
Efficient Distributed Average Consensus in Wireless Sensor Networks

Christophe Guyeux1, Mohammed Haddad2, Mourad Hakem1 and Matthieu Lagacherie1
1Disc Laboratory, Femto-ST Institute, UMR 6174 CNRS, Université de Bourgogne Franche-Comté, France

2LIRIS Laboratory, UMR CNRS 5205, Université de Lyon 1, F-69622, France
Authors are in alphabetic order

Abstract— Computing the distributed average consensus in
Wireless Sensor Networks (WSNs) is investigated in this article.
This problem, which is both natural and important, plays a
significant role in various application fields such as mobile
agents and fleet vehicle coordination, network synchronization,
distributed voting and decision, load balancing of divisible loads
in distributed computing network systems, and so on. By and
large, the average consensus’ objective is to have all nodes in
the network converged to the average value of the initial nodes’
measurements based only on local nodes’ information states. In
this paper, we introduce a fully distributed algorithm to average
the sensed data within the network itself. The network may be
large since we never broadcast over all its nodes. Unlike earlier
works, when a node detects a load (scalar value) imbalance in
its closed neighborhoods during the average process, instead
of sending parsimonious amount of load values from highly
loaded nodes to less loaded ones, we move a large amount of
load values by involving parallel atomic transactions between
mutually exclusive pairs of neighbors. This improves the global
convergence time speedup with low-cost communication and
minimal energy consumption. First, we give the convergence
proof of the distributed consensus process, and next we provide
some experimental results based on NS3 framework to assess
the behaviour of the proposed algorithm.

I. INTRODUCTION

With the technological progress of WSN and IoT, the de-
sign of efficient protocols for in-network average consensus
has received a great interest and attention. It is motivated
by diverse potential needs: resiliency, throughput, resources’
usage, and rapid response time. They constitute naturally
reliable and efficient algorithms for large scale distributed
information processing, and do not necessitate any informa-
tion knowledge of the network . Indeed, centralized sensor
networks have limited scalability and are less robust to node
failures, since a full network’s reorganization should take
place whenever a node fails or had just been added to the
network. The objective of average consensus is to orchestrate
the propagation of the initial node’s measurements, so that
the difference between the converged nodes’ values in the
network is reduced as low as possible with low time com-
plexity. This problem arises in different fields of applications.
Some common practical examples are outlined hereafter:

– Voting in distributed networks: every node initially
produces a binary bit of information: 0 or 1. The voting
process consists in letting all nodes know whether 0 or 1
was the bit with higher density (the initial majority bit), based
only on local interactions [6].

– Unattended Wireless Sensor Networks (UWSNs): these
networks are widely used in diverse fields of applications like

pipeline monitoring and oceanography. The objective is to
ensure data survivability despite the hostile conditions of the
environment and the sporadic presence of the sink. Indeed,
the sink’s absence for a period of time will prevent sensors to
upload information in real time. One possible solution to this
problem is to average the collected data and then upload the
obtained information once the sink becomes available [3].

– Coordination of a fleet of vehicles: local values indi-
cate the velocity or the position of each vehicle, and the
distributed consensus is to obtain the best coordination in
steady-state that gives the smallest mean-square synchroniza-
tion error [8].

– Load balancing of divisible loads in distributed comput-
ing networks: the objective is to distribute fairly the global
workload to minimize as low as possible the load difference
between the networks’ resources. In divisible loads model,
the parallel application includes no precedence constraints
and granularity of parallelism is fine. One example among
many is an application of records search in a huge databases
that may be divided into independent parts of one record
granularity [12]. This can be done by cooperating the sys-
tem’s resources and the search can be performed in each part
independently. The results are finally sent to some centralized
master node.

– Distributed agreement and decision: a whole network
needs to agree on a suitable decision to take in order to per-
form some specific coordinated operations [6]. For example,
a fleet of robots needs to move in the same direction, or a
WSN whose purpose is to track enemies wants to agree on
the presence of such an enemy.

– Clock synchronization in distributed systems: sensors
should agree on a common time and synchronize their clocks.
Local values can represent the reading of a local clock values
corrupted by random noise and adjusted via a diffusion
scheme [28], [29], [24]. The objective is to choose the best
edge weights that minimize the mean square error.

In this paper, we present a fully distributed algorithm
for the problem of average consensus in wireless sensor
networks based on mutually exclusive atomic transactions
between neighbors. The network may be arbitrary and large
since we never broadcast over its sensor nodes. Unlike
earlier works, upon load (scalar value) imbalance detection
between neighbors, instead of sending parsimonious amount
of load values from highly loaded nodes to less loaded
ones, we move a large amount of load values by involving
parallel mutually exclusive transactions between pairs of



neighbors. That is to say, each involved pair-neighbors
seek to update their estimate values to both take on the
atomic mean of their previous estimates. Based on NS3
simulator, several scenarios are studied and different metrics
are evaluated. Obtained results show that the proposed
algorithm achieves good performances compared to its
direct competitor, namely the well-known Bertsekas and
Tsitsiklis’ algorithm [5], in terms of communication costs,
energy consumption, and convergence time speed. The
presented work targets WSN platforms with the aim of
computing the average of initial sensors’ measurements
within the network. It is easily extendable to the case of
load balancing of divisible loads in distributed computing
networks. To achieve global stable equilibrium, processor
nodes exchange load with their neighbors iteratively and
update their local load until reaching the final balance load
distribution. Note that, throughout the paper, we use the
terms “load” and “scalar” indifferently.

The remainder of this article is organized as follows.
Section II is devoted to the review of related work. Since we
compare our proposal to Bertsekas and Tsitsiklis’ algorithm,
we outline its principle in Section III. Section IV presents
our proposed algorithm. We report in Section VI series
of numerical results that assess the good behavior of our
algorithm. Finally, Section VII summarizes the results of this
work and concludes the paper.

II. LITERATURE REVIEW

Several techniques have been proposed in the literature
to tackle the problem of average consensus in distributed
networks systems. In [29], [30], for instance, a decentralized
fusion scheme based on average consensus is investigated.
Instead of involving point to point communication or any
rooting protocol, the information is diffused in the net-
work by bringing up-to-date each node’s data value with
a weighted average of its neighborhood. The global con-
vergence is guaranteed even with unreliable communication
links. In [18], a consensus propagation which can be seen
as a special case of belief propagation [25] is proposed to
average number values in distributed networks systems. The
authors show its convergence property for regular network
graphs and its scalability with network’s density.

In [11], both consensus and gossip algorithms for ergodic
networks are addressed. Based on Oseledets theorem, some
mathematical tools are derived to evaluate and characterize
several metrics: convergence cost, message passing, and
energy efficiency of the studied algorithms. To coordinate
a fleet of unmanned vehicles, a distributed consensus-based
bidding is investigated in [8]. The proposed approach is
based on both consensus and bidding to converge a fleet of
vehicles to a consistent situational awareness and conflict-
free assignment over different network topologies. In [14],
[15], [16], [23], the authors propose a fault tolerant commu-
nication scheme for average consensus in networks subject to
link failures. Based on Markov processes and stochastic ap-
proximation theory, they derive a trade-off relation between

the mean-squared error and the algorithm’s convergence
time.

Some approaches like [20], [19], [21], [22] are based on
mobile agents or Kalman filtering to calculate the global
average consensus of the initial node’s measurements in
the network. Other techniques [17], [31], [27] make use of
linear iterations, where each node in the network updates its
local value by a weighted sum of its neighborhood’s data.
This leads to efficient convergence time and error variance
reduction over the network.

In [26], the authors use a concept of domination in graphs
to average the initial nodes’ measurements. More precisely,
the information exchange between nodes involves only the
connected dominating set (CDS) of the network graph to
reduce the sensors’ overall power consumption. [4] devel-
oped a novel approach using self stabilization under a serial
daemon scheduler. It was shown that the proposed algorithm
converges in a linear time complexity with a tighter bound
of the global equilibrium threshold. The authors in [32]
study clustering approaches for average consensus based on
gossiping in hierarchical WSNs. The aim of the presented
work is to organize the targeted network into clusters. Each
cluster head computes its local average consensus and then
broadcasts the obtained value to all nodes in the cluster.
Clusters are chosen randomly, and the wake up scheme of
the cluster heads use a Poisson process as a time model to
improve the convergence time of the proposed algorithm.

Average consensus can also be seen as a special case of
divisible load balancing problem in distributed computing
networks. Such computational loads can be divided into parts
of small sizes that can be executed independently in parallel
by different nodes in the system. The first landmark work in
this context is proposed in [5]. The authors assume that the
computational load consists of the execution of independent
divisible tasks and load transfer between processors takes
place asynchronously. The algorithm is guaranteed to con-
verge to the final balanced state under some conditions and
hypothesis (see Section III for more details). This work has
been adapted in other works. For instance, in [2], [1], the
authors deal with dynamic networks where communication
links between the resources of the network are intermittent.
In [9], the proposed work investigates the problem of static
divisible integer loads in heterogeneous networks. The algo-
rithm is iterated until the load difference between any pair of
neighbor nodes is one load unit. The same work is extended
in [7] to consider partially asynchronous discrete load model
in parallel computers networks for which the convergence
proof is also provided.

A fast local load balancing approach for ring networks
is presented in [13]. The addressed work considers both
synchronous and asynchronous models and assumes static
load situations where no tokens are generated during the
load balancing process. The authors show that the algo-
rithm converges to the balanced distribution state with low
time complexity. A diffusion approach for load balancing
in hypercube networks is addressed by Cybenko in [10].
The author considers both static and dynamic workload



distribution and assumes equal tasks’ amount of computation
times. Based on the network’s iterative diffusion matrix, the
convergence properties to the uniform load distribution are
derived.

III. A BRIEF DESCRIPTION OF BERTSEKAS AND
TSITSIKLIS’ ALGORITHM

In order to compare our proposal to the well-known Bert-
sekas and Tsitsiklis’ algorithm, which is, to our knowledge,
the closest work to the one presented in this work, we briefly
outline hereafter the key features of this algorithm.

Consider a system network of n nodes, represented by
a connected undirected graph G = (N,A), where N =
{1, . . . , n}, and A is the set of links between nodes. Let
A(i) be the set of neighbors of node i and xi(t) be the
node’s local load at time t. The key idea of Bertsekas and
Tsitsiklis’ algorithm is that each node cooperates with its
neighbors in asynchronous diffusion mode to reach the global
equilibrium. At each time step t, each node i gets the state
of its neighbor j at time dij(t), where 0 ≤ dij(t) ≤ t. Thus,
dij(t) stands for the communication delay between i and j,
and xij(t) = xj(d

i
j(t)) denotes the jth node’s local state at

time dij(t), received by node i at time t.
The value sij(t) represents the quantity of load sent by

i to j at time t, and rji(t) = sji((d
i
j(t)) is the amount of

load received by i from j at time t. Each node i keeps an
estimate xji (t) of the load carried by each neighbor j. Then,
the updated load value of node i at time t + 1 is given by
the following formula:

xi(t+ 1) = xi(t)−
∑
j∈A(i) sij(t) +

∑
j∈A(i) rji(t)

It is assumed that each node i is connected to a node j
within any asynchronism time interval measure of length B,
and this delay cannot greater than B. Formally:

There exists B ∈ N such that ∀t > 0, t−B < dij(t) ≤ t
and the union of communication graphs

⋃t+B−1
τ=t G(τ) is a

connected graph.
The asymptotic convergence is based upon the following

assumptions:
Assumption 1: There exists some constant α > 0,∀t >

0,
∀i ∈ N, ∀j ∈ A(i), such that sij(t) ≥ α(xi(t)− xij(t)).
Moreover, if (xi(t) ≤ xij(t)), then sij(t) = 0.

Assumption 2: xi(t)−
∑
k∈A(i) sik(t) ≥ xij(t) + sij(t).

The first condition assumes that, when a given node detects
a load imbalance with its neighbors, it will send some amount
of its excess load to its less loaded neighbors. The second one
prohibits the ping-pong phenomenon where two nodes keep
transferring parts of their own load to each other without
reaching equilibrium.

IV. THE PROPOSED ALGORITHM

The proposed algorithm takes its inspiration from the
communicating vessels phenomena. A vessel that is less
loaded than a connected neighbor will create a depression
that will cause the more loaded vessel to transfer some

of its load until equilibrium is reached. Given a graph
G = (V,E) modelling the network, transfers are defined
similarly between high loaded nodes and lesser loaded ones.
The algorithm should converge until no more load transfer
occurs.

Algorithm 1: Distributed Consensus Algorithm (DCA)
Nodes: i is the current node, j is a neighbor of i
Constants: ε is the local equilibrium threshold
Variables: i.x is the current value, i.I is the Invitation

pointer, i.A is the Acceptance pointer
Macros: N(i) is the set of neighbors of i

Pointer Correction Rules:

IF i.I = j ∧ (j /∈ N(i) ∨ j.x− i.x ≤ ε ∨ j.I 6= null)
Then i.I := null; [C1]

IF i.A = j ∧ (j /∈ N(i) ∨ j.I 6= i ∨ i.x− j.x ≤ ε)
Then i.A := null; [C2]

Transfer Transaction Rules:

IF i.I = null ∧ i.A = null ∧
∃j ∈ N(i) : j.x− i.x > ε ∧ j.I = null

Then i.I := j; [I]

IF ∃j ∈ N(i) : i.x− j.x > ε∧
j.I = i ∧ i.A = null ∧ i.I = null

Then i.A := j ∧ i.x :=
i.x+ j.x

2
; [A]

IF ∃j ∈ N(i) : j.A = i ∧ i.I = j
Then i.x := j.x; [F]

IF ∃j ∈ N(i) : ((j.A = i ∧ i.I = j)∨
(j.I = i ∧ i.A = j)) ∧ i.x = j.x

Then i.I := i.A := null; [R]

The average consensus is reached within an accuracy σ on
the global equilibrium threshold. The global legitimate state
of the network is then defined as follows:

∀i, j ∈ V : |xi − xj |≤ σ (1)

Respectively to the global equilibrium threshold σ, we
define the local equilibrium threshold ε which has to be
chosen such that Expression (1) is respected. A trivial
solution is to define the local threshold ε according to the
diameter of the network D, by setting ε < σ

D .
The algorithm is written according to the composite read-

write atomicity model, in which each node i can read its
variables and those of its direct neighbors, but can only
write on its own variables. The algorithm is then defined as
a set of rules, each ensuring nodes to perform correct actions
according to different events. All variables, macros, and the
set of rules a node may execute are defined in Algorithm 1.
A node remains active as long as at least one of its rules is
active. The convergence is reached once all nodes have all
their rules inactive.



Each node i maintains three variables: i.x that indicates
the current value at node i, i.I an invitation pointer, and
i.A an acceptation pointer. A node i having a neighbor j
with a value j.x higher than i.x + ε invites it to perform a
transfer transaction to ensure a pairwise local equilibrium.
However i invites j only if the latter is not inviting someone
else simultaneously. This is done by the rule [I], that is,
the invitation rule. If invited by a neighbor j, a node i
checks if all its pointers are free as well as the condition
on the gap between respective x values is respected, then it
accepts invitation by setting its pointer i.A to j and begins

transfer transaction by setting its variable i.x to
i.x+ j.x

2
.

Acceptation rule is named [A] in the algorithm. Thus,
when a node i observes that its invitation is accepted, it
executes the transaction finalization rule [F] and updates
its i.x variable consequently. Once the transaction finalized,
both neighbors will execute the pointers reset rule [R].
This mechanism is executed as long as there is neighbors
that are not in local equilibrium state. Moreover, note that
transfer transaction rules are only executed if there is no
incoherence in pointers i.I and i.A. Rules [C1] and [C2]
verify the coherence of invitation and acceptation pointers
respectively. These two correction rules are checked prior to
any transaction rule.

V. ALGORITHM’S ANALYSIS

In this section, we give the convergence proof of the
proposed algorithm, that is, the number of the atomic transfer
transactions towards the global equilibrium is finite.

Let α(t) and β(t) be the maximum value, resp. the
minimum value in the sensor network at the time t. Let ε be
the local equilibrium threshold.

Lemma 1: The set of transfer transactions T between
sensor nodes are independent: T = {ij | i.I = j ∧ j.A = i}.

Proof: According to the the invitation rule [I], a
sensor node can make/have at most one invitation/preference
at a time. Thus, there can be never two concomitant transfer
transactions in T .

Lemma 2: α(t) (rsp. β(t)) is monotonically decreasing
(rsp. increasing).

Proof: When we deal with distributed average consen-
sus (or load balancing in distributed systems), we may have
situations where node’s local equilibrium is jeopardized by
concomitant neighbors’ load transfers. In order to avoid this
effect, loads are moved from highly loaded sensors to less
loaded ones in atomic transactions. In addition, as pointed
by Lemma 1, the set of transfer transactions nodes are not
concomitant. Hence, ∀t, α(t) ≥ α(t+1) and β(t) ≤ β(t+1).

Lemma 3: The invitation process is not chaining.
A node i is chaining means i has selected j but j has

invited another node.
Proof: By contradiction, assume that the invitation

pointers are chaining. Observe that such behavior is impos-
sible by applying rule [I]. However, the pointers may be

affected and vary due to unexpected perturbations. In this
case, a pointer correction rule [C1] is applied.

Lemma 4: If the network is not balanced, then
α(t+ ∆t) < α(t)

where ∆t is within O(n) transfer transactions.
Proof: We consider the worst case where all nodes in

the network are holding the maximum value except for one
node which is not in equilibrium state. In this configuration,
the last amount of load in transit before reaching equilibrium
could circulate on an Hamiltonian path before arriving to the
final node not holding the maximum value. It follows that α
(rsp. β) will be decreased (rsp. increased) by at least ε in at
most O(n) transfer transactions.

Theorem 1: The proposed algorithm converges to the final
stable equilibrium within O

(
n× (α(0)− β(0))/ε

)
transfer

transactions.
Proof: We have seen by previous Lemmas that α (rsp.

β) value is decreased (rsp. increased) by at least ε within
O(n) transactions. The worst case scenario may occur when
the consensus value is close to either α(0) or β(0). This
leads to O

(
(α(0) − β(0))/ε

)
atomic transfer transactions

before reaching consensus. It follows that the algorithm’s
convergence cost is at most O

(
n× (α(0)− β(0))/ε

)
.

VI. EXPERIMENTAL PROTOCOL AND RESULTS

In our experimentation, we compared our algorithm with
algorithm presented in Section III. This section describes the
steps involved in our experimental run from graph creation
to final results analysis. To evaluate the algorithms, we
conducted a series of experiments using the network sim-
ulator NS31. NS3 is an open-source discrete event simulator
primarily used for research and teaching. NS3 is aligned with
state of the art networking components and is built using
C++ and Python. NS3 modules can be scripted efficiently
with Python.

For each experiment, a graph is generated randomly on
a simulated map of [0 − x] × [0 − x] meters, where x
depends on the node density (default value of 100 nodes
per km2). In this step, uniform distribution has been used to
generate the positions of the nodes. Two nodes are connected
if the Euclidean distance between them is less than D meters
(simulating a signal range of D meters). A post-processing
step is applied to the generated graph to ensure that the
graph is fully connected. This step iterates on all the nodes
and extracts the connected components. If the number of
connected components is greater than 1, then a connection
is formed to connect the graph components between them.

In our setup, the sensor networks are modeled by ran-
dom graphs, edges representing links between nodes. We
considered different numbers of nodes n for the sensor
networks: 50, 100, 200, 400, and 600. The random graphs
are generated by a uniform distribution in a flat-grid with

1NS-3: Network simulator 3. Presentation by Gustavo Carneiro at UTM
Lab Meeting, April 2010.



(a) Number of iterations (b) Average number of iterations per node

(c) Number of messages exchanged (d) Energy consumption

Fig. 1: Iterations, Messages, and Energy consumption

an average density of 100 nodes per km2. Thus, two nodes
are connected if their distance is less than 300 meters. The
initial value x of a sensor is a random value following a
uniform distribution in the range [0 − 10]. The threshold ε,
defined in Section IV is set to 0.1. For each size of graph
n, we consider 40 executions of the algorithms then the
results are averaged. To evaluate the energy consumption
of the compared algorithms, a Wifi Radio Energy Model
is used. Four states are defined in NS3: TX (Transmission),
RX(Transmission), IDLE, and SLEEP with default power
consumption values (in Watts) : TX = 1.14, PRX = 0.94,
PIDLE = 0.82, and PSLEEP = 0.10. Each node has an
initial energy of 100 Joules. Note that, in all following
figures, Bertsekas and Tsitsiklis’ algorithm is denoted by
BTA and our algorithm by DCA (Distributed Consensus
Algorithm).

The first bloc of results is given by Figure 1. It shows
global and per node iterations numbers, numbers of ex-
changed messages and energy consumption, all according to
number of nodes in the network. We can observe that global
iterations numbers of both BTA and DCA algorithms grow
linearly in number of nodes. However, numbers of iterations
per node stabilize after 300 hundred nodes. Number of
exchanged messages is clearly related to number of iterations
and we note that DCA algorithm is less verbose than BTA

and consumes less energy. The apparent weakness of BTA
algorithm is due to the policy adopted for balancing the local
load between neighbors. Nodes are chosen so that the ping-
pong phenomenon will not occur during the load balancing
process. Doing so, the transferred quantities of load are, in
fact, not moved to neighbouring nodes that would reach local
equilibrium in fewer iteration steps.

Figures 2 and 3 present a finer overview of results on
networks of size 100 nodes and 600 nodes respectively.
Each of them, in addition to evolution of number exchanged
messages in time, shows the evolution of the Delta i.e.
the difference between the largest and smallest values in
the network. Since final Delta values are very similar for
both BTA and DCA algorithms, note that evolution of
min and max values are given for several runs of DCA
algorithm. However, we can observe that final value of Delta
is reached more quickly by BTA algorithm than ours, but
BTA fails to reach quicker convergence. Indeed, when local
unbalanced situations are detected, assigning a part of load in
a non suitable way between node neighbors will increase the
number of iteration steps before reaching the final balanced
load distribution.

Preserving the sensors’ energy is one of the most important
issues in designing WSN. Indeed, each sensor node is a
small sized device with a limited battery life which, in



(a) Maximum delta convergence (b) Number of exchanged messages

(c) Network minimum value (d) Network maximum value

Fig. 2: Experimentation results with 100 nodes

most cases, is non refillable especially in remote and hostile
environments. Consequently, in-network average consensus
process with minimal energy consumption needs to be con-
sidered. In this experiment, to assess the energy saving
metric, we plot in Figures 1d and 4 the rate of energy
consumption required by the compared algorithms toward the
global equilibrium convergence. We can observe that DCA
algorithm is more energy-efficient than BTA. Our proposal
tends to exhibit a uniform energy consumption and is in
line with network’s size. However, the inherent nature of
BTA algorithm requires higher number of iteration steps and
exchanges more messages than DCA. The nodes energy are
depleted at a much faster rate leading to decreased network’s
lifetime. Unlike BTA algorithm, the energy management of
our proposal takes advantage from the ability of a sensor
node to exchange fewer load information messages upon
local load imbalance detection. This leads to lesser energy
consumption and increased lifetime of the network.

To summarize, this study shows that, when dealing with
large sensor networks, iterative local average decisions play
an important role on the achieved global performances,
namely the convergence time, the network’s energy con-
sumption, and the induced communication costs of the
distributed consensus process.

VII. CONCLUSION

In this paper, we have introduced a new fast asynchronous
algorithm for distributed average consensus in WSN. Our
proposal searches greedily for local imbalanced situations
between neighbors and tries to ensure local equilibrium
at each time-step of the average consensus process. For
this end, instead of sending parsimonious load values from
highly loaded nodes to less loaded ones, we move a large
amount of load by performing parallel atomic transactions
between pairs of neighbors. This improves the algorithm’s
convergence time speedup with low-cost communication
and minimal energy consumption. Based on NS3 simulator,
numerical results clearly show that our proposal outperforms
its direct competitor due to Bertsekas and Tsitsiklis in all the
tested cases. The obtained results reveal that local average
decisions have a great impact on the global performances of
the involved algorithms.

Extending this work for dependability issues in WSN will
be an interesting research direction. Indeed, resource failures
may occur and have a negative effect on the network’s
QoS, leading to inaccurate global average consensus values.
We expect a difficult challenging trade-off between fault
tolerance, convergence time, and energy consumption.



(a) Maximum delta convergence (b) Number of exchanged messages

(c) Network minimum value (d) Network maximum value

Fig. 3: Experimentation results with 600 nodes

(a) Experimental results with 100 nodes (b) Experimental results with 600 nodes

Fig. 4: Energy consumption

REFERENCES

[1] Jacques M. Bahi, Sylvain Contassot-Vivier, and Arnaud Giersch. Load
balancing in dynamic networks by bounded delays asynchronous
diffusion. In High Performance Computing for Computational Science
- VECPAR 2010 - 9th International conference, Berkeley, CA, USA,
June 22-25, 2010, Revised Selected Papers, pages 352–365, 2010.

[2] Jacques M. Bahi, Arnaud Giersch, and Abdallah Makhoul. A scalable
fault tolerant diffusion scheme for data fusion in sensor networks. In
Infoscale 2008, The Third International ICST Conference on Scalable
Information Systems, page 10 (5 pages), Vico Equense, Italy, June
2008.

[3] Jacques M. Bahi, Christophe Guyeux, Mourad Hakem, and Abdal-

lah Makhoul. Epidemiological approach for data survivability in
unattended wireless sensor networks. J. Network and Computer
Applications, 46:374–383, 2014.

[4] Jacques M. Bahi, Mohammed Haddad, Mourad Hakem, and Hama-
mache Kheddouci. Self-stabilizing consensus average algorithm in
distributed sensor networks. Trans. Large-Scale Data- and Knowledge-
Centered Systems, 9:28–41, 2013.

[5] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed
Computation: Numerical Methods. Athena Scientific, 1997.

[6] F. Bénézit. Distributed Average Consensus for Wireless Sensor
Networks. PhD thesis, Ecole Polytechnique Fédérale de Lausanne,
2009.



[7] Ferran Cedó, Ana Cortés, Ana Ripoll, Miquel A. Senar, and Emilio
Luque. The convergence of realistic distributed load-balancing al-
gorithms. Theory of Computing Systems, 41(4):609–618, December
2007.

[8] Han-Lim Choi, Luc Brunet, and Jonathan P. How. Consensus-
based decentralized auctions for robust task allocation. IEEE Trans.
Robotics, 25(4):912–926, 2009.

[9] Ana Cortés, Ana Ripoll, F. Cedo, Miquel A. Senar, and Emilio Luque.
An asynchronous and iterative load balancing algorithm for discrete
load model. J. Parallel Distrib. Comput., 62(12):1729–1746, 2002.

[10] George Cybenko. Dynamic load balancing for distributed memory
multiprocessors. J. Parallel Distrib. Comput., 7(2):279–301, 1989.

[11] Patrick Denantes, Florence Bénézit, Patrick Thiran, and Martin Vet-
terli. Which distributed averaging algorithm should I choose for
my sensor network? In INFOCOM 2008. 27th IEEE International
Conference on Computer Communications, Joint Conference of the
IEEE Computer and Communications Societies, 13-18 April 2008,
Phoenix, AZ, USA, pages 986–994, 2008.

[12] M. Drozdowski. Selected Problems of Scheduling Tasks in Mul-
tiprocessor Computer Systems. PhD thesis, Poznan University of
Technology, Poznan, Poland, 1998.

[13] Johannes Gehrke, C. Greg Plaxton, and Rajmohan Rajaraman. Rapid
convergence of a local load balancing algorithm for asynchronous
rings. Theor. Comput. Sci., 220(1):247–265, 1999.

[14] Soummya Kar and José M. F. Moura. Distributed average consensus
in sensor networks with random link failures. In Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal
Processing, ICASSP 2007, Honolulu, Hawaii, USA, April 15-20, 2007,
pages 1013–1016, 2007.

[15] Soummya Kar and José M. F. Moura. Distributed consensus algo-
rithms in sensor networks with imperfect communication: Link failures
and channel noise. IEEE Trans. Signal Processing, 57(1):355–369,
2009.

[16] Soummya Kar and José M. F. Moura. Distributed consensus algo-
rithms in sensor networks: quantized data and random link failures.
IEEE Trans. Signal Processing, 58(3):1383–1400, 2010.

[17] J A. Legg. Tracking and sensor fusion issues in the tactical land
environement. Technical Report TN.0605, 2005.

[18] Ciamac Cyrus Moallemi and Benjamin Van Roy. Consensus propaga-
tion. IEEE Trans. Information Theory, 52(11):4753–4766, 2006.

[19] R. Olfati-Saber. Distributed kalman filter with embeded consensus
filters. 44th IEEE Conf. on Dec. and Cont., 2005.

[20] R. Olfati-Saber and J. S. Shamma. Consensus filters for sensor
networks and distributed sensor fusion. 44th IEEE Conf. on Dec.
and Cont. CDC-ECC, 2005.

[21] Reza Olfati-Saber. Distributed kalman filtering for sensor networks.

In 46th IEEE Conference on Decision and Control, CDC 2007, New
Orleans, LA, USA, December 12-14, 2007, pages 5492–5498, 2007.

[22] Reza Olfati-Saber, J. Alexander Fax, and Richard M. Murray. Consen-
sus and cooperation in networked multi-agent systems. Proceedings
of the IEEE, 95(1):215–233, 2007.

[23] Stacy Patterson, Bassam Bamieh, and Amr El Abbadi. Convergence
rates of distributed average consensus with stochastic link failures.
IEEE Trans. Automat. Contr., 55(4):880–892, 2010.

[24] Silvana Silva Pereira and Alba Pagès-Zamora. Mean square conver-
gence of consensus algorithms in random wsns. IEEE Trans. Signal
Processing, 58(5):2866–2874, 2010.

[25] Valentin Schwarz and Gerald Matz. Distributed reconstruction of time-
varying spatial fields based on consensus propagation. In Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, ICASSP 2010, 14-19 March 2010, Sheraton Dallas Hotel,
Dallas, Texas, USA, pages 2926–2929, 2010.

[26] Mahendra Talasila, Shengli Fu, and Yan Wan. Energy conservative
distributed average consensus through connected dominating set. In
2015 IEEE Wireless Communications and Networking Conference,
WCNC 2015, New Orleans, LA, USA, March 9-12, 2015, pages 843–
848, 2015.

[27] Mohammad Sadegh Talebi, Mahdi Kefayati, Babak Hossein Khalaj,
and Hamid R. Rabiee. Adaptive consensus averaging for information
fusion over sensor networks. In IEEE 3rd International Conference on
Mobile Adhoc and Sensor Systems, MASS 2006, 9-12 October 2006,
Vancouver, BC, Canada, pages 562–565, 2006.

[28] Lin Xiao and Stephen P. Boyd. Fast linear iterations for distributed
averaging. Systems & Control Letters, 53(1):65–78, 2004.

[29] Lin Xiao, Stephen P. Boyd, and Seung-Jean Kim. Distributed average
consensus with least-mean-square deviation. J. Parallel Distrib.
Comput., 67(1):33–46, 2007.

[30] Lin Xiao, Stephen P. Boyd, and Sanjay Lall. A scheme for robust
distributed sensor fusion based on average consensus. In Proceedings
of the Fourth International Symposium on Information Processing in
Sensor Networks, IPSN 2005, April 25-27, 2005, UCLA, Los Angeles,
California, USA, pages 63–70, 2005.

[31] Lin Xiao, Stephen P. Boyd, and Sanjay Lall. A space-time diffusion
scheme for peer-to-peer least-squares estimation. In Proceedings of the
Fifth International Conference on Information Processing in Sensor
Networks, IPSN 2006, Nashville, Tennessee, USA, April 19-21, 2006,
pages 168–176, 2006.

[32] Meng Zheng, Mario Goldenbaum, Slawomir Stanczak, and Haibin
Yu. Fast average consensus in clustered wireless sensor networks by
superposition gossiping. In 2012 IEEE Wireless Communications and
Networking Conference, WCNC 2012, Paris, France, April 1-4, 2012,
pages 1982–1987, 2012.


