
SCAFFOLD-BASED ASYNCHRONOUS DISTRIBUTED
SELF-RECONFIGURATION BY CONTINUOUS MODULE FLOW

Pierre Thalamy†, Benoı̂t Piranda†, Frédéric Lassabe† and Julien Bourgeois†

Abstract— Distributed self-reconfiguration in large-scale
modular robots is a slow process and increasing its speed
a major challenge. In this article, we propose an improved
and asynchronous version of a previously proposed distributed
self-reconfiguration algorithm to build a parametric scaffolding
structure. This scaffold can then be coated to form the desired
final object. The scaffolding is built through a continuous
feeding of modules into the growing shape from an under-
neath reserve of modules which shows a reconfiguration time
improved by a factor of 3

√
N compared to the previous and

synchronous version of the algorithm, therefore attaining an
O(N1/3) reconfiguration time, with N the number of modules
in the system. Our algorithm uses a local motion coordination
algorithm and pipelining techniques to ensure that modules can
traverse the structure without collisions or creating deadlocks.
Last but not least, our algorithm manages uncertainty in
the motion duration of modules without negatively impacting
reconfiguration time.

I. INTRODUCTION
The Programmable Matter Project1 [1] aims to build ob-

jects using modular self-reconfigurable robots [3] composed
of micro-robots thus able to change their shape, a pro-
cess called self-reconfiguration. The Programmable Matter
Project is a follow up of the Claytonics project [4] where
each micro-robot is called a Claytronics atom (Catom).
An object made of Programmable Matter can be densely
filled with Catoms but this creates two major problems:
movements can only occur on the surface, which limits
the number of parallel movements, and it immobilizes the
Catoms making up the interior of the volume, which could be
put to better use. Reconfiguration time is a crucial parameter
for self-reconfiguration. In [12], using a thousand Kilobots,
a reconfiguration takes from 6 to 12 hours, which limits the
usefulness of self-reconfiguration. To improve on this, we
propose to build objects using a sparse scaffold structure for
their inner part, to which we add a coating for their outer
part, thus creating the illusion of a densely filled object at a
lesser cost and dramatically speeding up the reconfiguration.

In [15], we defined the scaffolding structure, and proposed
a synchronous self-reconfiguration method based on two
levels of planning: (i) an ordering in the construction of
the scaffold; (ii) local rules for guiding the local motion of
modules. It also assumes an underneath reserve of modules,
named sandbox, from which modules can be called in to take
part in the reconfiguration. We showed that this method is
able to build square pyramids with n O(N

2
3) reconfiguration

†All authors are with Univ. Bourgogne Franche-Comté, FEMTO-ST
Institute, CNRS, 1 cours Leprince-Ringuet, 25200, Montbéliard, France.
{first}.{last}@femto-st.fr

1http://projects.femto-st.fr/programmable-matter/

time and using O(N
4
3) messages without congesting the

network, with N the total number of Catoms.
However, this work presents some limitations: it relies

heavily on a synchronization between the central node of a
scaffold tile and the ones of the four tiles feeding it from the
sandbox, as well as a fixed movement time for all modules,
which is unrealistic. Furthermore, it requests modules from
the sandbox only when they are needed, which slows down
the reconfiguration process due to the delay between their
request and arrival.

To address these limitations, we propose in this paper an
asynchronous distributed algorithm which improves on the
algorithm in [15] by continuously injecting modules on the
scaffold from the sandbox, regardless of the requirements
of the goal shape. It therefore uses a surplus of modules
which can later be used for the coating and it improves the
reconfiguration time of the self-reconfiguration by a factor of
3
√

N, which corresponds to an O(N1/3) reconfiguration time
when building the scaffold of a square pyramid, with N the
total number of Catoms. Furthermore, our algorithm does not
assume any synchronization of the system to achieve these
results, and is resistant to uncertainty in the rotation time of
the modules. Both are made possible thanks to our motion
coordination algorithm.

II. RELATED WORKS

Using scaffolding to aid self-reconfiguration is not a novel
approach. To the best of our knowledge, it was introduced
in [6] with massive scaffold tiles consisting of 54 mod-
ules. It was then further investigated in works with cubic
modules [13, 14] and [7] with a much simpler scaffold
design in which modules could slide through one-module-
thick tunnels. Scaffolding is very much alike some of the
applications of the concept of meta-modules [9, 2, 17, 5],
where modules are grouped into logical units, which can be
organized so as to form a porous structure that allows internal
module movement through tunneling.

Reconfiguration can also be aided through communication.
For instance, in [8], the authors propose a reconfiguration
algorithm for 2D cylindrical robotic modules that uses
message-based coordination to ensure that modules moving
in parallel are not impeding on their respective motions.
In practice, this method creates trains of rotating modules
that move and stop in unison, always keeping one free
lattice cell between them. Yet, the generalization of this
method to 3D reconfiguration is non-trivial, as the added
dimension prevents the identification of a common direction
of motion for modules moving in parallel. Nevertheless, with

the addition of a scaffolding structure such as ours, the
navigation on a single branch of the scaffold can be again
reduced to a 2D problem through pipelining, thus restoring
its benefits.

III. PREREQUISITES

A. THE 3D CATOM MODULAR ROBOT

We consider a modular robot made of a very large number
of 3D Catom [11] robotic modules, arranged in a Face-
Centered Cubic (FCC) lattice. 3D Catoms are micro-scale
quasi spherical modules that are under development. Each
3D Catom can connect to up to 12 neighbor modules thanks
to the connectors positioned on each of its sides. They
communicate locally to their immediate neighbors through
these same connectors, also supplying power.

3D Catoms move by rotating on the surface of a neighbor
module using electrostatic actuators, acting as a pivot and
providing the necessary actuation. They can use either one
of the two faces (hexagonal and octagonal) to rotate on their
surface (see video in footnote2), depending on their local
motion constraints.

We assume that our modules are able to react through
their programming to events related to their state or local
environment, such as the arrival or departure of a neighbor
(ADD NEIGHBOR / REMOVE NEIGHBOR), or the end of
a rotation (ROTATION END).

Due to the geometry of 3D Catoms, a position can only be
filled if the two opposite positions around it are free. Filling a
gap in a line of modules is therefore impossible [16]. This is
why it is crucial to enforce a methodical construction strategy
in order to avoid the occurrence of deadlocks.

Furthermore, additional motion constraints prevent a 3D
Catom from performing a motion if that motion will result in
a collision with another module in its first- or second-order
neighborhood.

B. SCAFFOLD MODEL

We define our scaffold model as an arrangement of struc-
tured groups of modules named tiles. A scaffold tile consists
of a single module at the core, referred to as tile root, and
acting as the Coordinator of the construction of the tile; one
or two horizontal branches along the −→x and −→y axes; from
one to four vertical branches named ZBranch, LZBranch,
RevZBranch, RZBranch; and four Support modules between
the vertical branches, allowing modules coming from inci-
dent vertical branches to traverse the tile vertically. Each
branch is made of b modules including the tile root, such that
4< b<m, with b a parameter of our model and m a constant
defined by the mechanical strength of 3D Catom connectors.

Modules navigate the scaffolding structure by vertically
flowing from tile to tile, rotating on Support modules or
the modules making up the branches of the tiles, acting as
pivots. Each module or position comprising the structure of
a tile can be referred to as a Tile Component. In addition to
components, we define special positions around the tiles to

23D Catoms motion video: https://youtu.be/IZh-5p1dbKk

Fig. 1. 3D structure of a tile with b = 6. a) Pink transparent cells represent
the four entry points into the tile that we use, and white module represents
the root R of the new tile, origin of the local coordinates system; b) 3D
position of support (yellow) and branch modules of the tile.

which we will refer as Entry Point Positions, or EPL. These
are the lattice cells through which modules entering a tile
must pass. In this work we use the 4 EPL located centrally
on each of the incoming vertical branches, over the second
to last module of each incident branches (see Figure 1.a)

When a module enters a tile through one of its EPL, it
has to request a goal position within that tile from the local
Coordinator of that tile, which will either direct it to one of
the children tile above, or a destination tile component to be
claimed, if the tile is still under construction.

This work focuses on the construction of structures where
all tiles of the scaffold are resting on four incident vertical
branches, and therefore 4 parent tiles underneath, namely,
h-pyramids. An h-pyramid is a square pyramid shape with
an h-tile large square base and a height of h tiles. This
simplification is useful as modules can flow through the
structure vertically without having to coordinate the hori-
zontal traversal of tiles by modules flowing from different
incoming vertical tiles. This restriction will be lifted with
further coordination works, and we are confident this can be
done without affecting on the present results.

C. SANDBOX

As mentioned earlier, we assume that underneath the
reconfiguration scene is located a reserve of modules which
we will refer to as sandbox. The sandbox is a cubic volume
organized into our scaffolding structure and holding a surplus
of modules on its branches, and provides both power and
the description of the goal shape to all modules. It allows
to introduce 3D Catoms at various ground locations of the
reconfiguration space, by having them rotating from the sand-
box using the scaffold branches just as in our reconfiguration
algorithm.

IV. SELF-RECONFIGURATION ALGORITHM

A. ROLES

Throughout this paper, we consider the following module
roles for explaining the algorithm: Coordinator is the root
module of a tile, acting as a local coordinator guiding
the construction process of its tile; FreeAgent modules are
introduced from the sandbox underneath and navigate the
structure until they encounter a tile with a scaffold position

to be claimed; Beam modules are any final scaffold compo-
nents that are not a Coordinator (thus, branches or support
modules).

B. MESSAGING
Our reconfiguration algorithm uses a number of different

message types. Some of them are used by the high level
reconfiguration process to direct the growth of the structure.
Others have to do exclusively with the coordination of mod-
ules navigating the structure in parallel. Below is a summary
of the messages used in our algorithm, their function, and
their data.

1) Scaffold construction messages:
MESSAGE NAME (ACRONYM) [DATA]

• REQUEST GOAL POSITION (RGP) [sender]: Sent to
the local Coordinator by a FreeAgent arriving into a
new tile, to request its next destination.

• PROVIDE GOAL POSITION (PGP) [recipient, goal]:
Response to RGP sent by a Coordinator to a requesting
FreeAgent. Includes a goal position that can either be
an unfilled component of the current tile or the EPL of
a tile above.

• TILE INSERTION READY (TIR) [/0]: Signals to the
modules waiting on the EPL of a future tile that con-
struction can proceed. Sent by the last arrived module
from the last arrived incident branch to that tile.

• COORDINATOR READY (CR) [/0]: Sent by a newly ar-
rived coordinator to instruct FreeAgent modules waiting
on an EPL that it is ready to process RGP messages.

For additional details on RGP, PGP, and TIR, see [15].
2) Motion coordination messages:
• PROBE LIGHT STATE (PLS) [sender, nextPos]: Sent

by a module about to move in order to obtain an
authorization of moving from the pivot module to which
it will latch after its motion. It holds the position of the
sender for routing the reply, and the position to which it
seeks to move (nextPos). The latter is used by a receiver
to dynamically determine the pivot that should answer.

• GREEN LIGHT ON (GLO) [recipient]: This is a reply
to PLS, sent back to the module which made the request
by the pivot module that is ready to receive it as a
neighbor.

• FINAL TARGET REACHED (FTR) [/0]:
Pivot modules monitor changes in their neighborhood
caused by moving modules in order to update their state
and block or resume the flow of modules moving to their
location. The flow of modules is usually resumed by a
pivot when a moving module leaves the neighborhood
of the pivot. However, if a moving module claims a
scaffold position that is next to the pivot, a moving
module will enter its neighborhood but never leave it.
In this scenario, FTR is sent by the module that has
just arrived to its claimed scaffold position module to
instruct the pivot to resume the flow of modules even
though it is still in its neighborhood.

We use a distributed message passing paradigm to de-
liver messages from one module to another non-neighboring

Algorithm 1: Distributed control algorithm pseudo-code
for the Coordinator module role.

Msg Handler REQUEST GOAL POSITION(srcPos):
epl = getEPLForPosition(srcPos);
if plan.isOver() then

goalPos = getAlternateBranchEPLfor(epl);
else if plan.nextComponentIsSourcedBy(epl) then

goalPos = plan.popNextComponent();
else

moduleWaitingOnEPL[epl] = true; return;
sendMsg(sender, PGP(srcPos, goalPos));
checkModulesWaitingOnEntryPoints();

Function checkModulesWaitingOnEPL:
do

moduleAwoken = false;
foreach epl ∈ getAllEntryPoints() do

if plan.nextComponentIsSourcedBy(epl) then
goalPos = plan.popNextComponent();
sendMsg(sender, PGP(srcPos, goalPos));
moduleAwoken = true;

while moduleAwoken = true;

module. Intermediate modules (between the sender and the
recipient) leverage the geometrical regularity of the structure
and their local knowledge to deduce the next hop according
to the message type.

C. OVERVIEW

Our reconfiguration method operates at two levels of
planning.

1) High-Level Planning: The higher level of planning
consists in the construction of the scaffold at the tile level,
in other words, the construction of the tiles relative to each
other in term of their precedence. A construction order is
enforced (roughly 3D diagonal growth) based on a very
simple set of rules: (i) scaffold construction must start from a
single ground point; (ii) A new tile can only start undergoing
construction once all its incident branches are complete. The
tile construction process is then directed by the first module
of a tile placed in the root position, whose role is to direct
incoming module flows to the next position to be filled in
the tile, following a predetermined construction plan based
on the specific location of that tile within the goal shape.
When their tile is complete, Coordinators are responsible
for directing all modules arriving to a branch, to the branch
directly above that branch.

Algorithm 1 illustrates how this behavior is implemented.
See Algorithm 2 for the complementary viewpoint of
FreeAgent modules.

During the construction of the scaffold, modules are
continuously flowing through the structure vertically, from
the sandbox below, and they only stop when they are blocked
by a Coordinator after entering an EPL of its tile. The motion
coordination algorithm explained in the next section allows

the propagation of the halt of the flow through message
passing, in addition to preventing potential collisions.

When a Coordinator gets into its final position, it ini-
tializes a queue data structure holding a list of couples
〈SCi,EPL j〉 where SCi is a scaffold component, i ∈ [0,5b+
4], and EPL j is the EPL from which a module claiming the
component SCi should come, j ∈ [0,3]. This list therefore
represents the ordered construction plan of the tile, computed
dynamically by the Coordinator when it arrives into the tile
root position and based on its position within the overall
structure. This plan enforces a precedence in the placement
of modules coming from different directions, in order to
minimize the risk of collisions. Upon reception of an RGP
message, the Coordinator checks whether the request comes
from the entry point EPLi of the next component in the plan
and responds with a PGP message or puts the module on
hold otherwise. Whenever the construction advances through
the claim of the next component by a FreeAgent module,
the Coordinator checks whether it previously put on hold a
module waiting on the EPL for the next component to be
filled, and so on. Once the construction of the tile is over,
the flow of incoming modules is left uninterrupted, and all
modules are routed towards the EPL of the branch directly
over the one on which they arrived.

2) Low Level Planning: Conversely, the low level plan-
ning consists in the mechanisms of the flow of modules
themselves, or in other words, how FreeAgent modules
navigate the tile structure once they have been assigned
a goal position within a tile. Just like in [15], each 3D
Catom is given an identical set of local rules that describes
the sequence of motions to be taken in order to navigate from
each EPL of a tile to any component locations within that tile,
or EPL of children tiles. Every time a module has to perform
a motion towards a goal position, it attempts to match its
local neighborhood, the number of motions since its entry
into the tiles, and its goal position to an entry in its local rules
database. The result is the displacement induced by its next
motion towards its goal. It then searches its neighborhood for
a pivot that can be used to perform a rotation representing
this movement. If it cannot find a rule to match or a pivot
to perform the motion, it waits and periodically checks for
these conditions until they are satisfied.

D. MOTION COORDINATION ALGORITHM

We find that managing a large numbers and a high
density of modules across the structure is too slow and too
complicated as moving modules tend to block each other. We
therefore force all modules moving concurrently to always
keep a free position between each other, in a manner similar
to [8].

A major difference with our previous work is that mod-
ule motions now are asynchronous and can have different
stochastic durations. In order to support both, we propose
a distributed and local motion coordination algorithm, de-
scribed in this section.

A straightforward condition to ensure that two mobile
modules have always a space between them is to prevent

Algorithm 2: Distributed control algorithm pseudo-code
for the FreeAgent module role.

Event ROTATION END: ARRIVED FROM SANDBOX:
if myPos == goalPos then

if isTileComponent(myPos) then
agentRole = agentRoleForComponent(myPos);

else reachedNewTileEntryPoint() ;
else

step++;
planNextRotation();

Function reachedNewTileEntryPoint():
coordinatorPos = getNearestTileRootFrom(myPos);
nextHop = findSupportOrBranchTipNeighbor();
sendMsg(nextHop, RGP());

Function planNextRotation():
ngbh = getNeighborhood();
{nextPos, pivot} = matchRules(ngbh, goalPos, step);
sendMsg(pivot, PLS(myPos, nextPos));

Msg Handler PROVIDE GOAL POSITION(rcvdPos):
step = 0; goalPos = rcvdPos;
planNextRotation();

Msg Handler GREEN LIGHT ON(rcvdPos):
rotate(nextPos, pivot);

any module that could potentially act as a pivot from having
two mobile modules connected to it at the same time. In
the context of the scaffolding, pivot modules are all Beam
modules, immobile modules constituting the components
of the scaffold. These pivot modules can be in two states
GREEN LIGHT, and RED LIGHT. GREEN LIGHT means
that the pivot is accepting that a new mobile module latches
onto it, while RED LIGHT means the opposite. The tran-
sition between states occurs every time a mobile module
latches onto a pivot or unlatches from it, as it can be seen
on Figure 2. However, if the mobile module is on its final
motion to its goal position, it will send send a FTR to instruct
the pivot to turn back green, as explained in Section IV-B.

Every time a module wants to move, it sends a PLS
message to the pivot it plans to use for the motion. The
pivot then evaluates if it should be the one responding to the
request. The target pivot is one of the pivots to which the
module will connect at the end of its motion. It is the one that
is the farthest along the path of the moving module. When
a pivot receives a motion request, it either responds directly
with a GLO message if it is in the GREEN LIGHT state, or
waits for its state to change back to GREEN LIGHT before
responding, therefore holding the motion of the module
until it is safe to proceed. This could be modeled as an
ORANGE LIGHT state.

Algorithms 2 and 3 show how these mechanisms are
implemented.

FreeAgent Module
Sends message

PLS

receives message
GLO

produces event
REMOVE_NEIGHBOR

produces event
ADD_NEIGHBOR

MOVE

no

reaches
goalPos

sends message
FTR

no

Beam Module
receives message

PLS

sends message
GLO

no

no

no

receives event
ADD_NEIGHBOR

:=

receives event
REMOVE_NEIGHBOR

OR
receives message

FTR

no

:=

:=

Fig. 2. Pivot light states transition diagram. The two Beam routines are
executed concurrently on pivot modules.

Algorithm 3: Distributed control algorithm pseudo-code
for the Beam module role.

Function setGreenLightAndResumeFlow():
if state == ORANGE then

sendMessage(sender, GLO(waitingModulePos));
state = GREEN;

Event Handler ADD NEIGHBOR: state = RED ;

Event Handler REMOVE NEIGHBOR:
setGreenLightAndResumeFlow();

Msg Handler REQUEST GOAL POSITION(RGPmsg):
forwardMsgTowardsCoordinator(RGPmsg);

Msg Handler PROVIDE GOAL POSITION(PGPmsg):
forwardMsgTowardsRecipient(PGPmsg);

Msg Handler PROBE LIGHT STATE(PLSmsg):
if state == GREEN then

sendMsg(sender, GLO(PLSmsg.source));
else

state = ORANGE ;
waitingModule = PLSmsg.source;

Msg Handler FINAL TARGET REACHED(FTRmsg):
setGreenLightAndResumeFlow();

V. ANALYSIS

In this section, we study the number of modules used
to construct the scaffold, and the time complexity of the
reconfiguration method in the case of a pyramid shape
with a height of h tiles. We also compare this work with
the synchronous construction time of the scaffold presented
in [15].

The total number of modules engaged in the scaffold
construction algorithm corresponds to the number of modules
constituting the scaffolding structure Nscaffold added to the
excess modules sent by the algorithm to anticipate future

constructions.
The expression of Nscaffold and of the number of tiles Ntiles

in a pyramid of height h tiles are calculated in [15], and
reminded below:

Nscaffold = (2b− 1
3
)h3 +(

9
2
−2b)h2 +

5
6

h

Ntiles =
h3

3
+

h2

2
+

h
6

Excess modules are present along the paths formed by
the ascending branches of the structure. In the case of the
pyramid, for each level i ∈ [2..h] there are (h− i+1)2 tiles,
each receiving 4 ascending branches from the lower level.
Therefore, the total number of ascending branches is:

NZbranch =
h

∑
i=2

4(h− i+1)2 =
4h3−6h2 +2h

3

For each branches of length b, excess modules will fill
the EPL cell at the extremity of the branch, and a number of
internal position along the branch, keeping one free position
between any two mobile modules. Thus, we obtain e = b

2 −2,
the average number of modules per branch plus 4 modules
on EPL cells for each tile.

We then deduce the total number of modules Nmodules:

Nmodules = Nscaffold +4Ntile + e×NZbranch

=
h3

3
(8b+5)+h2(

25
2
−3b)+

h
6
(2b−3)

We can conclude that in the case of a pyramid of height
h, and in spite of excess modules, the complexity of Nmodule
is still O(h3).

In the same way as in [15], we base our analysis on the
construction tree of the scaffold, consisting of the tiles of
the scaffold as vertices, and expressing the precedence in
the construction of these tiles through its edges. The first
tile of the pyramid, located at (0,0,0), is the root of the
tree.

By studying displacement rules, we can observe that the
time needed to place the root module of the first tile of each
level i of the pyramid takes 16(b− 1) time steps (ts). We
can deduce that the sum of the waiting time and the motion
time necessary for a tile root module to reach its position
depends on its height i in the construction tree, which can
be expressed as:

Ttile = [16(b−1)]× ts

Ttile does not depend on its height in the construction
tree i, while in the previous version with waiting times,
we had Ttile(i) = 24+ 4b+ 2b× i. This is the reason why
the time complexity of this version is linear, as proven below.

Theorem 1: The time complexity of the asynchronous
construction of the scaffold is O(N

1
3).

Proof: Considering that the height of the construction
tree is O(h), we have:

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 3 4 5 6 7 8 9 10
-10%

0%

10%

20%

30%

40%

50%

60%
R

e
co

n
fi
g

u
ra

ti
o
n
 t

im
e
 (

ti
m

e
 s

te
p

s)

C
o
n
ti

n
u
n
o
u
s

fe
e
d

in
g

 s
p

e
e
d

u
p

Scaffold height, number of tiles layers

Performance comparison of continuous feeding vs. synchronized feeding

Sync. feeding
Async. feeding, random

Async. feeding, fixed
Speedup %

Fig. 3. Synchronous vs. continuous feeding comparison

T =
(h−1)

∑
i=1

16b−16 = 16(b−1)(h−1)

Told =
h

∑
i=1

24+4b+2b× i = 24h+b(5h+h2) (1)

Then, in the case of the pyramid of height h, considering
that the number of modules is Nmodule = O(h3), we can
conclude that the complexity of the reconfiguration time is

O(N
1
3

modules).
It is worth noting that for the same configuration of height

h, our method admits a time complexity of O(h), a factor
of h lower than our previous algorithm with waiting times
admitting O(h2) time steps, and without relying on any
synchronization.

VI. SIMULATION

We conduct various simulations to evaluate our contribu-
tions using VisibleSim [10], a modular robot simulator. We
study the following:
• Compare synchronous and asynchronous self-

reconfiguration algorithms with varying scaffold sizes.
We focus on studying the impact of the asynchronous
algorithm in terms of modules count and total
reconfiguration time. We measure the reconfiguration
speedup and modules usage as performance indicators
compared to the synchronous algorithm.

• We compare an ideal fixed-time module movement
model, with a more realistic model, where modules
have a pseudo random movement duration defined as
a normal distribution X ∼ N (µ, σ2), where µ is the
fixed value, and σ can be configured for simulating of
varying movement reliability.

• We run those tests for various scaffold height h, where
h is the number of tiles layers.

In Figure 3, we compare the construction time of a
scaffold for various scaffold heights. The figure shows the
construction time in simulator time steps in Y-axis for
several h values in X-axis. Three algorithms are compared:
synchronous feeding, and two variants of continuous feeding,

0 %

5 %

10 %

15 %

20 %

25 %

30 %

 1 2 3 4 5 6 7 8 9 10

M
o
d

u
le

s
o
v
e
ru

se

Scaffold height, number of tiles layers

Continuous feeding modules overuse

Fig. 4. Modules overuse by continuous feeding

one with fixed movement time, one with pseudo random
varying movement time. We make several observations from
the results: first, continuous feeding performs faster than syn-
chronous feeding, with a speedup increasing as the scaffold
height increases (This can be seen in the video showing
the side-by-side execution of the two algorithms, accessible
from footnote3. Second, both variants of continuous feeding
perform almost identically, which shows that our motion
coordination algorithm allow modules to synchronize with
their predecessors in a very efficient manner.

Figure 4 shows the percentage of module overuse due to
continuous feeding, this can be compared to synchronous
feeding, which has no overuse. These modules are not
lost since they can be sent back to the sandbox, or used
for further operations. What seems interesting is that this
unused quantity starts at 36% for a small scaffold and
quickly drops and stabilizes to about 25% when h ≥ 6. We
provide an analysis of the convergence of the surplus as the
size of the structure increases below.

Theorem 2: The rate of modules in excess has an infinite
limit lower than 25%.

Proof: We express the number of modules in excess
E(h) depending on the height of the pyramid by:

E(h) = NZbranch× e

E(h)
Nmodules(h)

=
(b−4)(2h3−3h2 +h)

h3(8b+5)+3h2(25
2 −3b)+h(b− 1

2)

If we calculate lim
h→∞

E(h)
Nmodules(h)

, we get:

lim
h→∞

E(h)
Nmodules(h)

=
1
4
− 37

32b+20

We can conclude that the rate of modules in excess is less
than 25% for large size pyramids.

As the construction time gain increases and modules
overuse remains stable as the size of the construction in-
creases, we conclude that our new algorithm, continuous
feeding, scales better than synchronous feeding. It is a key

3Side-by-side comparison video of synchronous feeding and async:
https://youtu.be/XpG20m7waJk

property when dealing with programmable matter, since we
aim at building shapes based on micro-robots which will
require an enormous amount of robots.

VII. CONCLUSION

In this paper, we propose an improved and asynchronous
version of our algorithm for building a scaffold using micro-
robots. This algorithm uses a continuous feeding of the
modules into the goal shape thus speeding the completion
time by a factor of O(N1/3) compared to the previous
version, owing to the removal of waiting times. We also
propose a coordination algorithm to avoid modules collisions
during the reconfiguration. This algorithm is expressed as a
set of callbacks, raised by events and messages, which sets a
traffic light-like module inner state indicating when it must
move and when it must wait.

Our proposal is experimented on a simple goal shape:
a pyramid, defined by its global height and its individual
tile size, and we provide results for varying values of both
parameters. From the results, we show that our algorithm
is promising: it is scalable and the modules overuse is,
in percentage, stable. Furthermore, the modules unused by
the scaffold could still be useful for further operations,
for instance to fill the outer envelop of the goal shape.
Our results also show that small motion time variations
have a negligible impact on the whole reconfiguration time,
making our algorithm robust to physical variations in module
movements.

VIII. FUTURE WORKS

We envision as future works to first eliminate the necessity
for a module surplus, which stands as the main drawback of
this method, and would necessitate that each Coordinator
geometrically computes the resource requirements of each
children tiles. Then, we aim to extend this work to all convex
shapes, for which we think our reconfiguration time result
can be preserved. This requires supporting the construction
of incomplete branches (i.e., where their length l < b), and
new rules for feeding any growing branch from any vertical
branch below. Next, we focus on concave shapes, which
would necessitate the design of a coordination mechanism
for modules to traverse tiles horizontally from any incident
branch, as well as a way to construct tile branches in
the opposite direction. This jump to generic shapes would
also require a systematic method for generating a scaffold
structure from the 3D description of an object. Furthermore,
we plan to allow the reconfiguration of an arbitrary scaffold
into another, by absorbing part of the structure to construct
another in an efficient manner. Finally, we aim to design a
coating algorithm that would enable one or several layers
of modules to cover the scaffolding structure and therefore
preserve the external aspect of the represented object.

ACKNOWLEDGMENT

This work was partially supported by the ANR (ANR-
16-CE33-0022-02), the French Investissements d’Avenir pro-
gram, ISITE-BFC project (ANR-15-IDEX-03).

REFERENCES

[1] Julien Bourgeois, Benoit Piranda, Andre Naz, Nicolas Boillot, Hakim
Mabed, Dominique Dhoutaut, Thadeu Tucci, and Hicham Lakhlef.
Programmable matter as a cyber-physical conjugation. In Systems,
Man, and Cybernetics (SMC), 2016 IEEE International Conference
on, pages 002942–002947. IEEE, October 2016.

[2] D. J. Dewey, M. P. Ashley-Rollman, M. De Rosa, S. C. Goldstein,
T. C. Mowry, S. S. Srinivasa, P. Pillai, and J. Campbell. Generalizing
metamodules to simplify planning in modular robotic systems. In Intel-
ligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, pages 1338–1345, September 2008.

[3] T. Fukuda and Y. Kawauchi. Cellular robotic system (CEBOT) as one
of the realization of self-organizing intelligent universal manipulator.
pages 662–667. IEEE Comput. Soc. Press, 1990.

[4] Seth Copen Goldstein, Jason D. Campbell, and Todd C. Mowry.
Programmable matter. Computer, 38(6):99–101, 2005.

[5] Hiroshi Kawano. Distributed Tunneling Reconfiguration of Sliding
Cubic Modular Robots in Severe Space Requirements. In DARS 2018,
14th International Symposium on Distributed Autonomous Robotic
Systems, page 14, 2018.

[6] K. D. Kotay and D. L. Rus. Algorithms for self-reconfiguring molecule
motion planning. In Intelligent Robots and Systems, 2000. (IROS
2000). Proceedings. 2000 IEEE/RSJ International Conference on,
volume 3, pages 2184–2193, 2000.

[7] Jakub Lengiewicz and Pawel Holobut. Efficient collective shape shift-
ing and locomotion of massively-modular robotic structures. Auton.
Robots, 43(1):97–122, 2019.

[8] André Naz, Benoı̂t Piranda, Julien Bourgeois, and Seth Copen Gold-
stein. A distributed self-reconfiguration algorithm for cylindrical
lattice-based modular robots. In Network Computing and Applications
(NCA), 2016 IEEE 15th International Symposium on, pages 254–263.
IEEE, 2016.

[9] An Nguyen, Leonidas J. Guibas, and Mark Yim. Controlled module
density helps reconfiguration planning. In Proc. of 4th International
Workshop on Algorithmic Foundations of Robotics, pages 23–36, 2000.

[10] Benoit Piranda. VisibleSim: Your simulator for Programmable Mat-
ter. In Algorithmic Foundations of Programmable Matter (Dagstuhl
Seminar 16271). Dagstuhl, May 2016.

[11] Benoit Piranda and Julien Bourgeois. Designing a quasi-spherical
module for a huge modular robot to create programmable matter.
Autonomous Robots, February 2018.

[12] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. Kilobot:
A low cost scalable robot system for collective behaviors. In 2012
IEEE International Conference on Robotics and Automation, pages
3293–3298, St Paul, MN, USA, May 2012. IEEE.

[13] Kasper Støy. Using cellular automata and gradients to control self-
reconfiguration. Robotics and Autonomous Systems, 54(2):135 – 141,
2006.

[14] Kasper Støy and Radhika Nagpal. Self-Reconfiguration Using Di-
rected Growth. In Distributed Autonomous Robotic Systems 6, pages
3–12, 2007.

[15] Pierre Thalamy, Benoı̂t Piranda, and Julien Bourgeois. Distributed
Self-Reconfiguration using a Deterministic Autonomous Scaffolding
Structure. In Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems, pages 140–148, Montreal
QC, Canada, May 2019.

[16] Thadeu Tucci, Benoit Piranda, and Julien Bourgeois. A Distributed
Self-Assembly Planning Algorithm for Modular Robots. In Interna-
tional Conference on Autonomous Agents and Multiagent Systems)
(AAMAS), Stockholm, Sweden, July 2018. Association for Computing
Machinery (ACM).

[17] S. Vassilvitskii, M. Yim, and J. Suh. A complete, local and parallel
reconfiguration algorithm for cube style modular robots. In Robotics
and Automation, 2002. Proceedings. ICRA ’02. IEEE International
Conference on, volume 1, pages 117–122 vol.1, 2002.

