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Abstract—At least two basic categories of earthquake
prediction exist: short-term predictions and forecast ones.
Short term earthquake predictions are made hours or days
in advance, while forecasts are predicted months to years in
advance. The majority of studies are done on forecast, taking
into consideration the history of earthquakes in specific
countries and areas. In this context, the core idea of this
work is to predict whereas an event is classified as negative
or positive major earthquake by applying different machine
learning algorithms. Eight different algorithms have been
applied on a real earthquake dataset, namely: Random For-
est, Naive Bayes, Logistic Regression, MultiLayer Perceptron,
AdaBoost, K-nearest neighbors, Support Vector Machine,
and Classification and Regression Trees. For each selected
model, various hyperparameters have been selected, and
obtained prediction results have been fairly compared using
various metrics, leading to a reliable prediction of major
events for 3 of them.

Index Terms—Machine learning, Major earthquake pre-
diction

I. INTRODUCTION

Rapid global urbanization leads to an increase in earth-
quakes, a major catastrophe which has occupied 60%
of deaths overall natural disasters [8]. Obviously, human
cannot stop natural disasters, while the application of
machine learning is a powerful and invaluable method
and technique, used by researchers as new area of study
in geology, in order to reduce, as much as they can, the
loss of life and billions of dollars in infrastructure and
housing costs. Traditional classification methods rely on
statistical assumptions for earthquakes that turn out to be
unsatisfactory in danger state prediction. Therefore, the
use of machine learning algorithms is becoming more
widespread, that adapt and learn a problem by simulating
a biological or natural system.

Introducing the machine learning techniques in the field
of geology and earthquake beats the traditional and stan-
dard methods used in earlier years and provides the scien-
tists a new fresh method for assessing seismic risk and
triggering future earthquakes. Data mining applications
have achieved great success in geophysics and geology
such as ecology, weather prediction, modeling, etc. and
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finally predicting the earthquakes. Two basic categories
of earthquake prediction exist: short-term predictions and
forecast ones. Short term earthquake predictions are made
hours or days in advance, while forecasts are predicted
months to years in advance. Due to the chaotic and com-
plex phenomena of earthquake process, it is considered
that short-term predictions are very difficult to address.
Thus, the majority of studies are done on forecast, taking
into consideration the history of earthquakes in specific
countries and areas.

The core idea of this work is to predict whereas an event
is classified as negative or positive major earthquake by
applying different machine learning algorithms. It is well
known that there is no best algorithm or one solution that
fits all the problems and datasets for machine learning
since the performance of algorithms depends on many
factors. Some algorithms are best for small data, while
others perform better for a tons of data sample. Some
algorithms require categorical inputs, while others need
quantitative. Another important criterion while choosing
the algorithm is the complexity of the dataset and how
many features the model needs to learn and predict. This
is why, in this work, eight different algorithms have been
applied on an earthquake dataset, namely: Random Forest,
Naive Bayes, Logistic Regression, MultiLayer Perceptron,
AdaBoost, K-nearest neighbors, Support Vector Machine,
and Classification and Regression Trees. For each selected
model, various hyperparameters have been tested, and
obtained prediction results have been fairly compared
using various metrics, leading to a reliable prediction of
major events for 3 of them.

The remainder of this paper is organized as follows. The
next section contains the basic recalls. Section III discusses
related work done by researchers in the field of earthquake
machine learning. In Section IV, we apply experiments
on the testing set after training the data using machine
learning algorithms and for some models, parameters were
modified, then results were compared. Finally, Section V
concludes the paper.



II. BASIC RECALLS

We begin by recalling the various classical machine
learning methods that have been proved useful in predict-
ing earthquakes, before detailing, in the next section, some
state-of-the-art articles that have used them in this context.

A. Naive Bayes

The Naive Bayes algorithm, a method based on the work
of Thomas Bayes, is a heavily simplified probabilistic
model that calculates probabilities by counting combi-
nations of values and frequency in a data set. Bayesian
classification assumes that the data belongs to a particular
class, then the probability for the hypothesis to be true is
calculated. Naive Bayes operates on a strong independence
assumption, in other terms, the conditional probability of
one attributes will not affect the probability of the other.
However, the hypothesis can be updated each time new
evidence is added.

Bayes Theorem calculates the probability of an event A
given another event B has occurred:

P(BJA).P(A)
P(B)
where P(A) and P(B) are respectively probabilities of event

A and event B, P(A|B) presents the probability of A given
B, P(B|A) is the probability of B given A.

P(A|B) =

B. K-nearest neighbors

K-nearest neighbors (KNN) is an algorithm that can
be used for regression and classification, but which is
more frequently used for classification predictive prob-
lems. KNN is based on the principle that instances with
similar properties exist generally in close proximity. The
class value of the unclassified instance can be predicted
by observing the class of its nearest neighbors. The KNN
finds the only adjustable parameter in this algorithm, the
K nearest neighbors to the query instance and classify it
by determining the most frequent class label. The model
can be made less or more flexible by modifying K.

C. Logistic Regression

Logistic regression known as logit model estimates the
relationship between one dependent variable and inde-
pendent variables. It predicts the probability of an event
utilizing a logit function.

The logistic regression is a linear regression of the
explanatory variables z;:

ap+ a1 *xT1 + a2 *To+a3*T3 + ... +ar *Tp R Y,

where the variable y could be (1) binary: only two possible
outcomes such as good or bad. (2) Multinomial: three or
more non-ordered categories such as single, married or
divorced. Or (3) ordinal: three or more ordered categories
such as food quality from 1 to 10.

D. MultiLayer Perceptron

Multilayer perceptron is a neural network [12] that
consists at least of one hidden layer of nodes other than
the input and output layers. This means, the layers of MLP
should be a minimum of 3 layers including hidden, input
and output. Each node of the layer, excluded the input,

is called neuron. The neuron, a processing component,
which is the main element of the neural network, collects
information from a certain number of inputs, applies a
weight, add a bias term and send the result to an active
function which generates an output.

A multilayer perceptron model consists mainly of a
linear activation function of all the neurons and backprop-
agation process for the training. The activation function
maps the weighted inputs to the output of the neuron:
it combines the input of the neuron with the weights,
then adds a bias in order to generate the output. On the
other hand, the backpropagation is supervised learning
process that occurs with a continuous adjustment after
each processing (based on the error in output) of the
weights of the connections.

The backpropagation consists of two parts:

o Forward pass where the expected outputs that corre-

sponds to given inputs are evaluated;

o Backward pass where partial derivative of the cost

function is propagated through the network.

E. Support Vector Machine

SVM is a supervised machine learning algorithm, which
is based on the concept of classification hyperplane, cre-
ated to isolate between positive and other cases allowing
for maximization. It plots each instance as a point in a
n-dimensional space where n is the number of features (if
the number of features is only 2, the hyperplane will be a
simple line).

Moreover, the classification is done by finding the
hyper-plane that best segregate the two classes with a
maximum distance between points of both classes. Support
Vectors are the closer points for hyperplane used to maxi-
mize the margin between hyperplane and data points. Also,
they affect the orientation and position of the hyperplane.

FE. Classification and Regression trees

Decision trees are used to explain a value from a
series of discrete or continuous variables. These are fairly
efficient, non-parametric and non-linear methods of par-
titioning individuals, producing groups of individuals as
homogeneous as possible from the point of view of the
variable to be predicted, taking into account a hierarchy
of the predictive capacity of the variables considered. This
hierarchy makes it possible to visualize the results in a
tree, and to constitute explicit explanatory rules.

Several iterations are necessary. To each of them:

1) individuals are divided into k (=2) classes, to explain

the output variable;

2) the first division is obtained by choosing the ex-

planatory variable that will best separate individuals;

3) this division defines sub-populations, represented by

nodes of the tree;

4) each node is associated with a proportion measure,

which makes it possible to explain the belonging to
a class or the meaning of an output variable;

5) the operation is repeated for each sub-population

until no further separation is possible.

A decision tree can very quickly lead to overfitting, so it
is necessary to prune the tree: stop at an adequate number
of leaves when making the tree. In order to implement



all this, three main algorithms exist: CART, C4.5, and
CHAID [7], [11], [16]. They proceed as follows:

e Choice of the decision variable:

— measure of the x? difference to independence for
CHAID and the ¢ of Chyprow,
— Gini index (or split criterion) for CART
— entropy for C4.5.
o Adjusting the size of the tree:

— post-pruning for CART and C4.5: the purest
tree is made with all the segmentation, then a
criterion is used to compare trees of different
sizes

— pre-pruning for CHAID: a stop rule is set to stop
the construction.

G. Random Forest

Decision trees have the following main flaws: perfor-
mance too heavily dependent on the initial sample, and a
tree topology that can change completely with the input
of some additional observations.

To overcome these problems, several trees are used. And
to avoid having equal trees, randomness is added: each tree
has a fragmented vision of the problem, randomly drawn
from the input observations, and from the explanatory vari-
ables. More precisely, the assembly of decision trees built
on the basis of a random draw among the observations
is the tree bagging algorithm. The random forests (RFs),
proposed by Leo Breiman [3], [9], add a feature sampling
to the tree bagging [10].

H. AdaBoost

While RFs build several trees in parallel, boosting also
builds & trees (or other basic algorithms [6]), but it does so
in series. The £+ 1 tree will have access to its predecessor,
or more precisely to the latter’s error: it will concentrate
its effort on correcting these errors. For a classification
problem, prediction is no longer a majority vote, but a
weighted sum of each of the weak algorithms.

The first implementation of boosting, proposed by Yoav
Freund and Robert Shapire, is called AdaBoost (adaptive
boosting [19]), which starts from the following idea: a
meta-algorithm works successively weak algorithms, each
having access to a different distribution of the problem,
focusing on observations that are difficult to process, and
thus forcing its successor to treat them correctly. The term
boosting refers, in a broad sense, to methods operating on
this principle of serial assembly of weak learners.

In the case of RF, weak learners are unit decision trees,
built in a totally independent way. Each algorithm has the
same importance for the final vote. Boosting is a little
less democratic, and achieves a sum weighted by the final
vote. The weighting coefficients «;, in AdaBoost, depend
only on the errors ¢; of each weak learner, as follows:

o; = 3ln (1;—5 . And at the AdaBoost level, the weak
learner 7 + 1 receives a different distribution of the data

than the i-th, the latter’s errors having been overweighted.

III. RELATED WORK

Despite all the efforts made by researchers, it may never
be possible to know the exact time of earthquakes because

there is some random component in such a catastrophe.
In this field of research, errors are obviously predomi-
nant, even if exceptions exist. T. Mastuwaza et al. [14],
researchers in the center for prediction of earthquakes
and volcanic eruptions in Japan, compared for instance
the recurrent seismograms every 5.3 &+ 0.53 years and
summed up their study by predicting that an earthquake
will occur on November 2001 in Sanriku (Japan) with a
probability larger than 0.99. And actually, as expected,
on 13 November 2001 an earthquake of magnitude 4.8
happened.

Many machine learning based earthquakes research
studies have been done with various motivations and goals
such as determining the occurrence of earthquake, pre-
dicting the magnitude, the time, the location, detection of
damage, and many other classification problems and meth-
ods. A technique done by A. Negarestani, 2002 [4] using
layer neural network estimated the radon concentration in
soil related to the environmental parameters. The change
of soil radon is not only an earthquake precursor (anomaly
phenomena in the earth) but is also controlled by the
environmental parameters such as temperature, humidity,
rainfall, etc. The data was obtained from a location in
Thailand, processed using neural network of two hidden
layers and analyzed. The result of this study indicates
the ability to distinguish between time variation in radon
concentration raised by earth anomaly phenomena such as
earthquake and those caused by environmental parameters.
This technique, in comparison with linear computational
methods, can estimate better the radon variations related
to environmental parameters.

Another investigation done by Rouet-Leduc et al. in
2017 [18] emphasized that predicting the magnitude and
timing before an earthquake fails is a main goal for
geoscientist. This was done by listening to acoustic hid-
den signals that precede lab quakes in a laboratory that
resemble to the earth: they apply Random Forest model to
a continuous time-series data in a laboratory where each
tree will predict the time remaining before the next failure
of lab quake based on statistical features derived from
time windows. In comparison with Naive Bayes model that
gives a performance of 0.3, the RF achieves an accuracy
of 0.89 which is largely better.

A. Cooner et al. [5] made a study after the earthquake
happened on January 2010 near Port-au-Prince, Haiti, 7.0
moment magnitude with 316,000 deads [15], in order to
detect the damage caused by this devastating event by
applying Random Forests (400 trees), Neural Networks
(two hidden layers of 20 neurons each) and Radial Ba-
sis Function Neural Network (150 Gaussian functions)
algorithms. The remote sensing data was sourced from
DigitalGlobe Foundation and the goal was to compare
between a pre-disaster image captured in 2009 and a
post-disaster image after the earthquake. Damaged and
undamaged pixels were used for training datasets, then
preprocessed. The accuracy found was best in RBFNN
with 77.26%. ANN and RF, for their part, had accuracy
of 74.14% and 76.14% respectively.

Another study achieved by K. M. Asim et al. [1] pre-
dicted the magnitude of earthquake in Hindukush region
by using historic seismic activated with machine learning



classifiers. They applied four machine learning algorithms
on a dataset extracted from temporal distribution of past
earthquake: Pattern recognition neural network, Recurrent
Neural Network, Random Forest (50 trees) and linear
programming boost ensemble. The accuracy to predict the
earthquake occurrence in this study was best using Pattern
recognition neural network or Linear Programming Boost
Ensemble with 65% of accuracy. However, for Recurrent
Neural Network and Random Forest, the scores were of
58% and 62% respectively.

J. Reyes et al. [17] presented in their study some neural
networks to predict earthquakes in Chile in four different
areas. The database was obtained from the Chiles National
Seismological Service. They applied one neural network
with 7 input neurons and 15 neurons in hidden layer,
and then compared the prediction results with K-Nearest
Neighbors (KNN), Support Vector Machine (SVM), and
k-means. They finally found that none of the algorithms
obtained a better result than their approach in more than
one area.

A. Li and L. Kang [13] proposed a method called PR-
KNN that combined between Polynomial Regression and
K Nearest Neighbors models to predict the aftershock
with magnitude greater or equal to 4.0. They selected the
values in training sample based on the KNN algorithm,
then these attributes have been modeled by applying
polynomial regression method. The experimental data was
collected from Wenchuan website. Finally, PR-KNN was
compared with Distance-Weighted KNN regression and
traditional KNN regression algorithms, which shown that
the maximum relative error was reduced by 7.751% and
6.012% respectively.

IV. EXPERIMENTS

Further introduction for the world of machine learning,
and explanations of the mathematical concepts for algo-
rithms used in this paper are in [2].

A. Experimental protocol

In this study, a single time series set of data taken from
an Earthquake data center in Nothern California has been
considered, where the first reading was on 1967 and the
last in 2003. Each data point is an average reading for 1
hour. Let us notice that there is no use of future or past
information while making the prediction. Each prediction
employs only the data onto one single time series of this
earthquake center. Thus, by analyzing the huge number of
data point, the events were classified between negative and
positive major earthquake. It is known that major events
or major shocked are followed by small earthquakes in
the same geographical area called aftershocks, and only
reading above 5 on the Rictor scale are considered major
event. The objective of this dataset is not to detect the
aftershocks, but to classify between negative or positive
earthquake major event. Negative output are instances
having readings less than 4 and preceded, in the past 512
hours, by at least 20 non-zero readings.

On the other hand, a positive case is defined by a major
event which was preceded, for at least 512 hours, by
another major event.

The experiment is based on machine learning algorithms
or in other terms, statistical learning theory that involves a
training test (size 322) with associated inputs and outputs.
Then, the trained model is utilized to evaluate a testing set
(size 139) which is totally independent of the training set.

As stated previously, we used the following algorithms,
for the sake of comparison:

— Random Forest (RF);

— Support Vector Machine (SVM);
— Logistic Regression (LR);

— Naive Bayes (NB);

— KNN;

— Multilayer Perceptron;

— AdaBoost;

— CART.

All the methods were applied on the training and testing
sets using Matlab release 2018b and Weka, on a 2.7
GHz core i7 processor with 8 GB RAM. In obtained
results of classification, several evaluation criteria have
been considered:

e TP or true positive: number of times the algorithm
classifies the event as 1 and it is actually 1.

o FP or false positive: number of times the algorithm
classifies the event as 1 and it is actually 0.

e TN or true negative: number of times the algorithm
classifies the event as 0 and it is actually O.

o FN or false negative: number of times the algorithm
classifies the event as O and it is actually 1.

e Mean absolute error:

1 n
MAE = =3 |y, —;
nj:1|yi |

where 7 is the number of all the values, y is the actual
value, x is the predicted value.
« Root mean squared error:

RMSE =

o Prediction value: Percentage of correctly classified
instances.

B. Obtained results

For all algorithms, we tried to change the batch size,
but the score was not affected by this parameter.

1) Naive Bayes: By applying Naive Bayes algorithm,
66.9% of instances were classified correctly, however
33.1% were not accurate.

The prediction of the major event was the worst between
all the algorithms tested with 62.58%. 52 instances were
classified wrong out of 139.

2) K-nearest neighbors: We applied for the KNN algo-
rithm different number of K (neighbors) on the earthquake
dataset as shown in Table I (MAE stands for Mean
Absolute Error, while RMSE is for Root Mean Squared
Error). The convergence of percentage of prediction occurs
after using 5 neighbors. The highest accuracy reached goes
for 3 neighbors with 75.53% (Figure 1) of right instances
classified.



STATISTICAL FEATURES USING KNN ALGORITHM FOR DIFFERENT

NUMBER OF NEIGHBORS

Number of Neighbors | Prediction | MAE | RMSE
1 69.06 0.3105 | 0.5545
2 64.74 0.3064 | 0.4958
3 75.53 0.3002 | 0.4565
4 74.10 0.3079 | 0.4541
5 74.82 0.3067 | 0.4503
10 74.82 0.3088 | 0.4527
20 74.82 0.3069 | 0.4573
TABLE I

1 2 3 4 > 10 20

Number of neighbors

Fig. 1. Percentage of prediction for different number of neighbors using
KNN Algorithm

3) Logistic Regression: The prediction of the major
event was the worst between all the algorithms tested with
62.58% where 52 instances were classified wrong out of
139. However, after changing the ridge to 1, the accuracy
increases to 68.34% and the number of wrongly classified
instances becomes 44.

4) MultiLayer Perceptron: We use in this experiment
two hidden layers with three different couple of nodes:
(10,20), (20,30) and (40,50). The comparison between the
prediction value, MAE and RMSE using these different
couples of nodes is illustrated in Table II. After choosing
(20,30) as the number of nodes for two hidden layers, we
apply many tests on other parameters and realize that the
best score for prediction and MAE was found by using 20
epochs (Figure 2), by setting learning rate to a value of
0.6 (Figure 3), the momentum to a value of 1 (Figure 4)
and by using sigmoid activation function. After changing
the values of the batch size, we found that this parameter
does not have any impact on the results of the experiment.

Nb of nodes | Prediction | MAE RMSE
10,20 73.38 0.2937 | 0.4713
20,30 71.22 0.3226 | 0.4853
40,50 70.50 0.3168 0.486

TABLE 11

STATISTICAL FEATURES USING MLP

5) Classification and Regression Trees: CART algo-
rithm leads to 70.5% of accuracy while 28 instances were
not classified correctly.

6) Support Vector Machine: In our experiment, we used
two different functions in SVM: PolyKernel and Nor-
malized Poly Kernel with 64.02% and 74.82% accuracy
respectively as shown in Table III.

7) Random Forest: Different number of trees are ap-
plied on the dataset. Table IV and Figure 5 show the
statistical features for each number of trees. The best
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percentage of prediction is 76.97 using 3 trees and after
reaching 100 trees, the algorithm converges and reaches a
stable prediction of 74.82%.

8) AdaBoost: By applying AdaBoost on the earthquake
dataset, 35 instances were classified wrongly and 72.66%
of instances are predicted correctly.

Method used MAE | RMSE | Accuracy
PolyKernel 0.3597 | 0.5998 64.02%
Normalized Poly Kernel | 0.2518 | 0.5018 74.82%
TABLE III

COMPARISON OF STATISTICAL FEATURES BEFORE AND AFTER
NORMALIZATION OF KERNEL FUNCTION IN SUPPORT VECTOR
MACHINE



Nb of trees | Prediction MAE RMSE
1 74.82 0.3108 | 0.4313

2 74.82 0.3237 | 0.4379

3 76.97 0.312 0.4161

4 74.1 0.3123 | 0.4233

5 72.66 0.3373 | 0.4417

10 69.06 0.3313 | 0.4375

100 74.82 0.3297 | 0.4193
200 74.82 0.3186 | 0.4122

TABLE IV

STATISTICAL FEATURES FOR DIFFERENT NUMBER OF TRESS FOR
RANDOM FOREST ALGORITHM
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Fig. 5. Percentage of prediction for different number of trees using

Random Forest Algorithm

C. Comparing results of all algorithms

For each algorithm, we collected the True Positive, False
Positive, True Negative, and False Negative rates, together
with Mean Absolute Error, Root Mean Squared Error and
Percentage of accuracy in Table V.
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TP [ FP [ TN [ FN [ MAE | RMSE | Accuracy |

RF 5 2 102 | 30 0.312 | 0.4161 7697 |
NB 9 20 84 26 | 0.3257 | 0.5548 66.90
LR 6 29 89 15 | 0.3851 | 0.3161 68.34
MLP 0 35 | 104 0 0.2518 | 0.5018 74.82
AdaBoost | 11 14 90 24 | 0.2958 | 0.4177 72.66
KNN 2 1 103 | 33 | 0.3002 | 0.4565 75.53
SVM 0 0 104 | 35 | 0.2518 | 0.5018 74.82
CART 7 13 91 28 | 0.3078 | 0.4607 70.50

TABLE V
STATISTICAL FEATURES COMPARISON BETWEEN 8 ALGORITHMS

The algorithm that performs better in term of accuracy
is Random Forest with 76.97% (see Figure 6), which is
very close to KNN with 75.53% and both MLP and SVM
with 74.82%.

SVM, MLP, and AdaBoost perform between 72.66%
and 74.82%, while 70.5% was the prediction for CART.
On the other hand, MultiLayer Perceptron and Support
Vector Machine are the algorithms having the minimum
average of the errors in the prediction set with 0.25 as
value of MAE (Figure 8). However, the algorithms giving
the worst prediction percentage were Naive Bayes and
Logistic Regression with 66.9% and 66.9% respectively.
The comparison between TP, FP, TN, and FN is proposed
in Figure 7.

V. CONCLUSION

Eight machines learning algorithms have been tested for
our work to classify the major earthquake events between
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Fig. 8. Mean Absolute Error comparison between 8 algorithms

negative and positive. The study has been applied to a
dataset collected from a center in California, which was
recording inputs for 36 years. Every machine learning
technique shows different results from each other. KNN,
Random Forest and MLP are the best by producing the
least false output (FP) while SVM, KNN, MLP and Ran-
dom Forest classify the higher number of output correctly.
Future work involves working on case studies based on



real intervention data and add consideration to features
selection methods.
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