with respect to
G is introduced by summing the contribution of each
point C of the boundary Γep (10) (COMSOL 2019).
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Figure 1: Sketch of a magnetic particle Ωp surrounded by a elas-
tomer matrix Ωe in a volume of air Ωa.

H⃗ = −grad(Vm) in Ωa ∪Ωe ∪Ωp (1)

B⃗ = µ0µrH⃗ + B⃗r in Ωa ∪Ωe ∪Ωp (2)

div(B⃗) = 0 in Ωa ∪Ωe ∪Ωp (3)
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σmech =C ∶ ε in Ωe ∪Ωp (5)

ε =
1

2
(grad(u⃗)+ grad(u⃗)T ) in Ωe ∪Ωp (6)

div(σmag +σmech) = 0⃗ in Ωe ∪Ωp (7)
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2.3 Application to a specific case

A 2D magneto-mechanical case (Figure 2) has been
set up in COMSOL 5.3a. The problem is reduced to
2 dimensions by assuming a mechanical plane stress
behavior and forcing the magnetic field to be plane
as well. The x-y plane is chosen as working plane
while the out-of-plane thickness, corresponding to
the thickness in the z-direction, is set to t = 1 µm.
The model comprises a micron sized H-MRE spec-
imen located in a volume of air Ωa with the side
length of La =100 µm. Two magnetic particles, Ωp1

and Ωp2 , with a circular cross section and a diame-
ter of d = 5 µm are enclosed by an elastomer matrix
Ωe having a side length of Le = 25 µm. A vector e⃗ is
starting from the center of Ωp1 , passing by the point
O(x = 0∣y = 0) and pointing towards the center of Ωp2 .
The distance between the particles is described by the
length of the vector e⃗.

In a parametric study the angular position of the
particles to one another is altered. The distance ∣e⃗∣ is
kept constant at 11 µm while the angle θ between e⃗
and the direction of the particles’ magnetization (co-
incident with the y-direction) changes. The range for
θ is set from 0 ○ to 180 ○ and divided into steps of 5 ○.
With the given range for θ, 37 configurations are ob-
tained.
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Figure 2: Sketch of specific case of application for the model.

All properties of the different materials used for the
specific case are summarized in Table 1. The relative
magnetic permeability µr is set to 1 for the air and the
elastomer. Due to the experience in magnetic simula-
tion of the company MMT, µr is set to 1.3 for the mag-
netic material NdFeB. The elastomer is considered as
a nearly incompressible material, its Poisson ratio ν is
set to 0.499. The Young modulus E of 0.7 MPa is ob-
tained from a quasi-static tensile test on an elastomer
of which the density ρ = 1.08 g/cm3 is given in the
datasheet. The company Neorem Magnets OY (2019)
discloses a value of 150 GPa for the Young modulus
of sintered NdFeB magnets which is used for the mag-
netic material in this case. The Poisson ratio is set to

0.3. A y-component for the remanent magnetization
of Bry = 0.8 T is associated with the two particles.
This magnitude as well as a density of 7.62 g/cm3 are
given in the datasheet of the magnetic powder MQFP-
14-12-20000-089 from Magnequench.

Table 1: Material properties
magnetic mechanical
µr B⃗r [T] E [MPa] ν ρ [g/cm3]

Ωa 1 (0 0)T - - -
Ωe 1 (0 0)T 0.7 0.499 1.08
Ωp 1.3 (0 0.8)T 150000 0.3 7.62

Regarding the mesh, a quadratic interpolation is
chosen for the magnetic scalar potential as well as for
the displacement field. The deformation of the com-
posite is taken into account for the calculation of the
magnetic forces.

3 PARAMETRIC STUDY

3.1 Particle-particle interaction

To study the interaction between the magnetized par-
ticles and the resulting stress state in the matrix, the
boundaries of the elastomer are fixed. The magnetic
flux can propagate in the material but not leave the air
domain. The boundary conditions can be written as

u⃗ = 0⃗ on Γae1 ,Γae2 ,Γae3 ,Γae4 , (11)

n⃗T
a B⃗ = 0 on Γa . (12)

The evolution of the magnetic force components,
Fx and Fy, as well as the torque around the z-axis Tz
are calculated for each particle with respect to its cen-
ter. Figure 3 shows the results obtained for Ωp1 , Ωp2

and Tz as function of θ. The evolution of all the force
components with θ is sinusoidal and shows a period-
icity of 120 ○. Fx has the same magnitude for Ωp1 and
Ωp2 but the components are oppositely directed. The
same result is obtained for Fy. The configurations for
which Fx reaches a maximum are the configurations
where Fy is equal to zero and vice versa. The evolu-
tion of Tz with θ is sinusoidal and shows a periodicity
of 180 ○.

The result for θ = 0 ○ is comprehensible: the par-
ticles are aligned in the y-direction, different mag-
netic poles face each other and attraction forces in the
y-direction appear. Since the particles are perfectly
aligned, the force does not contain a component in
the x-direction. The torque is zero because the par-
ticles do not need to rotate to align their magnetic
moments as the alignment is given by their arrange-
ment. The remaining results are more difficult to un-
derstand without a visualization. Therefore, 9 config-
urations for which either the force or the torque reach
an extreme value or are equal to zero are sketched in
Figure 4.



The particles and their magnetic moment (black ar-
row) are shown as well as the force vector (straight
red arrow) and a curved arrow representing the torque.
As described before, an alignment of the particles in
the y-direction, corresponding to θ = 0 ○and θ = 180 ○

results in two opposing magnetic poles facing each
other (Figure 4a and 4i). To reduce the magnetic en-
ergy they tend to form one dipole from the two ex-
isting ones and the particles align. For θ = 90 ○, two
north poles and two south poles face each other in
the x-direction (Figure 4e). Consequently the parti-
cles repel each other in this direction. There is no
torque since in this perfectly symmetric configuration
the stresses leading to a rotation compensate one an-
other. An alignment of particles in the direction of
their magnetization or perpendicular to it results in a
force that causes a translation of the particle.

Figure 3: Evolution of the components of the magnetic force Fx,
Fy and the torque Tz with the angle θ

The remaining six configurations are intermediate
states for which a torque is acting on the particles ad-
ditionally to the force. A maximum torque is reached
for θ = 45 ○ and θ = 135 ○ (Figure 4c and g). It can also
be seen that the forces for 4 configurations, namely
the ones with θ = 30 ○, 60 ○, 120 ○ and 150 ○, are unidi-
rectional (Figure 4b, 4d, 4f and 4h). But in con-
trast to the configurations with aligned particles in
x- or y-direction, a torque is acting on the particles.
The reason for this are the Maxwell stresses. Since
the force is a global value, calculated as an integral
over Γep (equation (10)), opposing stresses are can-
celed out by the summation. In the case of θ = 30 ○ for
example, the normal stresses in the y-direction com-
pensate each other. Nevertheless the tangential com-
ponents are present and cause a torque.

As a consequence of the particle-particle interac-
tion, the elastomer is exposed to mechanical stresses.

The principal stresses are analyzed for three config-
urations, for which θ takes a value of 0 ○, 45 ○ and
90 ○ respectively (Figure 5). The arrows indicate the
direction of the stress and the color is representative
for the magnitude. A negative value corresponds to
a compressive stress and a positive value to a tensile
stress.

As it can be seen in Figure 5a, the elastomer be-
tween the particles is under compressive stress while
the material near the upper and lower boundary is
under tensilte stress for θ = 0 ○. For an angle of θ =
90 ○, the local stress behavior is the exact opposite:
the elastomer between the particles is under tensile
stress while compressive stress appears in the zone
near the lateral boundaries. For the configuration cor-
responding to θ = 45 ○, the zone between the particles
shows tensile and compressive stresses in the princi-
pal directions. By the help of a coordinate transfor-
mation it could be shown that the state is equivalent
to pure shear stress. At the same time, the matrix at
the lateral boundaries of the elastomer is under ten-
sile stress while the material near the upper and lower
boundaries is under compressive stress. The magnetic
torque and the tendency of the particles to align in the
direction of magnetization is the origin of a complex
local stress behavior in the elastomer.

a) b) c)

d) e) f)

g) h) i)

Figure 4: Arrangement of the particles, magnetic moment (black
arrow), magnetic force (straight red arrow) and torque (curved
red arrow) for 9 configurations of the parametric study.

3.2 Macroscopic behavior

In a next step, the influence of the particles’ position
on the macroscopic behavior of the specimen is eval-
uated: the equivalent of a unidirectional tensile test
is simulated. Therefore a static displacement of a =
Ls ⋅ 1% is imposed to the specimen in the y-direction.
The resulting deformation of the specimen is sketched
in Figure 6a. While the magnetic boundary conditions
stay the same as stated in equation (12), the mechan-
ical boundary conditions for this case are the follow-



a) b) c)
Figure 5: Principal stresses in the elastomer for the configurations 1 (θ =0 ○), 10 (θ =45 ○) and 19 (θ =90 ○)

ing:

∣uy ∣ = 0.5% ⋅Le on Γae1 ,Γae3 , (13)

u⃗ = 0⃗ onO . (14)

The apparent Young modulus of the specimen in
this direction is obtained by dividing the y-component
of the reaction force Fry on Γae1 by the theoretical
cross section in the x-z plane (Le ⋅ t) and the elon-
gation of 1 %. To study the influence of the magne-
tization on the apparent Young modulus, the test is
conducted for the same configuration with nonmag-
netized particles (Bry = 0T ) and with magnetized par-
ticles (Bry = 0.8T ). The ratio of the corresponding
moduli E(Bry = 0.8T ) and E(Bry = 0T ) gives the
change in the apparent Young modulus ∆E due to
magnetization:

∆E =
E(Br = 0.8T )

E(Br = 0T )
. (15)

The evolution of ∆E as a function of the angle θ is
shown in Figure 6b. In three zones, the ratio is higher
than 1 which corresponds to a stiffening of the mate-
rial due to the magnetization of the particles. In the
two zones where the ratio is smaller than 1, the mag-
netic interaction of the particles leads to a material
softening. The magnetic forces and principal strains
in the matrix can be helpful to understand that there
are three different effects leading to the change in the
modulus.

The first one is the stiffening appearing for an angle
θ from 0 ○ to approximately 24 ○ and 154 ○ to approxi-
mately 180 ○. The corresponding ranges are labeled as
’effect 1’ in Figure 6b. The example of configuration
1 with θ = 0 ○ is chosen to explain the effect. The parti-
cles attract each other and so the magnetic forces are
opposing the mechanical forces. As a perfect cohe-
sion between particles and matrix is supposed, tensile
stresses appear on the matrix upper and lower bounds
(Figure 5a). A higher magnitude of force is necessary
to reach an elongation of the specimen, the modulus
increases as a consequence.

The apparent stiffening in the zone where θ ranges
from approximately 72 ○ to 108 ○ is caused by the in-
compressibility of the matrix. For θ = 90 ○ there are re-
pelling forces between the particles in the x-direction.

Since the distance between the particles increases in
this direction, there are compressive stresses appear-
ing in the x-direction (Figure 5c). Due to the incom-
pressibility of the matrix, as it tends to elongate in
the x-direction it shrinks in the y-direction. The stress
state is opposite to the one imposed by the tensile test
and this causes the modulus to increase. The corre-
sponding range is labeled with ’effect 3’ Figure 6b.

The attempt of the particles to align in the y-
direction is the reason for the material softening in
the zone labeled as ’effect 2’ in Figure 6b. As it can be
seen for the principal stress state of θ = 45 ○, the par-
ticle interaction causes a tensile stress on the lateral
boundaries of the elastomer and compressive stress
on the upper and lower boundary. These stresses con-
tribute to a traction in the y-direction and less force is
necessary to elongate the specimen, as a consequence
the modulus decreases.

It is important to mention that there are three con-
figurations for which the magnetism has no influence
on the modulus (∆E = 1). The mean of ∆E is also
equal to 1 which means that the softening and stiffen-
ing effects are likely to compensate each other statis-
tically in a bigger specimen with randomly distributed
particles.

4 CONCLUSIONS

4.1 Summary of the results

In this work, a magnetomechanical model for an
H-MRE based on the conservation laws of continuum
mechanics and magnetism is presented. After a brief
contextual setting of the research field, a summary of
the general assumptions is given and the governing
equations are presented. The model is applied to the
simple case of two interacting hard magnetic particles
embedded in an elastomer.

A specimen consisting of a elastomer matrix which
is surrounded by air while containing two remanently
magnetized particles is used to study the influence of
the microstructure on the magnetomechanical behav-
ior of an H-MRE specimen. The angular distance be-
tween the particles has been altered from 0 ○ to 180 ○

by steps of 5 ○. For the 37 resulting configurations the
magnetic forces and the torque as well as the impact
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Figure 6: (a) Scheme of the specimen in original and elongated state (orange and black line respectively) and (b) evolution of ∆E as
a function of the angle θ including the identification of five zones in which three different effects lead either to a material stiffening or
softening

on the stress state of the elastomer matrix have been
evaluated. While forces acting on the particles show a
periodicity of 120 ○, the torque is 180 ○ periodic. It has
been shown that the forces as well as the torque are
important to understand the stress arising in the elas-
tomer matrix. The orientation of the magnetic forces
corresponds to the results for the analytical model of
Borcea & Bruno (2001), but in contrast to their model
developed for an S-MRE, a torque is present due to
the magnetic anisotropy induced by the magnetization
of the particles.

In a next step, the influence of the microstructure in
combination with the remanent magnetization of the
particles has been studied. Uniaxial tension has been
applied to the specimen in its 37 configuration. The
apparent Young modulus of a non-magnetized spec-
imen and a magnetized specimen of same configura-
tion are compared. It can be stated that the microstruc-
ture has an important influence on the macroscopic
behavior since this apparent modulus increases, de-
creases or stays the same depending on the geometri-
cal arrangement of the particles.

4.2 Discussion

The aim of this work is to better understand the
particle-particle interactions appearing in an H-MRE.
Several simplifications have been made to set up a
first model like the assumption of plane magnetic and
mechanical quantities. The 2D model does not repre-
sent the case of spherical particles embedded in a ma-
trix, it represents a transversely anisotropic compos-
ite containing magnetic cylinders. Thus macroscopic
results like the reaction forces are quantitatively not
significant but the tendencies can be evaluated as the
assumptions are defensible for the local behavior. A
comparison to a 3D model has to be done in the fu-
ture nevertheless. Two other points which have been
neglected in this model are the time dependent behav-
ior of the matrix as well as a potential detachment of
the particles from the matrix. These aspects have to be
included in a future model. Further studies on the in-
fluence of an external magnetic field are planned. For
this purpose, the assumption of the particles’ linear
magnetic behavior may no longer be valid. Sugges-

tions for modeling the hysteretic behavior of H-MRE
have been made for example by Kalina et al. (2017).
The case of particles randomly distributed in a ma-
trix is mentioned in the third section of this article. In
future works, the presented model will be applied to
study the influence of particle distribution and form in
representative volume elements (RVE) with periodic
boundary conditions.
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