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Abstract.   Periodic cellular core structures included in sandwich panels possess good stiffness while 
saving weight and only lately their potential to act as passive vibration filters is increasingly being 
studied. Classical homogeneous honeycombs show poor vibracoustic performance and only by varying 
certain geometrical features, a shift and/or variation in bandgap frequency range occurs. This work aims 
to investigate the vibration filtering properties of the AUXHEX “hybrid” core, which is a cellular 
structure containing cells of different shapes. Numerical simulations are carried out using two different 
approaches. The first technique used is the harmonic analysis with commercially available software, and 
the second one, which has been proved to be computationally more efficient, consists in the Wave Finite 
Element Method (WFEM), which still makes use of finite elements (FEM) packages, but instead of 
working with large models, it exploits the periodicity of the structure by analysing only the unit cell, 
thanks to the Floquet-Bloch theorem. Both techniques allow to produce graphs such as frequency 
response plots (FRF’s) and dispersion curves, which are powerful tools used to identify the spectral 
bandgap signature of the considered structure. The hybrid cellular core pattern AUXHEX is analysed 
and results are discussed, focusing the investigation on the possible spectral bandgap signature heritage 
that a hybrid core experiences from their “parents” homogeneous cell cores. 
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1. Introduction 

Today, there are many examples of periodic structures in the engineering domain. Stiffened 

plates, train rails, bridges, skyscrapers, space launchers as well as composites sandwich panels are 

just few examples. Due to the solicitations experienced, the study of wave propagation within such 

structures as well as understanding their dynamic behavior, is important to avoid catastrophic 

failures and to lengthen the average service lifespan. 

Honeycomb sandwich panels are well known to provide interesting static out of plane properties 

(compression) because of their high equivalent stiffness whilst containing mass. However, this 

makes such structures possess a very high stiffness/mass ratio and therefore, their vibration 

frequency domain is usually in the high range. Aerospace, automotive and naval industries all have 

the preference of obtaining lightweight structures and this makes sandwich panels very attractive, 

but at the same time, the frequencies to be dealt with in these operating environments are in the mid-



low range. As engineered today, (concentrating only on static aspects) the periodicity of such 

structures is not fully exploited. Obtaining sandwich panels with improved vibroacoustic 

performances at specific frequencies is therefore an interesting research topic. 

The response of periodic structures to external excitation has already been investigated starting 

from Brillouin’s work back in 1946. Mead et al. (1996) have produced a document, summarizing 

almost thirty years of work carried out at the University of Southampton, demonstrating how spatial 

periodicity in terms of structure, material or boundary layers, is detected by a travelling wave as a 

discontinuity point in the medium. Those periodic variations cause some of the incident waves to be 

reflected and some to be transmitted. The destructive interaction between incident and reflected 

waves causes attenuation (bandgaps) at certain frequency ranges, and therefore, periodic structures 

can act as passive filters. This intuitively brings the reader to reasonably think that there is a relation 

between the geometrical dimensions of the periodic structure and the travelling wave direction and 

characteristics. Each periodic structure possesses natural bandgaps that depend upon the geometry 

and those are defined as Bragg bandgaps.  

Different methods that have been developed in the years to analyse periodic structures and most of 

them can be found in literature. A good summary of those techniques which mostly are FEM derived 

can be found in the paper written by Hussein and Ruzzene (2014).  

The most commonly used one lately is the Wave Finite Element Method (WFEM). The mass and 

stiffness matrices of the unit cell are extracted with FEM commercial software and used to calculate 

the dynamics of the structure by applying the Floquet-Bloch periodicity conditions. 

A previous work by Del Broccolo et al. (2017), attempted to produce, successfully, a cellular 

structure possessing zero in-plane Poisson’s coefficient. This was obtained using a hybrid 

tessellation which conferred the overall structure, the desired property. By hybrid, is intend a cellular 

core containing cells of different shapes. This was achieved using PEEK thermoplastic thin sheets 

and the Japanese art technique of cutting and folding paper, known as Kirigami. Whilst the static 

properties have already been investigated, the vibration filtering properties of the hybrid pattern 

named AUXHEX have not yet been covered, although F. Scarpa et al. (2003) were, to the authors’ 

knowledge, the first ones to investigate wave propagation in a Kirigami lattice. In this work, 

numerical simulations are carried out with the aim of investigating the vibration filtering properties 

of such structure using two different approaches (finite FRF and infinite structure 1D WFEM) and 

software like ANSYS and MATLAB.  

The main indicator to evaluate the vibroacoustic performance of the AUXHEX hybrid core, will be 

the number and range of stopbands that the structure possesses. Additionally, two classic 

tessellations, hexagonal and re-entrant will also be analysed and used as reference. 

An overview of the investigation methods as well as some considerations on the results obtained are 

proposed. 

2. Wave propagation in periodic media 

2.1 Periodic structures 

It is defined as periodic, a structure which exhibits some form of spatial periodicity. Such 

characteristic can be in its constituent material, internal geometry or the boundary conditions. This 

periodic feature gives the possibility to do considerations about the behavior of the full structure by 

carrying out analyses on just a portion of structure as shown by B. R. Mace et al 2005 and F. Scarpa 

et al. (2013). The portion that enables us to recreate the full structure by repeating itself is usually 

called unit cell. 



2.2 Floquet-Bloch Theory (indirect method) 

This theory is the core of the WFEM method and was firstly introduced for engineering 

investigations by Brillouin (1953). According to this theory, displacements and forces on the nodes 

on the extremities of a unit cell are related. This means that it is enough to analyse a small portion 

of the periodic structure to understand the overall dynamic behavior. 
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Fig.1 Periodic structure unit cell 

In Fig.1, the Floquet-Bloch relation is shown, where 𝜇 = 𝑘𝐿 is the reduced wave number, 𝑘 is the 

wave number and 𝐿 the length of the unit cell.  

To understand the dynamic behavior of a periodic structure, a dispersion curve, which represents 

the relation between the reduced wavenumber 𝜇 versus the frequency 𝜔 can be plotted. To produce 

a dispersion curve therefore, a relation between 𝜔 and 𝜆 = 𝑒𝑗𝜇  is required. The starting point is 

represented by the Fundamental Dynamics Equation of the unit cell below: 

(𝐾 𝑢𝑐 −  𝜔2𝑀𝑢𝑐) (

𝑞𝑙
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Where K uc = [
KLL KLI KLR

KIL KII KIR

KRL KRI KRR

] and M uc = [
MLL MLI MLR

MIL MII MIR

MRL MRI MRR

] are the stiffness and the mass  

matrix of the unit cell, and the objective is to convert this relation into an eigenvalue problem, by 

cancelling the force vector on the right-hand side. 
By applying the Floquet-Bloch conditions on forces and displacements into Eq. (2), the following is 

obtained: 
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Where,  Λ𝑅 = [
𝐼 0
0 𝐼
𝜆𝐼 0

] 

For the forces, focus is on the RHS of Equation (1) and 𝑓𝑖 = 0 is also assumed:  
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By pre-multiplying 𝑓 by Λ𝐿 the following is obtained due to Floquet-Bloch theory: 
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Substituting those two conditions into Equation (1), still assuming that 𝑓𝑖 = 0: obtaining the 

equation that describes the dynamics of the unit cell: 
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The RHS of equation (6) is equal to zero thanks to the Floquet-Bloch relation just derived. By 

applying the condition on the displacements to equation (2) obtaining: 
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(𝐾𝑟(𝜇) − 𝜔2𝑀𝑟(𝜇))𝑞(𝑟) = 0    (7) 

 

reaching finally this standard eigenvalue problem.  

 

Solving for 𝜇 ∈ [0; 𝜋] which represents the First Brillouin Zone, one can then obtain the 

frequency vector and plot the dispersion curve. The input value 𝜇 though is a complex number where 

the real part describes the propagative waves while the imaginary part describes the evanescent ones. 

The range of the imaginary contribution, contrary to the real part, can assume any value and can’t 

be predicted prior. Since the main interest is represented by the propagative waves, only 𝑅𝑒(𝜇) is 

injected, missing the imaginary contribution as a trade-off. 

3. Investigation methods 

As mentioned in the introduction, the objective is to perform vibration analyses on the AUXHEX 

topology to see whether it possesses better vibration filtering properties with respect to the classical 

regular hexagonal and re-entrant honeycombs, for the same frequency range. The parameter that 

will be taken into consideration to evaluate the topology performance is the number and width of 

bandgaps. The main questions to answer were the following: 

 

• In certain frequency ranges, where and how many bandgaps can the topology produce? 

• How does the change in certain geometrical parameters affect the bandgaps? 

➢ The first question is answered comparing topologies keeping the relative density constant. 

➢ The parametrical analysis instead is carried out by varying the aspect ratio between the length 

of the beam and the side of its square section.  



Two methods are used for each topology to cross check results and perform this topology 

comparison; they can be defined as finite and infinite structure approaches. Both make use of 

ANSYS APDL 18.1 FEA software. The first one is a Harmonic simulation with a finite structure, 

which was used to produce an FRF plot to illustrate the validity of the bandgap locations. The second 

one is a design tool which uses the Floquet Bloch theory and TMM to produce dispersion curves 

linking frequency with the reduced wave number. This method is implemented in MATLAB and 

before proceeding with the actual bandgap evaluation (over the selected frequency range), 

agreement between the bandgaps found using commercial software and the TMM will be verified. 

3.1 Harmonic Analysis 

A compression force is applied at one end of a truss structure created with an array of twenty unit 

cells in the X direction. The displacement amplitude of the selected nodes at the extremities of the 

truss was extracted and used to plot FRF’s. The same type of harmonic study was done by applying 

a bending (in-plane) force and recording the displacements in the Y direction. In both cases, only 

three degrees of freedom were allowed and those were UX, UY and ROT-Z. 

The higher the number of cells, the higher the drop in correspondence of stopbands, as shown in 

Fig.2. This characteristic helped us identify which part of the plot corresponds to bandgaps. 

 

 
  

(a) (b) 

Fig.2 – (a) Analysed truss structures with input force (black arrows) and output readings (coloured arrows). 

(b) In-plane compression 1D FRF for increasing number of cells. 

3.2 Transfer matrix method (TMM) 

To investigate the dynamic behavior of a periodic structure, a full-scale model can be produced, 

and through heavy calculation and therefore long computational time, the response of the structure 

is obtained. This translates in a very large number of nodes and therefore degrees of freedom that 

one needs to compute. Another way of doing it is by imposing the continuity and equilibrium 

relations at the interface of unit cells, and analysing the single unit cell instead of the full structure 

(reduced number of degrees of freedom to be considered). Those concepts can be used to obtain a 

method where forces and displacements at the extremities of the structure are related by a single 

matrix T which will have dimensions considerably reduced with respect to the full model. To link 

displacements and forces at the extremities of the unit cell, equation (2) is required neglecting 

damping. 



According to the continuity of displacements and equilibrium of forces (Fig.3), relations (8) and (9) 

are derived which constitute the dynamic ligaments between the unit cells. 

 

Fig.3 - Unit cell interactions 
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For free wave propagation, no external forces act on the structure and the only ones considered are 

the ones at the interface between unit cells. The dynamic relation becomes: 
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Where 𝐷(𝜔) = [
𝐷𝐿𝐿 𝐷𝐿𝐼 𝐷𝐿𝑅

𝐷𝐼𝐿 𝐷𝐼𝐼 𝐷𝐼𝑅

𝐷𝑅𝐿 𝐷𝑅𝐼 𝐷𝑅𝑅

] is the Dynamic matrix which contains both mass and stiffness  

 

matrices of the unit cell and  𝑓𝑖 = 0. 

 

After a condensation procedure, the dynamic equation finally becomes: 

[
�̃�𝐿𝐿 �̃�𝑅𝐿
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] (
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�̃�(𝜔) is the condensed dynamic matrix which possesses the following terms: 

�̃�𝐿𝐿 = 𝐷𝐿𝐿 − 𝐷𝐿𝐼 × 𝐷𝐼𝐼
−1 × 𝐷𝐼𝐿 

�̃�𝐿𝑅 = 𝐷𝐿𝑅 − 𝐷𝐿𝐼 × 𝐷𝐼𝐼
−1 × 𝐷𝐼𝑅 

�̃�𝑅𝐿 = 𝐷𝑅𝐿 − 𝐷𝑅𝐼 × 𝐷𝐼𝐼
−1 × 𝐷𝐼𝐿  

�̃�𝑅𝑅 = 𝐷𝑅𝑅 − 𝐷𝑅𝐼 × 𝐷𝐼𝐼
−1 × 𝐷𝐼𝑅 

Now, by rearranging the items, the Transfer Matrix: 

(
𝑞𝑟

−𝑓𝑟
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𝑇11 = −�̃�𝐿𝑅
−1

× �̃�𝐿𝐿 

𝑇12 = �̃�𝐿𝑅
−1

 

𝑇21 = −�̃�𝑅𝐿 + �̃�𝑅𝑅 × �̃�𝐿𝑅
−1
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The eigenvalues of 𝑇,  correspond to the values of 𝜆 = 𝑒𝑗𝜇  and so, the response for an infinite 

structure can be plotted. One powerful characteristic of the matrix T is that is true for every cell, so 

if dealing with a finite structure, a simple multiplication of it by itself will allow to link the first cell 

to the last one. For (n) cells therefore: 

( 𝑞𝑟
−𝑓𝑟

)
(𝑛)

=  T𝑛 (𝑞𝑙
𝑓𝑙

)
(1)

     (14) 

 

Having frequency as the input, the reduced wave number 𝜇 can be obtained, and the dispersion 

curves produced. The output using the direct approach, contrary to the indirect approach explained 

in section 2.2, produces both imaginary and real contributions of 𝜇. This information is useful 

because depending on the degrees of freedom of the model, the interpretation of the branches in the 

dispersion curves becomes easier because it allows to subdivide each branch with the type of 

travelling wave (in-plane compression or bending, out-of-plane bending, torsion). 

4. Numerical simulations 

Here, the well-known harmonic approach is used in symbiosis with the novel WFEM. The latter 

is computationally favourable and is used to obtain the relation between frequency and reduced wave 

number, which is critical in describing the dynamic behaviour of the structure.  

4.1 Finite element model 

In terms of FE modelling, ANSYS Mechanical APDL was used and the material properties 

(Biotex flax/PP natural fibre prepreg) used for the model are shown in Table 1. 

 

𝒀𝒐𝒖𝒏𝒈′𝒔 𝑴𝒐𝒅𝒖𝒍𝒖𝒔 , 𝑬 [𝑮𝑷𝒂] 8.1 

𝑫𝒆𝒏𝒔𝒊𝒕𝒚, 𝝆 [𝒌𝒈 𝒎−𝟑] 1040 

𝑷𝒐𝒊𝒔𝒔𝒐𝒏′𝒔 𝑹𝒂𝒕𝒊𝒐, 𝝂 0.2 

Table 1 - Biotex flax/pp material properties (thermoformed) 

Beam elements (BEAM 4) were used for both the Harmonic (finite approach) and the Substructure 

(used for infinite approach) analysis.  In none of the cases damping was used. 

4.2 Core constant relative density 

A first comparison between these topologies is carried out keeping constant the core relative 

density. In this way, the overall out of plane mechanical static compression properties as well as the 

overall weight of the core per unit area, are kept constant as described by Gibson in his book about 

cellular solids [12]. This seemed a reasonable way of comparing different topologies isolating the 

vibration performance of the latter. 

The relative density of the cellular structure is calculated as being the ratio between the volumes of 

the actual unit cell constituent material over the volume effectively occupied by it. 



The harmonic response simulations were carried out without implementing any sort of damping in 

the structure. The plots show extremely high drops in amplitude to very large negative values. This 

must be physically interpreted as a bandgap region where none of the input solicitation/displacement 

is recorded at the output reading point (end of truss structure).  

 

In Table 2, the values of 𝑙 and  𝜗 that were calculated and used in order to guarantee constant relative 

density for each configuration are shown: 

Topology 𝐥  [mm] 𝛝 [deg] Rel. density (𝛚) 1st eigenfreq. [Hz] (𝟐𝛚) Freq. range [Hz] 

Hexagonal 5.499 30.00 0.042 8373 16746 

Re-entrant 7.331 30.00 0.042 4710 9420 

AUXHEX 6.415 30.00 0.042 6152 12304 

Table 2 - Unit cell parameters 

4.2.1 Hexagonal 

The unit cell as well as a representation of the hexagonal topology are shown in Fig.4.  

 
  

Fig.4 - Hexagonal unit cell (left) and example core (right) 

Fig.5 and Fig. 6 show the FRF plots and the dispersion curves for the hexagonal topology. The 

graphs are normalized according to the 1st eigenfrequency of the 𝑙 beam. There is very good 

correspondence between dispersion curves (infinite structure) and the computed FRF plots (finite 

structure). 

 

Fig.5 - FRF plot for Hexagonal topology 

 



 

Fig.6 - Dispersion curve for Hexagonal topology 

The graphs both show the presence of bandgaps around 𝜔 𝜔𝑛⁄  = 0.3 , 0.45 , 0.85 , 1.2 and 1.7. 

4.2.2 Re-Entrant 

Just as for the Hexagonal configuration, the unit cell dimensions as well as the FRF and 

Dispersion curves are shown in Fig.7, Fig. 8 and Fig.9. 

   

Fig.7 - Re-entrant unit cell (left) and example core (right) 

The graphs both show the presence of bandgaps around 𝜔 𝜔𝑛⁄  = 0.22, 0.35, 0.45, 0.9, 1.4 and above 

1.85. Compared to the hexagonal cell core, the re-entrant possesses a wider bandgap at 𝜔 𝜔𝑛⁄  = 0.9.  

 

Fig.8 - FRF plot for Re-entrant topology 



 

 

Fig.9 - Dispersion curve for Re-entrant topology 

4.2.3 AUXHEX 

The AUXHEX configuration, shown in Fig.10, possesses various bandgaps. In Fig 11 and Fig.12, 

adjacent bandgaps appear in the range from 𝜔 𝜔𝑛⁄  = 0.3 up to 1.5. Sharp resonant peaks interrupt 

the continuity of a potentially very large bandgap. 

 

  

Fig.10 - AUXHEX unit cell (left) and example core (right) 

 

Fig.11 - FRF plot for AUXHEX topology 



 

Fig.12 - Dispersion curve for AUXHEX topology 

4.3 Dispersion curve summary 

Fig. 13 is the plot of the real part of 𝜇 (reduced wavenumber), which represents the propagative 

waves, over a frequency range of interest that goes from 0 Hz to 20 kHz. The blue, red and green 

horizontal lines represent the frequencies at which 𝑅𝑒(𝜇) ≠ 0 and therefore waves can freely 

propagate. The absence of plot translates therefore into the presence of a bandgap. 

 

Fig.13 - Dispersion curve of the three topologies considered for the comparison 

4.4 Aspect ratio impact on bandgaps 

A frequency response analysis was carried out varying the aspect ratio of the constituent beam 

to understand the impact, if any, that this parameter upon the bandgap number, width or shift. In 

parallel, dispersion curves were also produced, using WFEM in combination with TMM. The results 

from the analyses were normalised according to the 1st eigenfrequency of the smallest constituent 

beam of the analysed unit cell. The beam length varied from 3mm to 10 mm.  

𝑡 = 0.2 

Aspect Ratio = 𝑙 𝑡⁄  

𝜔 𝜔𝑛⁄  = [0 – 10] 
 

BANDGAP 

PROPAGATION 



The parametric frequency response plots and the dispersion curves for the hexagonal 

configuration are shown in Fig.14 and Fig. 15. By increasing 𝑙 while keeping 𝑡 constant, the scaling 

factor of the unit cell is changed, hence decreasing its overall stiffness. This is evident from the 

normalised parametric plots, as the dips in the FRF and the blanks in the dispersion curves are 

coincident for all aspect ratio considered. 

 

Fig. 14 - FRF - Hexagonal - parametric plot 

 

Fig. 15 - Dispersion Curve - Hexagonal - parametric plot 

 

  



4.5 Bandgap inheritance 

This section is focused on the results obtained for the hybrid configuration. Fig.16 shows how 

by repeating in space (alternating) the unit cells of the homogeneous cores, the AUXHEX 

configuration is reproduced. 

 

Fig.16 - Hybrid panel recreated with mixed unit cell (hexagonal and re-entrant) tessellation 

In Fig.17, a representation of the dispersion curves and relative bandgaps produced by each 

homogeneous topology is proposed, while varying the aspect ratio (𝑙 𝑡⁄ ) and therefore to the unit 

cell scaling factor. The 2D plot is obtained projecting the calculated dispersion curves (like in 

Fig.13) over the 𝜔 𝜔𝑛⁄  vs 𝑙 𝑡⁄  plane. Each horizontal red line refers to the frequency values at which 

𝑅𝑒(𝜇) ≠ 0 (Fig 15 may help the reader in better understanding the plot projection). The 

normalisation adopted underlines how the bandgap frequency range is again dependant from the unit 

cell scaling factor. In Fig.17 the bandgap frequency ranges are highlighted with vertical rectangles 

in blue (hexagonal) and green (re-entrant). 

 

Fig.17 - Parametric dispersion curves for the Hexagonal and the Re-entrant topologies. Bandgaps shown 

in blue and green respectively 

Fig. 18 represents the bandgaps produced by the hybrid core AUXHEX. Comparing the results 

displayed in Fig. 17 with the ones obtained for this configuration, it seems that the capability of each 

type of cell (hexagonal and re-entrant), to filter waves of certain frequency ranges, is inherited by 

the hybrid topology. The bandgaps produced by the hexagonal and re-entrant configurations, to a 

certain extent, are also produced by the hybrid core and therefore inherited. This bandgap inheritance 



could potentially lead to bandgap-designed hybrid panels, provided that the spectral signature of the 

“parent” unit cells are known. 

 

Fig.18 - Parametric dispersion curve for the AUXHEX configuration. The inherited bandgaps are shown 

in blue (from Hexagonal) and green (from Re-entrant) 

Furthermore, another simulation was carried out. A different truss structure containing a series of 

10 hexagonal unit cells followed by 10 re-entrant unit cells (Fig.19) was compared with an 

AUXHEX truss structure of same length and relative density.  

 

Fig.19 - New truss structure (10 hexagonal + 10 re-entrant unit cells) 

Initially, a comparison between the output amplitude reading at the end of a truss made with ten 

hexagonal cells and the one picked at the middle of the new truss (output 1) was made to see whether 

the subsequent ten re-entrant cells had any effect upon the mid-truss-node reading (blue arrow in 

Fig.19). As shown in Fig.20, no effect on the bandgap position and width was noticeable. 



 

Fig.20 - Nodal output at the middle of the new truss versus the output at the end of a hexagonal core truss 

Consequently, to this verification, the output at the end of the new truss (output 2) was considered 

reliable and compared with the reading at the end of the AUXHEX truss (output 3, visible in Fig.22). 

The results are plotted in Fig.21, where the FRF trends seem to be quite close to each other. 

 

Fig.21 - Comparison between the output nodal solution at the end of the AUXHEX truss versus the output 

recorded at the end of the new truss (10 hexagonal + 10 re-entrant) 

Fig. 22 shows how by applying a compressive solicitation at 13360 Hz (frequency at which waves 

propagate across the hexagonal core but not trough the AUXHEX one), waves are unable to 

propagate until the end of the truss. This means that each unit cell from a homogeneous core is 

frequency-selective and hybrid cores such as the AUXHEX, inherit the filtering property of the 

parent-unit cells, since no matter in which way the truss is assembled, the resultant FRF maintains 

the bandgaps. High correspondence between the AUXHEX and the new truss FRF’s is also found 

at specific frequencies, circled with dashed blue lines. 



 

Fig.22 - Deformed shape of the new truss structure when solicitated at 13360 Hz 

 

5. Conclusions 

The implementation of the Floquet-Bloch periodic boundary conditions through a transfer matrix 

method for 1D vibration bandgap prediction is a valuable investigation resource, since the numerical 

results obtained agree with the ones obtained using commercial software. 

The configuration which shows the wider bandgap at lower frequencies, keeping the relative 

density constant, is the AUXHEX. The configuration which shows the widest bandgap within the 

0-20 kHz range is the Re-entrant. Overall, the AUXHEX is the topology which shows the largest 

number of bandgaps in that range. 

The inheritance concept, considering the 1D periodicity and compression solicitation, seems to be 

an interesting factor to further investigate and may lead to bandgap tailored hybrid cores. Through 

the opportune selection of unit cells and tessellation sequences, the vibration absorption at desired 

frequency ranges can be obtained. 
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