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Abstract

Data confidentiality is mandatory during transmission or when storing
sensitive information, especially in financial, medical and military appli-
cations. In this context, several cipher solutions and techniques have been
presented in the literature. However, existing solutions are mainly based
on static structures, where the confusion and diffusion primitives are fixed
and independent of the secret key. In this article, we propose a new block
cipher scheme that is based on the Substitution-Permutation Networks
(SPN). The proposed cipher consists of three operations: round-key ad-
dition, substitution, and bits’ permutation. Moreover, the substitution
operation is applied at the byte level and it is based on a dynamically
generated S-box, while the diffusion primitives are applied at the bit level
using a dynamically generated P-box. Such key-dependent design ensures
better cryptographic strength and system performance when compared,
for instance, to DES, 3DES, RC5, and PRESENT schemes, among oth-
ers, due to its key expansion algorithm. Thorough analysis show that the
proposed scheme exhibits a high degree of randomness, key and plain-text
sensitivity, and it satisfies the avalanche effect. From a theoretical per-
spective, we have formulated the Output Feedback mode of operation as a
discrete dynamical system on a topological space. We prove that the dy-
namics of this system (in terms of sensitivity to the initial vector, etc.) are
directly related to the strong connectivity of a graph. By doing so, we are
able to characterize the conditions under which this mode evolves chaot-
ically, as defined in the Devaney’s theory. In particular, such theoretical
investigations allow us to link the avalanche effect and key sensitivity of
the cipher with the sensitivity of the whole process, that is, with the mode
of operation.

Keywords: Block ciphers; Dynamic P-boxes and S-boxes; Security analysis;
Devaney’s chaos; Lyapunov exponent.
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1 Introduction

Typically, encryption algorithms are used to ensure the confidentiality of data
either during transmission or while being stored. Originally, encryption algo-
rithms were based on symmetric keys such as DES [10], which is based on
Feistel Networks, and AES [12], which is based on Substitution Permutation
Networks (SPN) (cf. [31]). These traditional techniques have static structures;
the confusion and diffusion primitives are fixed and independent of the secret
key. As such, a large number of rounds is required to achieve the desired security
level. This is associated with an increased level of computational complexity
and hence, such techniques may not be suitable for real-time applications with
high data rates [28].

An efficient encryption algorithm may satisfy the uniformity property and
it may exhibit high sensitivity with respect to plain-text and secret key while
encrypting one data block at a time (ECB mode); however, this may not be
the case for different modes of operation. For example, the Avalanche effect
might be achieved after encrypting one block, however, such property might
not be achieved after encrypting the whole message using a specific mode of
operation. Hence, it is important to have new, flexible, and practicable block
ciphers that are well studied with respect to the different modes of operation.
In this paper, we aim to present new contributions in these two directions; we
propose a new block cipher scheme that is flexible and secure, and we provide
a new theoretical approach to assess whether or not the properties of the block
cipher are preserved when applying any mode of operation.

Accordingly, the contributions in this article are two fold. On one hand, a
new encryption scheme is proposed and thoroughly studied, and it can be used,
for instance, in the Output Feedback (OFB) mode. On the other hand, the dy-
namics of this mode are studied using tools derived from mathematical topology.
More specifically, the proposed cipher scheme satisfies the fundamental security
properties such as the avalanche effect, key sensitivity, and randomness, as well
as a configurable number of rounds. It includes an efficient technique to con-
struct dynamic substitution S-boxes and permutation P-boxes. The technique
is based on a dynamic key that is generated using the secret key and an initial
vector. The proposed approach is flexible and the size of input blocks can be
varied according to the applications’ requirements.
On the theory side, we formulate the OFB mode as a discrete dynamical sys-
tem based on a relevant metric space. Then, we prove that the dynamics of
this system (in terms of sensitivity to the initial vector, chaotic behavior, etc.)
are directly related to the strong connectivity property of a well-defined graph.
Such theoretical investigation allows us to link the avalanche effect and key
sensitivity of the algorithm to the sensitivity of the mode of operation.

The remainder of this article is organized as follows. In the next section, we
provide some background about symmetric ciphers in general, and our previ-
ously obtained results about the dynamics of the CBC mode of operation. In
Section 3, the proposed data encryption algorithm is presented in details. The
cryptographic performance is discussed in Section 4, and experimental evalua-
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tion is presented in the following section. In particular, we show how to reinforce
the links between the avalanche and sensitivity properties of the cipher function
and the whole process using the OFB mode of operation. The dynamics of the
OFB mode of operation are theoretically investigated in Section 7, in which we
provide a characterization that shows sensitive dependence to the initial con-
ditions. This research work ends by a conclusion, in which the contribution is
summarized and intended future work is outlined.

2 Background

In this paper, we investigate the conditions under which some modes of opera-
tions behave chaotically and then, we propose a symmetric cipher that satisfies
them. We start with some background about symmetric ciphers and chaotic
behavior.

2.1 Symmetric ciphers

Encryption algorithms are classified into two main classes: symmetric and asym-
metric ciphers. In symmetric ciphers, only one key is secretly exchanged between
the transmitter and the receiver, and it is used in the encryption and decryp-
tion processes. On the other hand, two keys are used in asymmetric ciphers; a
sender having a public key can encrypt a message and only one receiver, the one
having the corresponding private key, can decrypt such a message. However,
asymmetric ciphers are not appropriate in various situations due to their inher-
ent expensive computational complexity and memory usage, when compared to
symmetric ciphers.

When using symmetric ciphers, one can select a stream cipher whereby the
data is encrypted at the bit or byte level, or a block cipher whereby the data
is encrypted one block (a set of bytes) at a time. Block ciphers divide the
plain-text message into separate blocks of fixed size, e.g., 64 bits for DES (Data
Encryption Standard) and 128 bits for AES (Advanced Encryption Standard),
and encrypt the blocks according to some specific mode of operation such as
CBC (see Figure 1), OFB, or CTR [15]. Existing block ciphers are mainly based
on two different kinds of round functions: Substitution-Permutation Network
(SPN) or the Feistel Network (FN). For the same security level, SPN has a
better performance and requires a lower number of rounds compared to FN.

A block cipher takes as input the message data blocks and the key, and
applies a function for several rounds. According to Shannon, a strong round
function should achieve two main properties, confusion and diffusion, when ap-
plying substitution and permutation operations [27, 18]. Substitution makes
the relationship between the ciphertext and the key obscure, and it ensures the
confusion property; it may use one S-box such as the case of AES or several S-
boxes such as the case of DES. The diffusion property ensures that any change
of a bit in the plaintext is spread over many ciphertext symbols. This permits
to hide statistical properties of the plaintext. This property is achieved by us-
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Figure 1: CBC mode of operation

ing permutation P-boxes like the case of DES or by considering a Maximum
Distance Separable (MDS) matrix like the case of AES.

Block ciphers can be split into two sub-categories according to the way sub-
stitution and permutation are implemented. The first sub-category uses a static
structure that minimizes, after a certain number of rounds, the maximum dif-
ference propagation probability (against differential attacks) and the maximum
input-output correlation probability (against linear attacks). Furthermore, a
standard block cipher uses static S-boxes with maximum performance to ensure
the confusion property, while P-boxes (as in DES) or static diffusion matrix
(MDS matrix as in AES in addition to row rotation) to ensure the diffusion
property. Moreover, a key expansion algorithm with a secret key as input is it-
erated to produce the required round keys (e.g., AES, SAFER [19], 3-WAY [11]).
The second sub-category of block ciphers has a dynamic structure reflected in
the construction of S-boxes and P-boxes using the secret key. The advantage of
the static approach is that its security against differential and linear attacks can
be proved. However, it requires several encryption rounds in order to achieve the
required security level, i.e., more computational complexity and consequently
higher execution time compared to the dynamic approach that can ensure a
similar security level with a lower number of rounds. Also, the static block
cipher structure gives opportunities to potential attacks since the substitution
and diffusion layers are independent from the secret key and are known to the
attacker.

2.2 Chaotic properties of the CBC mode of operation

Consider the CBC mode of operation with a keyed encryption function εk :
BN → BN, where N is the size of the block cipher, and Dk : BN → BN is the
corresponding decryption function such that ∀k, εk ◦Dk is the identity function.
Using the same canvas as in the case of pseudo-random number generation [6] or
hash functions [7, 16], we use the following Cartesian product that was defined
in [1]: X = BN × SN, where B = {0, 1} is the set of Boolean values, while
SN = J0, 2N − 1KN stands for the set of sequences of natural integers bounded
by 2N − 1 (or in other words, the set of N-bit block messages). As such, the
XN product is defined over the internal states of the mode of operation and the
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sequences of block messages. Let us consider the initialization function

i : SN −→ J0, 2N − 1K
(mi)i∈N 7−→ m0

that returns the first block of a message, and the shift function

σ : SN −→ SN
(m0,m1,m2, ...) 7−→ (m1,m2,m3, ...)

which removes the first block of a message. Let mj be the j-th bit of a message
blockm ∈ J0, 2N−1K expressed in the binary numeral system, and when counting
from the left. We have defined

Ff : BN × J0, 2N − 1K −→ BN

(x,m) 7−→ (xjmj + f(x)jmj)j=1..N

This function returns the input binary vector x, whose mj-th components xmj

have been replaced by f(x)mj
, for all j = 1..N such that mj = 0. When f is

the vector negation, this function will correspond to a simple XOR between the
plain-text and the previous encrypted state.

Denote by f0 the vector negation. So the CBC mode of operation can be
rewritten as {

X0 = (IV,m)

Xn+1 = (Ek ◦ Ff0 (i(X
n
1 ), X

n
2 ) , σ(X

n
1 ))

(1)

For any given g : J0, 2N−1K×BN −→ BN, let us defineGg(X) = (g(i(X1), X2);σ(X1))
(when g = Ek ◦ Ff0 , we obtain one cipher block of the CBC, as depicted in Fig-
ure 1). So the recurrent relation of Eq.(1) can be rewritten in a condensed
form,

Xn+1 = GEk◦Ff0
(Xn) . (2)

With such a notation, one iteration of the above discrete dynamical system
corresponds exactly to one cipher block in the CBC mode of operation.

Next, we define a distance d((x,m); (x̌, m̌)) = de(x, x̌) + dm(m, m̌) on XN,
where [2] 

de(x, x̌) =
∑N

k=1 δ(xk, x̌k)

dm(m, m̌) =
9

N

∞∑
k=1

∑N
i=1

∣∣mk
i − m̌k

i

∣∣
10k

.

in which δ(x, y) = 1 if x = y, else it is 0. Using such a model, we proved the
following theorem in [2].

Theorem 1 Consider the directed graph Gg, where:

• vertices represent all the possible N-bit words.
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• there is an edge m ∈ J0, 2N − 1K from x to x̌ if and only if
g(m,x) = x̌, where g = Ek ◦ Ff0 .

So, if Gg is strongly connected, then the CBC mode of operation GEk◦Ff0
is

chaotic, as defined by Devaney [14], on the topological space (X , d). This means
that GEk◦Ff0

satisfies on (X , d) the following properties:

• regularity: the set of periodic points is dense in XN (for any
point x in XN, any neighborhood of x contains at least one periodic point).

• topological transitivity: for any pair of open sets U, V ⊂ XN,
there exists an integer k > 0 such that Gk

Ek◦Ff0
(U) ∩ V ̸= ∅.

• sensitive dependence on initial conditions: there exists δ > 0
such that, for any x ∈ XN and any neighborhood V of x, there is y ∈ V

and n > 0 such that d
(
Gn

Ek◦Ff0
(x), Gn

Ek◦Ff0
(y)

)
> δ.

This result has been extended in [3], where both expansivity and sensibility
constants of symmetric ciphers have been evaluated in the case of the CBC mode
of operation. However, all these results of qualitative and quantitative disorder
have been stated on an exotic phase space XN, equipped with a distance d, very
different from the usual Euclidian one. Our objective was then to translate
them into a more typical situation, namely the real line equipped with its usual
order topology. Using an ad hoc semi-conjugacy, we have then established that
the CBC mode GEk◦Ff0

on the phase space XN consists of simple iterations of a
well defined function g over R. Additionally, g has derivatives of all orders over[
0, 2N

[
, except at the points of the set

{n

N

/
n ∈ J0; 2N × NK

}
. Furthermore,

on each interval of the form

[
n

N
,
n+ 1

N

[
, with n ∈ J0; 2N × NK, g is a linear

function, having a slope equal to N: ∀x /∈ I, g′(x) = N.
Let us finally recall that, for f : R −→ R, the Lyapunov exponent of the

system defined by x0 ∈ R and xn+1 = f(xn) is

λ(x0) = lim
n→+∞

1

n

n∑
i=1

ln
∣∣ f ′ (xi−1

)∣∣.
This Lyapunov exponent can be computed for the CBC mode of operation.

Theorem 2 Consider the CBC mode of operation g with block size of N. Then,
∀x0 ∈ L, its Lyapunov exponent λ(x0) is equal to ln(N).

Proof The proof of this result can be found in [1].
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Figure 2: Structures of the proposed cipher scheme (without dynamic IV ).

3 The proposed data encryption

3.1 General overview

The general structure of the proposed SPN is shown in Figure 2 for the encryp-
tion process. This approach consists of three phases:

1. Dynamic key generation;

2. Cipher layers construction;

3. Encryption/Decryption algorithm.

The encryption algorithm is a block cipher consisting of a round function that
iterates r times, where the round function consists of three different layers: ad-
dition, substitution, and permutation. The number of rounds, r, is related to
the avalanche effect property, which depends on the block size, as will be de-
scribed later in Subsection 5.2.1 and illustrated in Table 2 and Figure 13. The
decryption scheme is similar to the encryption one, but operates in reverse order
and replaces the permutation and substitution primitives by their inverse coun-
terparts. Moreover, the proposed encryption/decryption process uses different
S-boxes and P-boxes for each round.
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In the first phase, the proposed key derivation function generates a dy-
namic key, which is then divided into three dynamic sub-keys Ka, Kp, and
Ks, whereby Ka is used to generate the set of rounds keys, while Ks and Kp
are used to build the S-boxes and the P-boxes, respectively. The round keys,
in addition to the produced S-boxes and P-boxes, constitute the cryptographic
primitives of the proposed encryption scheme.

The first operation in the round function is the addition process, which uses
two operations, exclusive-or (XOR) and addition modulo 256, to mix the byte
values from the plain block with a round key that is generated based on the
chaotic tent map. Then, we perform substitution of the plain block byte values.
Next, we perform the permutation operation over the bits of the block; these
operations (substitution and permutation) achieve the confusion and diffusion
properties. Repeating the same addition-substitution-permutation operations
for r rounds using variable dynamic keys and parameters offers a high-security
level to the cipher scheme. Note that the S-boxes are sub-blocks of 8 × 8 bits,
which means substitution is applied on elements of 8 bits that will be replaced
by another 8 bits (byte) by using the substitution table.

In the following, we describe the generation of the dynamic keys and the
construction of the cipher layers.

3.2 Integer Non-linear finite skew tent

The integer finite skew tent transformation is reformulated as in [5, 20]. The dif-
ferent cipher primitives such as permutation and substitution tables in addition
to round keys are totally dependent on this transformation. Thus, we analyze
it in details to show that it provides the required cryptographic strength. This
map is defined as

y =


⌈Qτi × x⌉ x ≤ τ

⌊ Q
(Q−τi)

× (Q− x)⌋+ 1 x > τ

(3)

where x, y, τi ∈ {1, . . . , Q}, and Q = 28 when the input message is in byte rep-
resentation. In addition, τ is the control parameter, while x and y are respec-
tively the input and output of this transformation. This is a piece-wise linear
transformation, which is composed of two linear segments as shown in Fig-
ure 3-a (for different values of τ). It has good dynamical properties accord-
ing to its corresponding Lyapunov exponent, which is positive for any given
x(0) ∈ {1, ..., 256}, as depicted in Figure 3-b. The corresponding bifurcation
diagram for τ ∈ {1, ..., 256} is shown in Figure 3-c.

Additionally, we analyzed the effects of computing precision of this trans-
formation and we obtained the periodicity of all parameters τ ∈ {1, ..., 256}, as
represented in Figure 4. This result clearly indicates that the transformation
cannot provide stable periodicity: this stability is large for some parameters and
it may be very low for other ones. As such, we can detect that employing fixed
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Figure 3: Non Linear Performance of Integer Skew Tent

control parameters is not secure and makes the proposed encryption function
not immune against different kinds of attacks such as statistical ones.

3.3 Initialization

This section describes the construction algorithms for the dynamic cipher primi-
tives, S-boxes, P-boxes and round keys. These are generated based on a dynamic
secret, which depends itself on a secret key and a nonce. All the notations used
in the description are listed in Table 1.

The generation of S-boxes is based on a nonlinear transformation and a
bit-rotation operation. These operations ensure the necessary cryptographic
performance for a safe implementation in any cryptographic algorithm such as
the block cipher proposed in this paper.
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(a) Periodicity

Figure 4: Variation of the periodicity against τ ∈ {1, 256}

Conversely to the S-box, a degree of non-linearity is not required for the P-box.
The same non-linear transformation used to generate the S-boxes is used to
generate the P-boxes, but without using the bit permutation operation. It is
important to note that these transformations (substitution and permutation)
are invertible and ensure the bijectivity property according to [20]. The main
goal of employing different dynamic S-boxes and P-boxes is to design a dynamic
cipher structure with a high security level compared to static block ciphers.

The simplicity of the proposed scheme is due to the use of integer transfor-
mations and avoiding any floating-point operation. On the other hand, the low
computational complexity is proven due to the minimum number of required
iterations.

3.4 Dynamic Generation of Sub-keys

In contrast to most encryption algorithms that use static S-box and P-box, the
ones used in our algorithm are variable and generated in a lightweight manner,
and ensure the desired performance of cryptographic primitives.
Our proposal falls within the secret shared key system, where the two ends of
the communication system share the same secret key, called Master Secret Key
(K), which is used to generate a set of Dynamic keys (DKs) that are then used
to encrypt the transmitted/stored data. the key K is mixed with a nonce No

to produce an output X, which is then hashed using SHA-512 to produce the
dynamic key DK as shown in Figure 5.

Note that the nonce No can be produced at the sender and receiver in a syn-
chronized manner using any secure Deterministic pseudo Random Bit Generator
(DRBG) [8]. The seed of the selected DRBG can be constructed by hashing the
secret key with any public unique parameter. The produced pseudo-random
sequence can be divided to form a set of dynamic nonce values. In concept,
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Table 1: Notations

K Secret key

No Nonce

DK A dynamic key

Ka the dynamic addition round sub-key

Ks Substitution Sub-key

Kp Permutation Sub-key

RK A set of r rounds keys {RK1, RK2, . . . , RKr}
IDA Identification of the transmitter

IDB Identification of the legal receiver

Qs Length of the substitution table (28=256 for the byte level)

D a plain data

r Number of cipher rounds

rp Number of transient iterations necessary (threshold) to start building r P-boxes

rs Number of transient iterations necessary to start building r P-boxes

i Index of round number

j Index of block number

t Index of elements in a block

P The produced permutation vector

P−1 The corresponding inverse permutation vector

S The substitution table

S−1 The corresponding inverse substitution vectors

LSB(X, s, f) Returns the least significant bit of X starting from the index s and ending at
the index f

MSB(X, s, f) Returns the most significant bit of X starting from the index s and ending at
the index f

PV Primary vector

len Length of a plain data (in byte)

reshape(X, 1, len) Returns a vector with length len of matrix X, whose elements are taken column-
wise from X.

Tb Length of plain-block (in bits)

Padding(X,Tb) The padded bits Tb for a matrix X

⌈x⌉ Denotes the ceil integer part of x

nb Number of blocks of data after the padding process.

the produced sequence of each of these DRBGs ensures high periodicity (inter-
nal update after each maximum ”requested number of bits”) and randomness
level. Therefore, each nonce can be used only once, and it should be different
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Figure 5: The proposed dynamic key and cipher primitives generation steps.

for every input image. Another possible technique to have a common nonce is
to generate it at the sender side and to transmit it in an encrypted form to the
legal receiver(s) by using the secret key or the receiver public key.
The master secret key space varies between 128 and 512 bits, while the size of
nonce is fixed at 512 bits. Moreover, the size of the dynamic key is also fixed at
512 bits to guard against brute force attacks.

OnceDK is generated, it is divided into three sub-keys (Ka, Ks and kp) that
contribute to the generation of the three main cipher primitives. The round keys
make use of Ka, the substitution tables (S-boxes) are generated as a function
of Ks, and the permutation tables (P-boxes) are produced as a function of Kp.
Algorithm 1 describes the main steps of the initialization phase: generation of
the dynamic key (DK), sub-keys (Ka, Ks, Kp) as well as IV , which will be
used for the chaining operation.

The proposed block cipher algorithm uses a variable cipher structure since
all cipher primitives are changed after each new input message. For each input
plain-block, the round function is iterated for r rounds, depending on the block
size, and the value of r is related to the avalanche effect property (see Figure 13),
which is variable and depends itself on the block size.

Finally, let us indicate that one of the new innovation idea of the proposed
solution is that IV becomes dynamic and secret as the secret key. This leads
to increase the security level of the proposed cipher scheme and to make the
cryptanalysis more difficult.
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Algorithm 1 Initialization step: construction of dynamic r round keys, r S-
boxes and r P-boxes

1: procedure Initialization(K, No, r, rs, rp)
2: Input: K and IV
3: Parameters: r,rs, and rp

▷ Generation of the dynamic key DK
4: DK ← Dynamic key derivation(K, IV r)
5: Ka← DK(1 : 16) ▷ Get the first 16 Most Significant Bytes (MSBs).
6: Ks← DK(17 : 32) ▷ Get the second 16 MSBs.
7: Kp← DK(33 : 48) ▷ Get the third 16 MSBs.
8: IV ← DK(49 : 64) ▷ It is needed if chaining mode is used.
9: RK = {RK1, . . . , RKr} ← Round Keys Generation (Ka, r) ▷

Generation of r round keys
10: Sboxes← Creation r Sboxes(Ks, rs, r, Qs) ▷ Generation of r

substitution tables
11: Pboxes← Creation r Pboxes(Kp rp, , r, T b)
12: return {RK, Pbox, Sbox} ▷ Generation of the r permutation tables
13: Output: r rounds addition keys, r dynamic key dependent S-boxes and

P-boxes.
14: end procedure

3.4.1 Generation of Round keys

The set of round keys, RK, is generated as follows: the current dynamic sub-
key Ka (16 bytes) is divided into 2 equal parts, each with a size of 8 bytes.
Then, each part is converted to an unsigned integer of 64 bits; these parts are
used as an initial condition and a control parameter for the integer Skew tent,
respectively, to generate the key-stream of the r round keys. To do that, the
map is iterated nt = ⌈ r×Tbyte

64 ⌉ times. Each addition round key has a size of

Tbyte and it can be obtained after each of the ⌈Tbyte
64 ⌉ iterations.

Note that this chaotic map is selected for its simplicity of implementation
in hardware and software. Next, the output of the integer skew tent map is
converted from integer precision (N = 64) back to 8 bytes. As such, each
sample is represented using 8 bytes and each group of 2 bytes is used to form 4
sub-samples{o1, o2, o3, o4} that are treated separately.

These variables are mixed together using a non-invertible binary matrix
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expressed by: 
q1
q2
q3
q4

 =


1 1 1 1
0 1 1 1
0 1 0 0
1 1 0 0

⊕

o1
o2
o3
o4


⇒ q1 = o1 ⊕ o2 ⊕ o3 ⊕ o4

q2 = o2 ⊕ o3 ⊕ o4

q3 = o2

q4 = o1 ⊕ o2

(4)

Then, each qi is rotated for 3 times to increase the non-linearity degree of the
produced round keys, where i = (1, 2, . . . , r) × Tbyte. Note that the integer
skew tent is used with a dynamic sub-key for each new input message or a new
session according to the selected configuration.

3.4.2 Generation of S-boxes

The confusion property requires a substitution operation using a substitution
table, S−box. The substitution process is a very important operation in crypto-
graphic algorithms, since it provides non-linearity and ensures resistance against
specific attacks like differential and linear ones.

The substitution operation is applied at the byte level, and the generation of
the S-Box starts with an initial vector V of length 28 with values ranging from
1 to 256. Then, we iterate the integer skew tent on this vector for rs times to
generate the first useful S-Box. The first rs−1 iterations represent the transient
phase to ensure the required cryptographic performance whereby the different
performance criteria(LPF , DPF , SAC, and BIC [23]) are considered stable
and close to the desired one; this is described in section 4.3 and shown in
Figure 11, where we show that the minimum value for rs is 4 for the proposed
technique. Note that, the output of the chaotic map after each iteration is
decremented by 1 to have a value ranging from 0 to 255. Next, a Bitwise right
shift (>>) is operated 3 times on each element of the vector; this rotation
increases again the non-linearity degree of the whole process [24].

Figure 6 shows a numerical example of S-Box generation. Since rs=4, we
perform 4 iterations to get the first useful S-Box, and the Figure shows the first
8 values of the initial vector, and the outputs of the first 4 iterations. The values
of the fourth iteration, decremented each by 1, constitute the values of the first
S-Box to be used in the first round. Afterwards, we perform a new iteration for
every new round to generate the corresponding S-Box. For example, if we need
to perform r rounds, we iterate the map first 3 times (rs − 1), and then, we
iterate the map for an additional r times for a total of (rs+ r − 1) times.

When performing r rounds, and while iterating the map for i = 1, 2, . . . , rs+
r − 1, the output vector, after each iteration, becomes the input vector to the
next one. More details about the proposed generation technique of the S-boxes
are listed in Algorithm 2. In addition, The cryptographic performance of the
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proposed substitution technique is quantified for each iteration.

A numerical example of a full dynamic S-box and its corresponding inverse
are displayed in Figure 7.

Figure 6: A numerical example of how to construct the first substitution table
(after rs iterations) for only the first 8 elements of V with τ={16, 31, 129, 5}
and Qs =256.

Algorithm 2 Construction of dynamic r S-boxes.

1: procedure Creation r Sboxes(Ks, rs, r, Qs)
2: Input: Ks
3: Parameters: r,rs, and Qs
4: Output: r dynamic key dependent S-boxes.
5:

6: for t← 1 to Qs do
7: Vt ← t
8: end for
9: ▷ Iterate the Integer Non-Linear Finite Skew Tent Map (INLFSTM) for

rs− 1 iterations
10: for i← 1 to rs− 1 do
11: V ← INLFSTM(V,Ksi)
12: end for
13: ▷ Continue to iterate

the Integer Non-Linear Finite Skew Tent Map (INLFSTM) for r iterations,
and a substitution table is produced after each iteration.

14: for i← rs to r + rs− 1 do
15: V ← INLFSTM(V,Ksi)
16: Sboxi ← (V − 1) >> 3
17: end for
18: return Sboxes {Sbox1, Sbox2, . . . , Sboxr}
19: end procedure

15



Figure 7: A specific example of creation of dynamic S-box with numerical values
and its corresponding inverse one (see Eq. 8) by using the proposed technique.

3.4.3 Generation of P-boxes

In the proposed scheme, the permutation process is performed at the bit level.
A specific permutation table P − box is used for each encryption round, while
its inverse (P − box)−1 is used for decryption. Initially, a Primary Vector of Tb
elements is initialized as follows: PVt = t, with t = 1, . . . , T b. Then, the integer
skew tent map is applied on this vector several times; first, we iterate for rp
times to generate the first useful P-Box. The first (rp− 1) iterations represent
the transient phase to ensure the required cryptographic performance; this is
described in Section 4.2 and shown in Figure 10, where we show that the mini-
mum value for rp is 4 for the proposed technique. Note that for each iteration
w, the wth byte of Kp is used as a control parameter and the output vector of
each iteration becomes the input vector to the next one. This will randomize
the PV vector to become the first P-box after rp iterations.
Next, we iterate for (r − 1) times for a total of (rp + r − 1) to generate the
required r P-Boxes. The implementation details are listed in Algorithm 3.

Finally, and since the integer skew tent map is invertible (bijective) [20],
then each produced P − box is invertible and its inverse (P − box)−1 always
exists and can be produced by using Eq. 11.

Figure 8 shows a numerical example of P-Box generation. Since rp = 4,
we perform 4 iterations to get the first useful P-Box, and the Figure shows the
values of the initial vector for a block size Tb of 8, and the outputs of the first 4
iterations. The vector values of the fourth iteration constitute the values of the
first P-Box to be used in the first round. Afterwards, we perform a new iteration
for every new round to generate the corresponding P-Box. For example, if we
need to perform r rounds, we iterate the map first 3 times (rp − 1), and then,
we iterate the map for an additional r times for a total of (rp+ r − 1) times.
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Algorithm 3 Construction of dynamic r P-boxes.

1: procedure Creation r Pboxes(Kp, rp, r, T b)
2: Input: Kp
3: Parameters: r,rp, and Tb
4: Output: r dynamic key dependent P-boxes.
5:

6: for t← 1 to Tb do
7: PVt ← t
8: end for
9: ▷ Iterate the Integer Non-Linear Finite Skew Tent Map (INLFSTM) for

rp-1 iterations.
10: for i← 1 to rp− 1 do
11: PV ← INLFSTM(PV,Kpi)
12: end for
13: ▷ Continue to iterate

the Integer Non-Linear Finite Skew Tent Map (INLFSTM) for r iterations,
and a permutation table is produced after each iteration.

14: for i← rp to r + rp− 1 do
15: PV ← INLFSTM(PV,Kpi)
16: Pboxi ← PV
17: end for
18: return Pboxes {Pbox1, P box2, . . . , P boxr}
19: end procedure

Figure 8: A numerical example of how to construct the first permutation table
(after rp iterations) with length Tb equals to 8. PV is iterated with Kp =
τ={6, 1, 5, 7}.

3.5 Proposed Block Cipher: CBC mode

In this section, the proposed cipher/decipher algorithm is described. The plain
data D is divided into nb blocks, each of length Tb in bits (32, 64, 128, 256,
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and so on): {B1, B2, . . . , Bnb}. The proposed encryption algorithm deals with
data of len-byte length. If len is not a multiple of Tbyte = Tb

8 , a padding
operation is required for the last block of data when considering ECB, CBC, or
CFB operation modes, while this operation is not needed for OFB and CTR.

3.5.1 Encryption Algorithm

Based on the dynamic keyDK, the three sub-keys are produced and used for the
generation of r round keys, S-boxes and P-boxes (or their inverse counterparts
at the receiver side). The proposed encryption algorithm performs r rounds
of SP-network on each block. Note that the block length Tb depends on the
application and its corresponding memory constraints; a small size of Tb is
preferable for low memory capacity, which is less than or equal to 64 bits. Note
that our algorithm can run with any value of Tb = 2i, where i = 3, 4, 5, 6, . . ..

Algorithm 4 Proposed SPN Algorithm

1: procedure SPN Ciphering(B, Ka, Pbox, Sbox, r)
2: Input:B, Ka, Pbox, Sbox
3: Parameters: r
4: Output: Encrypted block C
5: C ← B
6: for i← 1 to r do
7: X ← Addition Round key(C, Kai, i)
8: Y ← Byte Substitution layer(X, Sboxi)
9: Z ← Bits Permutation layer(Y, Pboxi)

10: C ← Z
11: end for
12: return C
13: end procedure

Algorithm 4 describes the proposed SPN block cipher, which is implemented
in the following modes: Cipher Block Chaining (CBC), Output Feedback (OFB),
and Counter (CTR) mode. The decryption scheme is similar to the encryption
one, but the decryption process reverses both the order of rounds and the round
layers, and it employs the inverse of P-boxes and S-boxes. The basic steps of the
proposed encryption scheme are presented in Figure 2; they consist of applying a
round function for r rounds to achieve a high level of randomness and to ensure
the avalanche effect. This function consists of three main layers: addition, byte
substitution operation based on an S-box, and the diffusion operation is based
on bit permutation – in order to achieve the confusion and diffusion proprieties.

• Addition layer

This is the first operation of the encryption round function (and so the
last one for the decryption round function). The addition operation is
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carried out on bytes by using the logical exclusive-OR operation:

Xj = Bj ⊕RKi, (5)

where i = 1, 2, . . . , r and j=1, 2, . . . , nb, Bj is the jth plain block, and
RKi is the ith addition round key.

• Substitution layer: S-box

Each resultant mixed block Xj follows a substitution process that employs
the ith S-box (Si) to perform the corresponding substituted block Y j

Y j = Substitution(Xj , Si) (6)

The inverse operation of substitution layer that is used in the decryption
process is given by

Xj = Substitution(Y j , S−1
i ) (7)

The S-box inverse, S−1, can be obtained by the operation:

S−1[S(t)] = t, where t and S(t) ∈ {0, 255}. (8)

• Permutation layer, r P-boxes:

Each substituted mixed block, Y j , follows a bit permutation process that
employs the ith P-box, Pi, which leads to the output Zj , and the latter
becomes the input block for the (i+ 1)th round:

Zj = π(Y j , Pi) (9)

The inverse operation of the permutation layer is given by:

Y j = π(Zj , P−1
i ) (10)

Similarly, the inverse P-box, P−1, is also bijective and can be obtained
by:

P−1[P (t)] = t, where t and P (t) ∈ {1, ..., T b}. (11)

3.5.2 Decryption Algorithm

Similarly to the encryption scheme, decryption consists of applying the inverse
round function, thus applying the layers in reverse order. Algorithm 5 sum-
marizes the decryption scheme, which reverses the encryption order and re-
places the permutation and substitution boxes by their inverse counterparts,
(S − box)−1 and (P − box)−1.
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Algorithm 5 The corresponding decipher SPN Algorithm

1: procedure SPN Deciphering(C, RK, Pbox−1, Sbox−1, r)
2: Input:C, RK−1, P box−1, Sbox−1

3: Parameters: r
4: B = C
5: for i← r down to 1 do
6: B ← Inverse Bits Permutation layer(B, Pbox−1

i )
7: B ← Inverse Byte Substitution layer(B, Sbox−1

i )
8: B ← Inverse Addition Round key(B, RKi, i)
9: end for

10: return Decrypted block B.
11: end procedure

4 Cryptographic Performance of the Proposed
Cipher Layers

In this section, the cryptographic properties of the proposed round key expan-
sion, substitution, and diffusion primitives are discussed and analyzed in de-
tails, to prove their robustness and to validate them as appropriate primitives
for symmetric cryptography.

4.1 Performance of key derivation function

A good key derivation function should produce pseudo-random bit sequences
with good randomness degree. This latter can be checked by the following
properties: uniform distribution, large linear complexity (approximately equal
to half of the sequence period), long period, delta-like auto-correlation, nearly
zero cross-correlation, and it should finally be able to pass empirical statistical
tests. As can be seen in Figure 9: a) the produced sequence has a random
trajectory; b) the linear complexity of the bit sequence is as required; c) the
auto-correlation looks like a delta-function, and the cross-correlation curves are
always close to zero, although there is only a slight difference between the param-
eters; and d) there is an equal mean of bits. In order to quantify the randomness
degree of the proposed key derivation function, the NIST test has been applied
as in [26] and the proportion value from these tests show that the proposed
Key Derivation Function (KDF) passes all the tests, and the produced binary
sequence achieves all necessary conditions and has a good randomness degree
and as such, it can be safely used to secure communication systems.

4.2 Cryptographic performance of the dynamic permuta-
tion layer

The performance of the proposed dynamic permutation algorithm should be
quantified in order to demonstrate its safe implementation. Two criteria are
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(a) (b)

(c) (d)

Figure 9: Cryptographic properties of sequence obtained using our proposed
generator, with N=32 and sequence length 8,000 bits (1,000 bytes). (a) Map-
ping, (b) linear complexity, (c) auto/cross-correlation function, (d) running bal-
ance and (e) NIST tests.

employed here; the first one is the coefficient of correlation (described in [25]) to
check the recurrence of permuted vectors ((P(t), P(t+1)), t = 1, 2, . . . , T b− 1),
and to quantify the minimum iteration-number of permutations, rp. These
tests were applied for nk = 215 random dynamic keys and for different sizes
of the block (Tb=2q, q=4, . . . , 10). Figure 10 shows the average coefficient of
correlation between the recurrence of permuted index versus rp for various Tb.
The second criterion, the probability of the number of unique P-boxes versus
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rp for different Tb, is shown in Figure 10.
Based on these results, it is clear that rp ≥ 4 is the iteration threshold, since

the coefficient correlation becomes close to zero (ideal value) and the probability
of unique P-boxes is close to the maximum possible value (0.8 × Tb!),where !
represents the factorial function. Consequently, rp is set to 4 for the different
sizes of Tb, and the choice of this value is justified.

4.3 Cryptographic performance of the dynamic substitu-
tion layer

According to information theory, a strong n×n substitution layer must have the
following properties: bijectivity, both a low linear probability function (LPF )
and differential probability function (DPF ), strict avalanche criterion (SAC),
output bits independence criterion (BIC), and equiprobable input/output XOR
distribution [9, 21, 30]. The proposed nonlinear transformation is applied for
multi-iterations irs = 1, 2, . . . , rs with rs being the number of iterations of
the substitution layer. Starting with initial vector V , where Vj = j and j =
0, 1, . . . , 255, and using 1,000 random dynamic keys of substitution layer (si, ti),
the output vector after each iteration becomes the input vector for the next
iteration. And, at each iteration, a random control parameter (τi) is generated,
while the aforementioned cryptographic properties of each key are calculated
after each iteration.

The results for LPF , DPF , SAC, and BIC show that the optimal number
of iterations to construct good substitution layers with acceptable cryptographic
performance is 4. Therefore, the substitution layer is constructed by applying
the proposed transformation for more than four iterations, where each iteration
uses random control parameters. In summary, the proposed confusion layer
possesses suitable properties to be used in a block cipher with a chaining mode
of operation.

5 Experimental results

In this section, an experimental evaluation of the proposed block cipher algo-
rithm is performed, which encompasses the measurement of uniformity, ran-
domness, and key sensitivity.

5.1 Statistical Analysis

To be able to resist statistical attacks, the cipher should exhibit various random
properties [32]. To this end, we conducted an analysis involving the following
statistical tests: (a) Histogram analysis, (b) Entropy analysis, and (c) Correla-
tion between plain and encrypted data.
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(a)

(b)

Figure 10: Variation of the average of ρ of the recurrence of producing P-boxes
versus rp for 1,000 random dynamic keys (a) and its corresponding probability
of fixed points for rp = 3.
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(a) LPF (b) DPF

(c) DPF (d) DPF

Figure 11: Average LPF (a), DPF (b), SAC (c) and BIC (d) versus the
number of iterations.
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5.1.1 Uniformity Analysis

The histogram of the data to encrypt, converted into an image, is used to show
how pixels are distributed by plotting the number of pixels at each intensity
level. An encryption algorithm can resist statistical attacks when the plain
data does not have any similarity to the corresponding cipher data. To verify
this characteristic, we analyzed the histograms of eight original standard images:
Lena, Pepper, Baboon, Cameraman, Tiffany, Lake, F16, and Elaine, each of size
256×256, as well as the histogram of their corresponding cipher data, as shown
in Figure 14.

We can see that the histograms of the original data are quite different from
those of the corresponding cipher data. Indeed, the cipher data follows a uniform
distribution, which is significantly different when compared to the distribution
of the plain data. Hence, the histograms of the cipher data do not reveal any
useful information that can be used to launch a statistical attack on the proposed
encryption approach. Moreover, in order to compute the uniformity level of the
encrypted data, the entropy test is applied as described next.

Figure 12: Entropy analysis for the encrypted Lena data with 1,000 random
dynamic keys

5.1.2 Information Entropy Analysis

The information entropy of a source message m is a metric that measures the
level of uncertainty in a random variable [33], and is defined using the equation:

H(m) =

2M−1∑
i=0

p(mi) log2
1

p(mi)
(12)
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where p(mi) represents the probability of occurrence of the symbol mi and 2M

is the total number of states of the information source. Note that this entropy
is expressed in bits. The entropy of a truly random source is equal to 8.

Figure 12 illustrates the variation of entropy of the encrypted Lena data
through 1,000 iterations. As we can see, the mean value of entropy is 7.997
which is very close to the theoretical value of 8. This value can be compared
with the entropy of recent schemes mentioned in [33]. The Baptista’s algorithm,
for instance, reports H = 7.926, and the Wong’s one has H = 7.969. Xiang’s
algorithm, for its part, reports H = 7.995, while the Sun’s method presents an
entropy equals to H = 7.996. This comparison allows us to conclude that the
proposed encryption scheme achieves a better experimental security than the
existing algorithms, and a similar security compared to Kalka (H = 0.997): the
proposed cipher is sufficiently secure against entropy-related attacks.

5.2 Sensitivity Test

There are several attacks based on studying the relationship between two cipher
blocks resulting from a slight change (usually one-bit difference) of an original
block or secret key. The sensitivity test indicates how much a slight change in
the plain-block or in the key will affect the resulted encrypted/decrypted block.
The higher the change, the better the sensitivity of the encryption algorithm.
Such types of sensitivity are analyzed below.

5.2.1 Plain-text Sensitivity: choice of the rounds’ number value r

To demonstrate the level of sensitivity of the proposed cipher against a little
change on the plain-text, we consider the following scenario: Two plain-text
blocks P1 and P2 that have only one bit difference (their Least Significant Bit
LSB) are encrypted separately, to produce two cipher-texts C1 and C2. Then,
the Hamming distance (in bits) between these two cipher-texts is calculated
using Equation 13:

PS =

∑T
k=1 C1 ⊕ C2

Tb
× 100% (13)

=

∑T
k=1 EDKv (P1)⊕ EDKv (P2)

Tb
× 100%

where Tb is the length in bits of the plain-text and cipher-text blocks.
To confirm the result, this process is iterated on 100 random plain-texts.

The obtained mean value is close to 50%, which means that with a little change
in the plain-text, more than 50 % of the corresponding cipher-text is changed.
As such, we can reasonably assume that the cipher successfully satisfies the
avalanche effect. Figure 13 (a) shows that the majority of plain-text sensitivity
PS values are close to the optimal value of 50%. Therefore, the proposed
approach has enough sensitivity against any change on the plain-text. Based on
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these results, the number required to attain a good avalanche effect is rmin = 4
for Tb = 64 and 5 when Tb = 128.

Table 2: Minimum required number of rounds (rmin) to reach the avalanche
effect versus the block size (Tb)

Tb 16 32 64 128 256 512 1024
rmin 3 4 4 5 5 6 6

5.2.2 Key Sensitivity

To study the key sensitivity, two dynamic keys are used: DKv and DK ′
v, which

differ by only one bit (the LSB). The key sensitivity analysis KS is performed
following the same procedure of the plain-text sensitivity. The Hamming dis-
tance of the corresponding encrypted cipher-texts C and C ′ is computed and
the obtained results are depicted in Figure 13-(b).

Again, the majority of values are close to the optimal value (50 %), which
indicates that the proposed encryption approach has enough strength against
any little change in the dynamic key and achieves the avalanche criterion. Fur-
thermore, the results are close to those reported in [4, 17, 29, 22] which are
equal to 49.98, 49.97, 49.99 and 49.999, respectively.

5.3 Key space

To resist brute force attacks, the cipher scheme should have a large key space
with a key size (≥ 128 bits). In our case, the master key space can be 2128, 2256,
or 2512, which is sufficiently large to make the brute-force attack unfeasible in
practice. Additionally, the key space of the dynamic key is 2512, which can also
be considered large enough to make the brute-force attack unfeasible.

Additionally, a large master secret key and also a large dynamic key are used
in our proposition. As the difficulty of cipher-text-only attack is equal to one of
the brute force attacks, it becomes impossible for a cipher-text-only attack to
retrieve useful information from the cipher-data. Therefore, the method resists
cipher-text attacks.

5.4 On the usefulness of chaos properties

In the previous sections, we have discussed and verified experimentally various
properties related to the security of the encryption algorithm. Such properties
include the uniformity analysis, the information entropy, and both plain-text
and key sensitivities. However, the encryption function is not applied alone, as
it is embedded within a specific mode of operation. It is important to verify
that the avalanche effect is likely to be preserved, as well as the aforementioned
sensitivities.
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(a)

(b)

Figure 13: Average of (a) plain-text sensitivity (Avalanche effect) and (b) key
sensitivity for 1, 000 different dynamic keys.

At this point, we have computationally constructed the graph Gg, as defined
in Section 2.2 and with g = εk ◦ Ff0 , in which εk is our encryption scheme
proposed in Section 3. For that, experiments have been conducted for two
kinds of key size. First, we consider all the possible keys of size 28, leading
each time to a directed graph with 28 edges, each having 28 outgoing edges.
We used Matlab and verified that every time, the associated directed graph
is strongly connected. For keys and messages of size 216, such an approach
becomes intractable, and so only some keys have been randomly picked and
tested. With more details, using a 8 cores Xeon machine, it takes 4 hours to
check this property for only one key. So we tested 100 keys, and every time the
obtained graph was verified to be a strongly connected one.
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(a) (b) (c)

(d) (e)
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(i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 14: (a)- (e) Original Lena, Baboon, Goldhill, Murphy of brain MRE and
finger images, (k)- (o) their corresponding histograms, (f)- (j) the corresponding
cipher images, (p)-(t) the Histograms of the corresponding cipher images.
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According to Theorem 1, such a property leads to a chaotic behavior of
the mode of operation. In particular, properties of sensitivity to the initial
conditions, of expansiveness, and of large Lyapunov exponent, guarantee that
avalanche effect and both plain-text and key sensitivities will be preserved. Of
course, it would be interesting to check this property for bigger size of mes-
sages and keys, but it is impossible to check this practically, and theoretical
investigations are preferred instead.

6 Cryptanalysis Discussion

In principle, an efficient cipher scheme should resist to most known types of
attacks such as statistical, differential, brute-force, and chosen/known plain-
text/cipher-text attacks. This section discusses the proposed cipher scheme in
the context of these attacks.

6.1 Statistical Attacks

To resist statistical attacks, encrypted messages should meet the randomness re-
quirements. The obtained results of statistical tests presented in Section 5 prove
the random nonlinear recurrence, uniformity of encrypted message, and that no
correlation exists between the encrypted and original messages. Consequently,
no useful information can be detected from transmitted messages (a dynamic
key for each input message), which validates the robustness of proposed cipher
scheme. Finally, the proposed cipher scheme exhibits a high resistance degree
against statistical attacks.

6.2 Linear and Differential Attacks

The proposed scheme is based on a dynamic key-dependent approach. It achieves
the avalanche effect, and the encrypted messages have a high nonlinear degree
based on the use of r different S-boxes and the use of a dynamic key. Moreover,
it is very difficult for an attacker to determine which dynamic key is used for each
input message (one-way function). Therefore, the proposed cipher approach is
immune against linear attacks.

In a differential attack, the relationship between two encrypted messages
is exploited. However, in the proposed scheme, a different dynamic key and
consequently different cipher primitives are generated for every message, which
makes the relationship between two consecutive encrypted messages highly un-
correlated. This has also been demonstrated in the key sensitivity tests in which
two encrypted messages originally derived from the same original message using
slightly different keys, are significantly different (by at least 50%). Thus, the
proposed technique is robust and secure against linear and differential attacks.
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6.3 Resistance Against Chosen/Known Plain-text/Cipher-
text Attacks

Note that the chosen/known plain-text/cipher-text attack is a subset of the lin-
ear and differential attacks, which have proven to be unfeasible and unsuccessful
when using the proposed dynamic scheme. Hence, this validates the security,
efficiency and robustness of the proposed scheme against chosen/known plain-
text/cipher-text attacks. In addition, the issues related to single data failure
and accidental key disclosure are avoided in this case.

6.4 Resistance Against Key-Related Attacks

As illustrated in Figure 13-(b), the proposed technique exhibits a key sensitivity
close to the desired one of 50%. Consequently, a high level of resistance against
related-key attacks is achieved. This outcome is justified since the proposed
scheme has a dynamic structure that changes with every input message, in
contrast to existing symmetric cipher schemes, which follow a static structure.

6.5 Weak Keys

The proposed key generation and update cipher primitive technique produces
a set of dynamic sub-keys with a high degree of randomness. Moreover, all
cipher operations are directly related to a dynamic key and ensure the desirable
cryptographic strength. In the worst case, if any weakness exists in any of the
dynamic keys, it will not affect the previous or subsequent message. Hence, the
proposed approach is highly resistant to weak keys; this complicates the task
of attackers since it will be very hard to recover the next dynamic key that is
based on a different nonce.

Any weakness in any cryptographic operation is avoided in the proposed
scheme since different elements (round key, S-box or P-box) are produced for
each round. Moreover, the variation of the dynamic key for each new input
message and consequently the cipher primitives, results in different cipher-texts
and consequently, guards against any key disclosure accidents.

6.6 Brute-Force and Key-related Attacks

The secret key space is sufficiently large (2128, 2196, 2256 or 2512), and the nonce
and dynamic key space is 2512, which makes brute-force attacks unfeasible. In
addition, the obtained results of the sensitivity tests prove that any bit change
in the secret key or the nonce causes a significant difference in the encrypted
messages, as seen in Figure 13-(b). This demonstrates the efficiency of the
proposed dynamic key scheme against key-related attacks due to the dynamic
structure.
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Finally, the proposed dynamic key-dependent approach provides better im-
munity against powerful future attacks since dynamic cipher primitives and IV
can be produced for each new input message. Note that the existing attacks
target traditional static cipher structures, which is not the case in the proposed
approach.

7 Theoretical Considerations: Chaos Properties
of OFB Mode

In this section, we refer to the definitions of Section 2.2 to show that the study
of the dynamics and the disorder generated by the CBC mode can be extended
to other modes of operation. We consider the Output Feedback (OFB [13])
mode, which is defined below.

Let IV ∈ BN be the input vector, (mi)i∈N ∈
(
BN

)N
the sequence of block

messages to encrypt, and Ek : BN −→ BN the encryption function, where k is

the encryption key. The sequence (oi)i∈N ∈
(
BN

)N
of encrypted output block

messages is computed as described below.i0 = IV
o0 = Ek(i0)
c0 = m0 ⊕ o0

and ∀n ∈ Nt in+1 = on
on+1 = Ek(in+1)
cn+1 = mn+1 ⊕ on+1.

We are then left to rewrite these recurrent sequences as a discrete dynamical
system, in order to study its chaotic behavior. Let us consider the maps

i :
(
BN

)N −→
(
BN

)2
(m0,m1,m2, . . .)7−→(m0,m1)

that outputs the two first terms of a sequence, and

σ :
(
BN

)N −→
(
BN

)N
(m0,m1,m2,m3, . . .)7−→(m1,m2,m3, . . .)

that performs a shift on it. Considering the set

X =
(
BN

)N × BN,

then, the OFB mode of operation can be rewritten as follows:
X0 = ((m0,m1,m2, . . .);m0 ⊕ Ek(IV ))

Xk+1=
(
σ(Xk

0 ); i(X
k
0 )1 ⊕ Ek

(
i(Xk

0 )0 ⊕Xk
1

))
= fE,k(X

k),
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in which ∀k ∈ N, Xk ∈ X is the k-th term of the sequence X, which has two

components: Xk
0 ∈

(
BN

)N
and Xk

1 ∈ BN as designed by the Cartesian product
defining X . More precisely, Xk

0 is the sequence of block messages to encrypt after
k shifts, while Xk

1 is the encrypted block message ok to output. The OFB mode
of operation is thus the discrete dynamical system Xk+1 = fE,k(X

k) defined on
X , where

fE,k : X −→ X
(m,E)7−→(σ(m); i(m)1 ⊕ Ek (i(m)0 ⊕ E)) .

There are two steps before we can study the dynamics of the OFB: first, an
ad-hoc distance d must be defined on X , and then, the continuity of fE,k must
be stated on the metrical space (X , d). The former is defined by:

d(X,Y ) = dM (X0, Y0) + dE(X1, Y1),

where 
dM ((m0,m1,m2, . . .); (m̌0, m̌1, m̌2, . . .)) =

9

N

∞∑
k=0

|mk − m̌k|
10k+1

dE ((e1, . . . , eN); (ě1, . . . , ěN)) =

N∑
k=1

|ek − ěk|.

Note that dE is simply the Hamming distance on BN, while the value
9

N
in dM

is a simple normalization factor, which has been introduced for the following
reason: the k-th digits of dM (m, m̌) is 0 if and only ifmk = m̌k. Note finally that
the integral part of d(X,Y ) is dE(X1, Y1), while its fractional part is dM (X0, Y0).
The proof that dM is a distance is immediate, while dE is known to be a distance
(the Hamming one). So d is a distance, since it is defined as the sum of two
distances.

Let us now prove that:

Proposition 1 fE,k is continuous on the metrical space (X , d).

Proof This property is established by using the sequential characterization of
the continuity. Let us consider a sequence Xn = (mn, en) that converges to
X = (m, e). If we can establish that fE,k(X

n) converges to fE,k(X), then we
have proven the continuity of the map. Note that, ∀n,mn is a sequence of block
messages, and so (mn)n∈N is a sequence of sequences.

On the one hand, Xn −→ X implies that en −→ e. Due to the Ham-
ming distance, ∃n0 ∈ N,∀n ⩾ n0, e

n = e. On the other hand, mn −→ m so,
based on the definition of dM , ∃n1 ∈ N, n ⩾ n1 ⇒ mn

0 = m0 and mn
1 = m1.

As a consequence, ∀n ⩾ n1, i(X
n
0 )0 = m0 i(Xn

0 )1 = m1, which implies that
f(Xn)1 = m1⊕Ek (m0 ⊕ e) = f(X)1: the convergence of the second component
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is guaranteed. Finally,

dM (σ(mn), σ(m))=
9

N

∞∑
k=0

|mn
k+1 −mk+1|
10k+1

=
9× 10

N

∞∑
k=1

|mn
k −mk|
10k+1

<
9× 10

N

∞∑
k=0

|mn
k −mk|
10k+1

= 10× dM (mn,m) −→ 0,

which establishes the convergence of the first component, and so fE,k(X
n) −→

fE,k(X).

Let us now introduce the graph G (fE,k):

• its vertices are the block messages of BN,

• its edges are couples of BN×BN such that there is an edge from
e1 to e2 labeled by (m1,m2) if, and only if e2 = m2 ⊕ Ek (m1 ⊕ e1).

With such a graph, we can prove the following result.

Proposition 2 If G (fE,k) is strongly connected, then fE,k is strongly transitive
on (X , d).

Proof Let (m1, e1) and (m2, e2) be two points in X , and ε > 0. We are looking
for (m′, e′) in the open ball B((m1, e1), ε) =

{
x ∈ X | d(x, (m1, e1)) < ε

}
and

n ∈ N such that fn
E,k(m

′, e′) = (m2, e2).

As (m′, e′) has to be at a distance of less than ε of (m1, e1), based on the
definition of d:

• ε can be < 1, it is needed that e′ = e1.

• let k0 ∈ N such that 10−k0 < ε − ⌊ε⌋ ⩽ 10−k0−1. So, having
regard to the construction of dM , it is necessary that ∀k ⩽ k0,m

′
k = mk,

in order to have (m′, e′) ∈ B
(
(m1, e1), ε

)
.

Let us consider ě = fk0

E,k
(
(m1, e1)

)
. G (fE,k) being strongly connected, there is

a path
((m̌1, m̌2); (m̌3, m̌4); . . . ; (m̌k1

, m̌k1+1))

starting from ě and arriving to e2. And so

fk0+2k1

E,k
(
(m0, . . . ,mk0

, m̌1, . . . , m̌k1+1,m
2
0,m

2
1, . . .), e1)

)
has e2 as Boolean vector and m2 as sequence, which establishes the strong
transitivity of fE,k.

We are now able to prove that:
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Proposition 3 If fE,k is strongly transitive, then it is regular on (X , d).

Proof Let us consider (m1, e1) ∈ X and ε > 0. We are looking for a point
(m2, e2) ∈ X that is both periodic and within B

(
(m1, e1), ε

)
. We will now

proceed as in the previous proof, by constructing the desired point.

• As ε can be < 1, we need e2 = e1.

• Let k0 ∈ N such that 10−k0 < ε− ⌊ε⌋ ⩽ 10−k0−1. Again, due to
the definition of dM , we must have: ∀k ⩽ k0,m

2
k = m1

k.

Let us consider the point (m3, e3) = fk0

E,k
(
(m1, e1)

)
. fE,k being strongly transi-

tive, there is (m4, e4 = in B
(
(m3, e3),

1

10

)
and k1 ∈ N such that fk1

E,k
(
(m4, e4)

)
=

(m1, e1). But then, the point(
(m1

0, . . . ,m
1
k0
,m3

0, . . . ,m
3
k1
,m1

0, . . . ,m
1
k0
,m3

0, . . . ,m
3
k1
, . . .); e1

)
is such that:

• it is at ε from (m1, e1),

• it is periodic with period k0 + k1 + 2, by construction.

We have now all the ingredients to prove that:

Theorem 3 If G (fE,k) is strongly connected, then the OFB mode fE,k is chaotic
according to Devaney.

Proof G (fE,k) being strongly connected, we can conclude that fE,k is strongly
transitive, and so transitive. Then, due to Proposition 3, it is regular too.
Thanks to the Banks theorem, fE,k is sensible to the initial conditions. And so
it is chaotic, as defined by Devaney.

Based on Theorem 3, it is now possible to test if the OFB mode applied on
our proposed encryption scheme will exhibit the properties of sensitivity to the
initial conditions, expansiveness, and so on. Such properties are useful when the
avalanche effect or key sensitivity are needed. This can be verified by following
an approach similar to what has been done in Section 5.4.

8 Conclusion and perspectives

In this paper, a new lightweight and flexible cipher candidate has been proposed.
The robustness and speed of the proposed cipher are achieved by reducing the
number of rounds and employing a variable structure of SP-boxes. The r S-boxes
and P-boxes are designed in a lightweight manner, and the required number of
iterations needed to construct the boxes is quantified in addition to the number
of rounds needed to reach the avalanche effect. Moreover, a linear transforma-
tion is employed to form the P-boxes, while a nonlinear one is employed to form
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the S-boxes. The proposed cipher can effectively resist the differential/linear,
statistical, and brute-force attacks: theoretical analysis and experimental results
prove that the proposed cipher offers a high-security level and low computational
complexity when compared with DES, 3DES, AES, ECKBA, Kamur, and Yang
algorithms. From a theoretical aspect, one contribution is the rewriting of the
OFB mode as a discrete dynamical system on a relevant metric space. Its dy-
namics were studied using the mathematical topology, and the ways to have a
chaotic dependence between the original message and the cipher one have been
emphasized through a well-defined graph.

In future work, we intend to further analyze the OFB mode of operation
using the proposed reformulation. It will be compared to other existing modes
by measuring, for instance, their ergodicity, metrical entropy, etc. A more
formal relationship will be developed, to properly relate the key sensitivity and
the avalanche effect to definitions taken from measure theory. Finally, our cipher
will be refined and more thoroughly compared against the state-of-the-art.
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Ali Chehab, and Raphaël Couturier. A new efficient lightweight and secure
image cipher scheme. Multimedia Tools and Applications, Sep 2017.

[24] Ronald L Rivest, MJB Robshaw, Ray Sidney, and Yiqun Lisa Yin. The
rc6tm block cipher. In First Advanced Encryption Standard (AES) Con-
ference, page 16, 1998.

[25] Joseph L. Rodgers and Alan W. Nicewander. Thirteen Ways to Look at
the Correlation Coefficient. The American Statistician, 42(1):59–66, 1988.

[26] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, and Elaine
Barker. A statistical test suite for random and pseudorandom number
generators for cryptographic applications. Technical report, Booz-Allen
and Hamilton Inc Mclean Va, 2001.

[27] Claude Elwood Shannon. Communication in the presence of noise. Pro-
ceedings of the IRE, 37(1):10–21, 1949.

[28] Daniel Socek, Shujun Li, Spyros S Magliveras, and Borko Furht. Short
paper: Enhanced 1-d chaotic key-based algorithm for image encryption.
In Security and Privacy for Emerging Areas in Communications Networks,
2005. SecureComm 2005. First International Conference on, pages 406–
407. IEEE, 2005.

[29] Xiaojun Tong, Minggen Cui, and Zhu Wang. A new feedback image en-
cryption scheme based on perturbation with dynamical compound chaotic
sequence cipher generator. Optics Communications, 282(14):2722–2728,
2009.

[30] AF Webster and Stafford E Tavares. On the design of s-boxes. In Advances
in Cryptology—CRYPTO’85 Proceedings, pages 523–534. Springer, 1986.

[31] Eric Yong Xie, Chengqing Li, Simin Yu, and Jinhu Lü. On the cryptanalysis
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